Что такое оптические явления в физике

Учебники

Журнал «Квант»

Общие

Содержание

84. Оптические явления в атмосфере

Атмосфера нашей планеты представляет собой достаточно интересную оптическую систему, показатель преломления которой уменьшается с высотой вследствие уменьшения плотности воздуха. Таким образом, земную атмосферу можно рассматривать как «линзу» гигантских размеров, повторяющую форму Земли и имеющую монотонно изменяющийся показатель преломления.

Это обстоятельство приводит к появлению целого ряда оптических явлений в атмосфере, обусловленных преломлением (рефракцией) и отражением (рефлекцией) лучей в ней.

Рассмотрим некоторые наиболее существенные оптические явления в атмосфере.

Атмосферная рефракция

Атмосферная рефракция — явление искривления световых лучей при прохождении света через атмосферу.

С высотой плотность воздуха (значит, и показатель преломления) убывает. Представим себе, что атмосфера состоит из оптически однородных горизонтальных слоев, показатель преломления в которых меняется от слоя к слою (рис. 299).

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

При распространении светового луча в такой системе он будет в соответствии с законом преломления «прижиматься» к перпендикуляру к границе слоя. Но плотность атмосферы уменьшается не скачками, а непрерывно, что приводит к плавному искривлению и повороту луча на угол α при прохождении атмосферы.

В результате атмосферной рефракции мы видим Луну, Солнце и другие звезды несколько выше того места, где они находятся на самом деле.

По этой же причине увеличивается продолжительность дня (в наших широтах на 10-12 мин), сжимаются диски Луны и Солнца у горизонта. Интересно, что максимальный угол рефракции составляет 35′ (для объектов у линии горизонта), что превышает видимый угловой размер Солнца (32′).

Из этого факта следует: в тот момент, когда мы видим, что нижний край светила коснулся линии горизонта, на самом деле солнечный диск находится уже под горизонтом (рис. 300).

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

Мерцание звезд

Мерцание звезд также связано с астрономической рефракцией света. Давно было подмечено, что мерцание наиболее заметно у звезд, находящихся вблизи линии горизонта. Воздушные потоки в атмосфере изменяют плотность воздуха с течением времени, что приводит к кажущемуся мерцанию небесного светила. Космонавты, находящиеся на орбите, никакого мерцания не наблюдают.

Миражи

В жарких пустынных или степных районах и в полярных областях сильный прогрев или охлаждение воздуха у земной поверхности приводит к появлению миражей: благодаря искривлению лучей становятся видимыми и кажутся близко расположенными предметы, которые на самом деле расположены далеко за горизонтом.

Иногда подобное явление называется земной рефракцией. Возникновение миражей объясняется зависимостью показателя преломления воздуха от температуры. Различают нижние и верхние миражи.

Нижние миражи можно увидеть в жаркий летний день на хорошо прогретой асфальтовой дороге: нам кажется, что впереди на ней есть лужи, которых на самом деле нет. В данном случае мы принимаем за «лужи» зеркальное отражение лучей от неоднородно разогретых слоев воздуха, находящихся в непосредственной близости от «раскаленного» асфальта.

Верхние миражи отличаются значительным разнообразием: в одних случаях они дают прямое изображение (рис. 301, а), в других — перевернутое (рис. 301, б), могут быть двойными и даже тройными. Эти особенности связаны с различными зависимостями температуры воздуха и показателя преломления от высоты.

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

Радуга

Атмосферные осадки приводят к появлению в атмосфере эффектных оптических явлений. Так, во время дождя удивительным и незабываемым зрелищем является образование радуги, которое объясняется явлением различного преломления (дисперсии) и отражения солнечных лучей на мельчайших капельках в атмосфере (рис. 302).

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

В особо удачных случаях мы можем увидеть сразу несколько радуг, порядок следования цветов в которых взаимообратен.

Световой луч, участвующий в формировании радуги, испытывает два преломления и многократные отражения в каждой дождевой капле. В данном случае, несколько упрощая механизм образования радуги, можем сказать, что сферические дождевые капельки играют роль призмы в опыте Ньютона по разложению света в спектр.

Вследствие пространственной симметрии радуга видна в виде полуокружности с углом раствора около 42°, при этом наблюдатель (рис. 303) должен находиться между Солнцем и каплями дождя, спиной к Солнцу.

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

Преломление света в кристалликах льда, сопровождающееся разложением в спектр, приводит к появлению сравнительно редкого и не менее красивого оптического явления — гало (рис. 304).

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

Гало проявляется в виде кругов (иногда столбов, крестов) вокруг Солнца и Луны. Для появления яркого гало необходимо достаточное количество ледяных кристаллов правильной формы.

Рассеяния света

Разнообразие цветов в атмосфере объясняется закономерностями рассеяния света на частичках различных размеров. Вследствие того, что синий цвет рассеивается сильнее, чем красный, — днем, когда Солнце находится высоко над горизонтом, мы видим небо голубым. По этой же причине вблизи линии горизонта (на закате или восходе) Солнце становится красным и не таким ярким, как в зените. Появление цветных облаков также связано с рассеянием света на частичках различных размеров в облаке.

Литература

Жилко, В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летнми сроком обучения (базовый и повышенный)/ В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2008. — С. 334-337.

Источник

Явления физической оптики

Вы будете перенаправлены на Автор24

Первые научные представления о том, что такое на самом деле свет, ученые относят к древности. Подавляющее большинство древних мыслителей рассматривало световое явление как универсальные лучи, соединяющие в одно целое человеческий глаз и светящееся тело. При этом одни из них утверждали, что лучи исходят непосредственно из глаз человека, они как бы пытаются нащупать рассматриваемый объект. Однако позже, к началу XVII столетия, такое учение о природе света потеряло свое значение.

Физическая оптика – обширный и важный раздел физики, в котором исследуются свойства и природа электромагнитного излучения, активное взаимодействие разных видов излучения с окружающей средой, законы преобразования явления, наблюдаемого при прохождении его через оптические устройства.

Рисунок 1. Физическая оптика. Автор24 — интернет-биржа студенческих работ

Принципы построения оптико-физических концепций на сегодняшний день также относятся к сфере этой науки.

Физическая оптика тщательно изучает природу света, его основные законы, рассматривая такие его свойства:

Физическая оптика как универсальный отдел электродинамики

Физическая оптика формирует универсальный отдел электродинамики, который охватывает быстро меняющиеся электромагнитные поля. Особенное ее значение заключается в том, что она исследует ту область физики, где происходят наиболее тонкие измерения и в результате этого возможно наиболее глубокое понимание всех подробностей физических процессов.

Готовые работы на аналогичную тему

Такое развитие физической оптики как отдела электродинамики вполне оправдывается принесенными им богатыми и значимыми для всей науки плодами.

Методы указанного направления в физике используются для решения разнообразных практических задач. При этом ключевая цель таких задач часто состоит в изучении оптического излучения и в определении точных параметров рассматриваемого предмета по тем сведениям, которые содержатся в этом явлении при тесном взаимодействии его с другим веществом.

Способы физической оптики считаются весьма универсальным; они применяются, как в задачах рассеяния магнитных волн на ровных полностью или частично освещенных элементах, так и в пространствах, где предметом рассеяния выступают материальные тела с кромками.

Немного хуже оптика физических явлений функционирует в вопросах распределения волн на веществах с сильными изломами поверхности, в итоге точность ее оказывается удовлетворительной только в направлениях геометрических отражений. В тех направлениях, где главная роль принадлежит краевым волнам, методы изучаемого раздела дает неверные результаты.

Основные законы явлений физической оптики

Рисунок 2. Границы применимости законов классической механики. Автор24 — интернет-биржа студенческих работ

Уже в период проведения первых оптических исследований были экспериментально установлены следующие четыре основных закона явлений физической оптики:

Дальнейшее изучение и реализация на практике этих законов продемонстрировали, что они имеют не только гораздо более глубокий смысл, чем может показаться с первого взгляда, а и ограниченность их применения так как ни считаются лишь приближенными к действительности теориями. Установление границ применимости и условий главных оптических законов означало огромные прогресс в рассмотрении свойств природы света. Более тщательное исследование описываемых процессов показывает, что гипотеза прямолинейного распространения световых лучей теряет силу, если перейти к очень малым отверстиям.

Законы преломления и отражения света также справедливы и возможны только при соблюдении всех известных условий. В том случае, когда параметр отражающей поверхности, разделяющей две активно действующие среды, мал возникают заметные отступления от указанных постулатов физической оптики. Однако для обширной сферы явлений, наблюдаемых в простых оптических приборах, все вышеуказанные законы соблюдаются всегда достаточно строго.

Идеальные оптические системы

Ученый Гаусс в 1841 году описал первую общую теорию оптических систем, получившую дальнейшее развитие в работах многих математиков и физиков. Теория Гаусса представляет собой гипотезу идеальных системы, в которых сохраняется энергия пучков и изображение, геометрически подобное объекту. Согласно этой идее, определение любой точки пространства предметов должно соответствовать идеальной системе отсчета. Такие элементы носят название сопряженные точки. Таким образом, теория идеальной физической системы в оптике есть только геометрическое предположение, устанавливающее соотношение между линиями, точками и плоскостями.

Идеальная система в физическая оптике может быть осуществлена с определенным приближением в виде центрированной концепции, если ограничиться средой вблизи основной оси симметрии, то есть параксиальными пучками. В трудах Гаусса требование «тонкости» оптической системы отпадает, но лучи остаются неизменными.

Задачей геометрической оптики является разыскание такой оптической системы, которая максимально приближалась бы к идеальной.

Линия, соединяющая все центры сферических поверхностей, называется основной оптической осью изучаемой системы.

Теория Гаусса устанавливает и описывает ряд так называемых плоскостей, задание которых состоит в расшифровке показателей концепции и рассмотрении реального хода лучей. Любая точка линии всегда сопряжена с другим элементом, лежащим на аналогичной высоте. То же относится и к плоскостям, которые проведенным перпендикулярно к центральной оси, так как вся система симметрична относительно данного положения. Такие плоскости в физической оптике называются главными плоскостями.

Таким образом, идеальная оптическая концепция должна обладать центральными плоскостями. Точки пересечения главных линий с осью носят название ключевых точек системы.

Роль физической оптики в развитии современной физики

Роль оптики в развитии современной физики велика. Возникновение двух наиболее важных и революционных гипотез двадцатого столетия (теории относительности и квантовой механики) непосредственно связано с оптическими исследованиями.

Оптические способы анализа вещества на молекулярном уровне стали причиной возникновения специального научного направления – молекулярной оптики.

К ней тесно примыкает оптическая спектроскопия, применяемая в современном материаловедении, при изучениях плазмы, в астрофизике. Существуют также нейтронная и электронная оптики; разработаны электронный микроскоп и нейтронное зеркало.

Законы общего построения изображения служат базой для разработки разнообразных оптических приборов. Основной частью любого устройства в области физической оптики является некоторая оптическая концепция. Сфера явлений, исследуемая данным разделом физики, весьма обширна.

Оптические процессы теснейшим образом связаны с явлениями, рассматриваемые в других разделах науки, а способы исследования в физической оптике относят к наиболее тонким и точным. Поэтому неудивительно, что в течение длительного времени именно этому научному направлению принадлежала ведущая роль во многих фундаментальных экспериментах и становлении основных физических воззрений. Изобретение современных лазеров открыло новые широчайшие возможности не только в оптике, но и в различных отраслях техники.

Источник

Оптические явления в природе

Оптические явления, обусловленные геологическими астрономическими причинами: атмосферная рефракция, миражи, радуга, полярные сияния. Оптические явления, наблюдаемые в определённый период времени. Возникновение огней святого Эльма, солнечных столбов.

РубрикаФизика и энергетика
Видреферат
Языкрусский
Дата добавления04.04.2017
Размер файла55,6 K

Что такое оптические явления в физике. Смотреть фото Что такое оптические явления в физике. Смотреть картинку Что такое оптические явления в физике. Картинка про Что такое оптические явления в физике. Фото Что такое оптические явления в физике

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Все оптические явления прямо или косвенно основаны на законах преломления света, рефракции, дисперсии, поглощении света, инверсии.

Данная тема актуальна, так как, изучая различные явления, связанные с прохождением света в атмосфере, ученые используют добытые знания для развития науки. Так, например, наблюдение венцов помогает определять величину кристалликов льда и капель воды, из которых образуются различные облака. Наблюдения венцов и гало дает также возможность предсказания погоды. Так, если появившийся венец постепенно уменьшается, можно ожидать осадки. Увеличение венцов, наоборот, предвещает наступление сухой и малооблачной погоды.

Меня очень заинтересовало причина возникновения этих необычных явлений и иллюзий, поэтому именно эта тема была выбрана для реферата.

Первая глава поясняет возникновение атмосферных явлений с физической точки зрения и даёт краткое описание законов оптики. Так же перечисляются основные проявления атмосферных явлений, к примеру, цвет неба и прочее.

Третья глава повествует о довольно редких оптических явлениях: так называемых «солнечных столбах», «блуждающих огоньках», «огнях святого Эльма» и других.

Таким образом, будут рассмотрены основные атмосферные оптические явления и предоставлены пояснения возникновения этих явлений.

Глава 1. Физическое основание возникновения оптических явлений в атмосфере

Что же представляют собой оптические явления?

Большинство из видов оптики, как физическое явление, доступны нашему наблюдению только при использовании специальных технических устройств. Это могут быть лазерные установки, излучатели рентгеновских лучей, радиотелескопы, плазменные генераторы и многие другое. Но наиболее доступным и, вместе с тем, наиболее красочным оптическими явлениями являются атмосферные.

Наша планета окружена газовой оболочкой, которую мы называем атмосферой. Для лучей света, идущих от солнца или других небесных светил, земная атмосфера представляет собой своеобразную оптическую систему с постоянно меняющимися параметрами. Оказываясь на их пути, она и отражает часть света, рассеивает его, пропускает его сквозь всю толщу атмосферы, обеспечивая освещённость земной поверхности, в определённых условиях, разлагает его на составляющие и искривляет ход лучей, вызывая, тем самим, различные атмосферные явления.

Как же тогда можно объяснить постоянно меняющийся цвет неба?

Явление голубой окраски неба в течение дня, зависит исключительно от рассеяния света теми мелкими частицами, которые постоянно находятся в более чем достаточном количестве во взвешенном состоянии не только в нижних, но и в сравнительно высоких слоях атмосферы. Лордом Рэйлеем теоретически было доказано, что при достаточно малых размерах такие частицы обладают свойством отражать исключительно только лучи короткой длины волны, т. е. лучи голубые, синие, фиолетовые. Расчеты показывают, что чем короче длина световой волны, тем выше вероятность ее попадания в резонанс с собственными частотами возбуждения электронов и, соответственно, тем чаще электроны будут поглощать и вновь испускать фотоны соответствующей частоты. Следствием этого же эффекта взаимодействия света с атомами является и рассеяние света в среде. Свет, не вступавший во взаимодействие с атомами, доходит до нас напрямую. Поэтому, когда мы глядим не на источник света, а на рассеянный свет от этого источника, мы наблюдаем в нем преобладание коротких волн синей части спектра.

При морозах, когда воздух переполнен плавающими в нем капельками тумана, окраска небосклона является очень яркой.

Таким образом, явления окраски неба в голубой цвет наблюдаются только при достаточно малых размерах отражающих лучи частиц.

Глава 2. Частые оптические явления, обусловленные геологическими астрономическими причинами

Давно было подмечено, что мерцание наиболее заметно у звезд, находящихся вблизи линии горизонта. Воздушные потоки в атмосфере изменяют плотность воздуха с течением времени, что приводит к кажущемуся мерцанию небесного светила.

Мерцание звезд также связано с астрономической рефракцией света. Космонавты, находящиеся на орбите, никакого мерцания не наблюдают.

Если зритель и отдаленный предмет находятся на лишь немного повышенных точках и между ними лежит сильно нагретая солнцем песчаная почва, сообщающая свою теплоту ближайшим слоям воздуха и тем нагревающая их сильнее слоев, выше расположенных, зритель видит предмет в его действительном положении при посредстве лучей, прямо от предмета идущих к нему, и во-вторых, в перевернутом положении, при посредстве лучей, сначала идущих от предмета книзу, потом, при встрече с более теплыми и поэтому более редкими слоями воздуха, подвергающихся отражению и идущих к глазу наблюдателя, видящего предмет как бы отраженным в воде.

В некоторых местностях, в Неаполе, Реджио, на берегу Сицилийского пролива, утром на больших песчаных равнинах, в Персии, Туркестане, Египте, часто наблюдается это явление, называемое фата-морганой.

Фата-моргана возникает в тех случаях, когда в нижних слоях атмосферы образуется (обычно вследствие разницы температур) несколько чередующихся слоёв воздуха различной плотности, способных давать зеркальные отражения. В результате отражения, а также и преломления лучей, реально существующие объекты дают на горизонте или над ним по нескольку искажённых изображений, частично накладывающихся друг на друга и быстро меняющихся во времени, что и создаёт причудливую картину фата-морганы.

Из большего многообразие миражей выделим несколько видов: «озерные» или нижние миражи, верхние миражи, двойные и тройные миражи, миражи сверхдальнего видения.

Как появляется нижний(«озёрный мираж»)?

Если воздух у самой поверхности земли сильно нагрет и, следовательно, его плотность относительно мала, то показатель преломления у поверхности будет меньше, чем в более высоких воздушных слоях.

В соответствии с установленным правилом, световые лучи вблизи поверхности земли будут в данном случае изгибаться так, чтобы их траектория была обращена выпуклостью вниз.

Световой луч от некоторого участка голубого неба попадет в глаз наблюдателя, испытав указанное искривление. А это означает, что наблюдатель увидит соответствующий участок небосвода не над линией горизонта, а ниже ее. Ему будет казаться, что он видит воду, хотя на самом деле перед ним изображение голубого неба.

Если представить себе, что у линии горизонта находятся холмы, пальмы или иные объекты, то наблюдатель увидит и их перевернутыми, благодаря отмеченному искривлению лучей, и воспримет как отражения соответствующих объектов в несуществующей воде.

Так возникает иллюзия, представляющая собой «озерный» мираж.

Нижние миражи возникают в пустынях и степях.

Каким образом возникают верхние миражи?

Можно предположить, что воздух у самой поверхности земли или воды не нагрет, а, напротив, заметно охлажден по сравнению с более высокими воздушными слоями. Световые лучи в рассматриваемом случае изгибаются так, что их траектория обращена выпуклостью вверх. Поэтому теперь наблюдатель может видеть объекты, скрытые от него за горизонтом, причем он будет видеть их вверху как бы висящими над линией горизонта. Поэтому такие миражи называют верхними.

Верхний мираж может давать как прямое, так и перевернутое изображение. Прямое изображение возникает, когда показатель преломления воздуха уменьшается с высотой относительно медленно. При быстром уменьшении показателя преломления образуется перевернутое изображение.

Верхние миражи в основном наблюдаются в северных широтах.

Как возникают двойные и тройные миражи?

Если показатель преломления воздуха изменяется сначала быстро (область 1), а затем медленно (область 2), то в этом случае лучи в области 1 будут искривляться быстрее, чем в области 2. В результате возникают два изображения. Световые лучи, распространяющиеся в пределах воздушной области 1, формируют перевернутое изображение объекта. Лучи, распространяющиеся в основном в пределах области 2, искривляются в меньшей степени и формируют прямое изображение.

Чтобы понять, как появляется тройной мираж, нужно представить три последовательный воздушные области: первая (у самой поверхности), где показатель преломления уменьшается с высотой медленно, следующая, где показатель преломления уменьшается быстро, и третья область, где показатель преломления снова уменьшается медленно. Миражи могут быть двойными, когда наблюдаются два изображения, простое и перевернутое. Эти изображения могут быть разделены полосой воздуха (одно может оказаться над линией горизонта, другое под ней), но могут непосредственно смыкаться друг с другом.

Как возникают миражи сверхдальнего видения?

Точную теорию радуги на основе представлений о дифракции света дал в 1836 году английский астроном Д. Эри. Рассматривая пелену дождя как пространственную структуру, обеспечивающую возникновение дифракции, Эри объяснил все особенности радуги. Его теория полностью сохранила свое значение и для нашего времени.

Над главной радугой располагается побочная с чередованием цветов, обратным главной. Угловая высота верхнего края побочной радуги составляет 53°32′. Кроме того, со стороны фиолетового конца главной радуги иногда можно наблюдать радуги вторичные, преимущественной их окраской является зеленая и розовая.

Если радуга образована действием лунного света на капли дождя, то она выглядит белой. В некоторых случаях она кажется белой только вследствие малой интенсивности света. Такого типа радуга при укрупнении капель дождя может перейти в цветную. Наоборот, цветная радуга может потерять окраску, если дождь превратится в мелкокапельный туман. Как правило, при наличии мелких капель окраска радуги выражена слабо.

Радуга наблюдается не только на пелене дождя. В меньших масштабах ее можно увидеть на каплях воды у водопадов, фонтанов и в морском прибое. При этом в качестве источника света могут служить не только Солнце и Луна, но и прожектор.

Появляясь в воздухе при замерзании водяных капелек, ледяные кристаллы принимают обыкновенно одну из трех форм шестисторонних правильных призм: призмы, в которых длина очень велика по сравнению с их сечением. Это всем известные ледяные иголочки, в морозные зимние дни массами реющие в самых нижних слоях атмосферы. Падая свободно в воздухе, такие иголочки располагаются длинной осью вертикально. Плоскости этих кристаллов, которые кружась, постепенно опускаются на землю, большую часть времени ориентированы параллельно поверхности. На восходе или закате, луч зрения наблюдателя может проходить через эту самую плоскость, и каждый кристалл может вести как миниатюрная линза, преломляющая солнечный свет.

Падая на ледяные кристаллики, луч света, в зависимости от вида кристалла и его положения относительно луча, может прямо или пройти через него без преломления, или лучи должны претерпеть в них не только преломление, но и целый ряд полных внутренних отражений. Так как две смежные грани подобного кристалла образуют угол в 120°, то произвольно падающий на одну из них луч света вообще не может выйти через соседнюю грань, не претерпев полного внутреннего отражения; для того, чтобы он вышел, необходимо, чтобы при показателе преломления 1,31 (для льда) призма имела преломляющий угол не более 90°31′. Через две несмежные грани луч света пройти может, так как они составляют между собой углы в 60°, но при этом должен претерпеть преломление и разложение на цвета. Наконец, встречая ребро призмы, образуемое пересечением основания с боковыми гранями под углом в 90°, луч пройдет через кристалл после преломления.

Редко удается наблюдать явление, все части которого были бы одинаково ярки и отчетливо видны: обыкновенно то та, то другая его часть развита ярче и характернее, остальные или наблюдаются весьма слабо, или даже отсутствуют.

Как 46-градусные, так и 22-градусные гало, как правило, имеют наибольшую яркость в верхней и нижней частях кольца. Изредка встречающееся 90-градусное гало представляет собой слабо светящееся, почти бесцветное кольцо, имеющее общий центр с двумя другими гало. Если оно окрашено, то имеет красный цвет на внешней стороне кольца. Механизм возникновения такого типа гало до конца не выяснен.

Следует отличать гало от венцов. Последние имеют меньший угловой размер (он обратно пропорционален диаметрам капель в облаке, поэтому по нему можно определить размеры капель в облаках) и объясняются дифракционным рассеянием лучей источника света на водяных каплях, образующих облако или туман. Явления венцов возникают в тонких водяных облаках, состоящих из мелких однородных капель (обычно это высококучевые облака) и закрывающих диск светила, за счет дифракции. Венцы возникают также в тумане около искусственных источников света.

Различают околозенитную дугу касательную к большому гало сверху и обращенную вогнутостью к зениту; если светило достаточно высоко, удается иногда наблюдать соответственную дугу и снизу большого гало.

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.

Различают четыре типа полярных сияний.

При повышении активности складки или петли расширяются до огромных размеров, нижний край ленты ярко сияет розовым свечением. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Значит, однородная структура является основной формой полярного сияния, а складки связаны с возрастанием активности.

Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленой шапки. Такие сияния называют шквалами.

Надо отметить, что возникшее сияние распространяется на запад со скоростью 1 км/сек. Верхние слои атмосферы в области вспышек сияний разогреваются и устремляются вверх. Во время сияний в атмосфере Земли возникают вихревые электрические токи, захватывающие большие области. Они возбуждают дополнительные неустойчивые магнитные поля, так называемые магнитные бури. Во время сияний атмосфера излучает рентгеновские лучи, которые, по-видимому, являются результатом торможения электронов в атмосфере.

Интенсивные вспышки сияния часто сопровождаются звуками, напоминающими шум, треск. Полярные сияния вызывают сильные изменения в ионосфере, что в свою очередь влияет на условия радиосвязи.

Как же возникают полярные сияния?

Вспышки сияний происходят обычно через день-два после вспышек на Солнце. Это подтверждает связь между этими явлениями. В последнее время ученые установили, что полярные сияния более интенсивны у берегов океанов и морей. Полярные сияния могут возникать не только на Земле, но и на других планетах, например на Сатурне.

Таким образом, мы рассмотрели наиболее частые явления атмосферные явления и основные физические законы, объясняющие их.

Глава 3. Оптические явления, наблюдаемые в определённый период времени

оптический природа мираж радуга

Итак, в предыдущих главах мы рассмотрели явления, наблюдаемые в любое время года. Пронаблюдаем теперь те оптические явления, что возникают при определённых условиях.

Отражение солнечного света от маленьких кристалликов льда, плавающих в морозном воздухе, порождает светящийся столб.

Когда тень находящегося на возвышенности наблюдателя при восходе или заходе Солнца сзади него падает на облака, расположенные на небольшом расстоянии, обнаруживается поразительный эффект: тень приобретает колоссальные размеры. Это происходит из-за отражения и преломления света мельчайшими капельками воды в тумане. Описанное явление носит название «призрак Броккена» по имени вершины в горах Гарц в Германии.

Огни святого Эльма

Это явление представляет собой кистевые электрические разряды на концах электропроводников, когда в атмосфере вокруг них сильно повышается напряженность электрического поля.

Слабое свечение голубоватого или зеленоватого цвета, которое иногда наблюдается на болотах, кладбищах и в склепах. Они часто выглядят как приподнятое примерно на 30 см над землей спокойно горящее, не дающее тепла, пламя свечи, на мгновение зависающее над объектом. Огонек кажется совершенно неуловимым и при приближении наблюдателя как бы перемещается в другое место.

Причиной этого явления служит разложение органических остатков и самовозгорание болотного газа метана (СН4) или фосфина (РН3). Блуждающие огоньки имеют разную форму, иногда даже шаровидную.

Таким образом, мы рассмотрели в этой главе такие атмосферные явления, как солнечные столбы, призраки Броккена, огни святого Эльма и блуждающие огоньки.

Физическая природа света интересовала людей с незапамятных времён. Многие выдающиеся ученные, на всём протяжении развития научной мысли, бились над решением этой проблемы. Со временем, была открыта и сложность обыкновенного белого луча, и его способность менять своё поведение в зависимости от окружающей среды, и его умение проявлять признаки, присущие как вещественным элементам, так и природе электромагнитных излучений.

Световой луч, подвергнутый различным техническим воздействиям, стал применяться в науке и технике в диапазоне от режущего инструмента, способного с точностью до микрона обработать нужную деталь, до невесомого канала передачи информации с, практически, неисчерпаемыми возможностями.

Но, прежде чем утвердился совремённый взгляд на природу света, и световой луч нашёл своё применение в жизни человека, были выявлены, описаны, научно обоснованы и экспериментально подтверждены многие оптические явления, повсеместно возникающие в атмосфере земли, от известной каждому радуги, до сложных, периодических миражей. Но, не смотря на это, причудливая игра света всегда привлекала и привлекает человека. Никого не оставляет равнодушным ни созерцание зимнего гало, ни яркого солнечного заката, ни широкой, в пол неба, полосы северного сияния, ни скромной лунной дорожки на водной глади. Световой луч, проходя сквозь атмосферу нашей планеты, не просто освещает её, но и придаёт ей неповторимый вид, делая прекрасной.

Конечно, в атмосфере нашей планеты происходит значительно больше оптических явлений, чем рассматривается в этой работе. Среди них есть как хорошо знакомые нам и разгаданные учёными, так и те, которые ещё ждут своих первооткрывателей. И нам остаётся лишь надеяться, что, со временем, мы станем свидетелями всё новых и новых открытий в области оптических атмосферных явлений, свидетельствующих о многогранности обыкновенного светового луча.

Список используемой литературы

Гершензон Е.М., Малов Н.Н., Мансуров А.Н. «Курс общей физики»

Королев Ф.А. «Курс физики» М., «Просвещение» 1988 г.

Размещено на Allbest.ru

Подобные документы

Представления об оптике, земная атмосфера как оптическая система. Оптические явления и их объяснение: цвет неба, гало, ложные солнца, светящийся столб, венцы, радуга, призраки Броккена, огни святого Эльма, блуждающие огоньки, миражи, полярные сияния.

реферат [1010,0 K], добавлен 15.11.2009

Что такое оптика? Ее виды и роль в развитии современной физики. Явления, связанные с отражением света. Зависимость коэффициента отражения от угла падения света. Защитные стёкла. Явления, связанные с преломлением света. Радуга, мираж, полярные сияния.

реферат [3,1 M], добавлен 01.06.2010

Явления, связанные с преломлением, дисперсией и интерференцией света. Миражи дальнего видения. Дифракционная теория радуги. Образование гало. Эффект «бриллиантовая пыль». Явление «Брокенское видение». Наблюдение на небе паргелии, венцы, полярное сияние.

презентация [2,5 M], добавлен 14.01.2014

Изучение зеркальных оптических и атмосферных явлений. Полное внутреннее отражение света. Наблюдение на поверхности Земли происхождение миражей, радуги и полярного сияния. Исследование явлений, возникающих в результате квантовой и волновой природой света.

реферат [164,0 K], добавлен 11.06.2014

Виды оптики. Земная атмосфера, как оптическая система. Солнечный закат. Цветовое изменение неба. Образование радуги, разнообразие радуг. Полярные сияния. Солнечный ветер, как причина возникновения полярных сияний. Мираж. Загадки оптических явлений.

курсовая работа [1,4 M], добавлен 17.01.2007

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *