Что такое основание системы исчисления

Системы исчисления

Память человека удивительная штука, несмотря на все архивы, исторические записи и сводки нам свойственно забывать все — даже имена великих изобретателей. Не один историк не сможет ответить на вопрос, кто был открывателем колеса или гончарного круга. Также никто не сможет вспомнить, кто первый задал вопрос, который мы используем каждый день: «Сколько?», придумав тем самым первую систему исчисления.

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Введение

Потребность в счете возникла у людей с давних времен. Ученые археологи нашли много записей времен пещерного человека, с помощью которых они обозначали количество убитых животных, добытых шкур и собранного урожая. Так в 1937 году в Моравии была найдена кость с 55 зарубками. По мнению ученых они обозначали количество бизонов добытых вождем племени.

С развитием технологий, счет находил применение во всех областях социальной жизни человечества – астрономии, налогообложении и промышленности. Сейчас вычисления активно используются в информатике для представления информации в электронно-вычислительных машинах. В этой статье вы узнаете, что такое система исчисления, изучите основные определения, которые помогут вам лучше разобраться в теме, выясните, что такое позиционные и непозиционные системы исчисления и чем они отличаются.

Основные положения

Для того чтобы разобраться что такое системы исчисления ниже приведены главные понятия, которые вам предстоит понять и запомнить. Без них вы просто не сможете двигаться дальше. Итак…

Число – абстрактная мера измерения количества чего-либо.

Цифры — знаки, с помощью которых мы представляем число.

Системой исчисления – называется совокупность правил записи чисел, с помощью набора цифровых знаков.

Теперь я попробую объяснить смысл этого определения для чайников. У вас есть набор символов – необязательно это могут быть числа, которые с помощью неких приемов и правил представляются как «цифровой код».

Алфавит (он же код) – набор знаков, используемых для записи числа.

Числовой разряд – место «позиция» знака (цифры) в числе.

После того как вы разобрались в том, что здесь написано можно перейти к следующему пункту.

Классификация

Системы исчисления можно разделить на три вида – позиционные, непозиционные и смешанные.

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Позиционные

Примеры позиционных систем счислений и их использование в математике и информатике:

Непозиционные

Примеры непозиционных нумераций

Смешанные

Этот материал в школьную программу не входит и его достаточно сложно объяснить школьникам, но я все-таки попробую. В смешанной системе исчисления числа с основанием P можно представить числами с основанием Q. Также здесь должно выполняться неравенство Q

Что такое основание

После того как мы разобрали классификацию, можно рассказать про такое понятие как основание.

Основание – количество знаков, которые используются для отображения символов в данной системе счисления.

В математике и информатике записывается так:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Читается как «Двадцать пять по основанию десять» и значит то, что в данном алфавите имеется десять знаков для записи числа. Данное определение используется только в позиционных системах исчисления. Запись с нижним индексом используется для удобства, при работе с числами нескольких видов.

Заключение

На этом всё, теперь вы знакомы с таки понятием как система исчисления в информатике. Знаете, какие они бывают (позиционные и непозиционные), на какие группы делятся, ознакомлены с основными положениями и знаете что такое основание. После освоения этого материала можете смело приступать к другим темам – таким как перевод из одной системы в другую и выполнение арифметических операций. А также, в этом разделе, вы найдете несколько интересных статей. Например, про то, как представляется память в персональном компьютере или историю непозиционных чисел.

Источник

Информатика

Системы счисления

Основные понятия

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Непозиционные системы счисления

Позиционные системы счисления

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

Перевод в десятичную систему счисления

По определению веса разряда

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Примеры:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Перевод из десятичной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Примеры:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Системы счисления с кратными основаниями

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 — степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=2 4 ) разрядами двоичной (и наоборот) по таблице.

Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3 )

Арифметика

Сложение

(перенос)
10011011
1001110
11101001
76543210(номера разрядов)

Вычитание

(перенос)
10011011
1001110
1001101
76543210(номера разрядов)

1. Системы счисления

Основные понятия

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Непозиционные системы счисления

Позиционные системы счисления

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

Перевод в десятичную систему счисления

По определению веса разряда

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Примеры:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Перевод из десятичной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Примеры:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Системы счисления с кратными основаниями

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 — степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=2 4 ) разрядами двоичной (и наоборот) по таблице.

Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3 )

Источник

Что такое основание системы исчисления

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Системы счисления»

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.

Символы, при помощи которых записывается число, называются цифрами.

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

Классификация систем счисления

Системы счисления подразделяются на позиционные и непозиционные.

Позиционные системы счисления

Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).

Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.

Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:

IVXLСDМ
1510501005001000

С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).

Правила записи чисел в римской системе счисления:

Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.

Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:

Алфавит и основание системы счисления

Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
Десятичная система: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>
Двоичная система: <0, 1>
Восьмеричная система: <0, 1, 2, 3, 4, 5, 6, 7>
Шестнадцатеричная система:

Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.

Развёрнутая форма представления числа

Системы счисления, используемые в вычислительной технике

Несмотря на то, что исторически человек привык работать в десятичной системе счисления, с технической точки зрения она крайне неудобна, так как в электрических цепях компьютера требовалось бы иметь одновременно десять различных сигналов. Тем не менее, такие схемы существуют в некоторых видах микрокалькуляторов.

Чем меньше различных сигналов в электрических цепях, тем проще микросхемы, являющиеся основой конструкции большинства узлов ЭВМ, и тем надежнее они работают.

Наименьшее основание, которое может быть у позиционных систем счисления это – двойка. Именно поэтому двоичная система счисления используется в вычислительной технике, а двоичные наборы приняты за средство кодирования информации. В компьютере имеются только два устойчивых состояния работы микросхем, связанных с прохождением электрического тока через данное устройство (1) или его отсутствием (0). Говоря точнее, (1) кодирует высокое напряжение в схеме компьютера, а (0) – низкое напряжение.

Если вспомнить, что двоичная система счисления обладает самыми маленькими размерами таблиц сложения и умножения, то можно догадаться, что этот факт должен сильно радовать конструкторов ЭВМ, поскольку обработка сигнала в этом случае будет также самой простой. Таким образом, двоичная система счисления, с точки зрения организации работы ЭВМ, является наилучшей.

Мы уже говорили о преимуществах двоичной системы счисления с технической точки зрения организации работы компьютера. Зачем нужны другие системы счисления, кроме, естественно, еще и десятичной, в которой человек привык работать? Чтобы ответить на него, возьмем любое число в десятичной системе счисления, например 255, и переведем его в другие системы счисления с основаниями, кратными двойке:

Чем меньше основание системы счисления, тем больше разрядов требуется для его записи то есть, тем самым мы проигрываем в компактности записи чисел и их наглядности. Поэтому, наряду с двоичной и десятичной системами счисления, в вычислительной технике применяют так же запись чисел в 8-и 16-ричных системах счисления. Поскольку их основания кратны двойке, они органично связаны с двоичной системой счисления и преобразуются в эту систему наиболее быстро и просто (по сути они являются компактными видами записи двоичных чисел). Все другие системы счисления представляют для вычислительной техники чисто теоретический интерес.

Решение задач

1. Какое число записано с помощью римских цифр: CLVI

Решение: Зная обозначения, запишем: С – 100; L – 50; V – 5; I – 1

Решение: Пользуемся формулой:

a1 = 3; a2 = B; a3 = F; a4 = A

Следовательно: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*16 0
Ответ: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*160

3. Запишите в свёрнутой форме число 1*8 2 + 4*8 1 + 7*8 0

Решение: Пользуемся формулой:

Следовательно: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Ответ: 1*8 2 + 4*8 1 + 7*8 0 = 1478

Алгоритмы перевода в системы счисления по разным основаниям

Алгоритм перевода чисел из любой системы счисления в десятичную

Алгоритм перевода целых чисел из десятичной системы счисления в любую другую

Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую

Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую

Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n

Решение задач

1. Переведём в 10-ую с.с. число: 0,1235

Решение: Действуем строго по алгоритму перевода чисел из любой системы счисления в десятичную:

Найдём сумму ряда: 0,2 + 0,08 + 0,024 = 0,30410

Ответ: 0,1235 = 0,30410

2. Переведём число 12610 в 8-ую с.с. и число 18010 в 16-ую с.с.
Решение: Действуем строго по алгоритму перевода целых чисел из 10-ой с.с. в любую другую:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Во втором примере процесс можно продолжать бесконечно. В этом случае деление продолжаем до тех пор, пока не получим нужную точность представления. Записываем числа сверху вниз.

Ответ: 0,6562510 = 0,А816; 0,910 = 1,1110012 с точностью до семи значащих цифр после запятой.

4. Переведём число 124,2610 в шестнадцатеричную с.с.
Решение: Действуем строго по алгоритму перевода произвольных чисел:

Переводим целую и дробную часть:

Что такое основание системы исчисления. Смотреть фото Что такое основание системы исчисления. Смотреть картинку Что такое основание системы исчисления. Картинка про Что такое основание системы исчисления. Фото Что такое основание системы исчисления

Записываем полученные числа справа налево (в целой части) и сверху вниз (в дробной части).
Ответ: 124,2610 = 7С,428А16

5. Переведём число: 11001010011010101112 в шестнадцатеричную систему счисления

Решение: Действуем строго по алгоритму перевода чисел из 2-ой с.с в с.с. с основанием 2 n :

Источник

Системы счисления

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления —

количество различных цифр, используемых в этой системе.

отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

где i — номер разряда, а s — основание системы счисления.

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

По определению веса разряда

где i — номер разряда, а s — основание системы счисления.

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =

= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *