Что такое основной алгоритм
Что такое алгоритм?! Часть первая
Терзаем вместе основной кирпичик программиста — Алгоритм.
Проблема
Текущее состояние в области программирования — это обучение ремеслу по большей части личной практикой или разборами примеров стороннего кода, с которым по каким-то причинам приходится сталкиваться.
В результате программированию учишься по наитию. Лишь немного в этом труде помогают сборники алгоритмов, прикладных техник и шаблонов проектирования. Общая совокупность предлагаемых ими рецептов выстраивается длинным списком, и его длина грозит каждому из прочитанных приемов быть позабытым (как была забыта 53-яя личная группа в «телеге» до введения разбиения по каталогам). Но даже тот прием, который остался в памяти, чаще всего просто является описанием прикладной задачи, в которой было успешно его использование.
Почему конкретный прием был успешен в задаче-образце? Будет ли он успешен в твоём проекте? Какие признаки проекта дают понять, что использование приёма уместно?
В личном опыте существования в профессии не раз отмечено, что каждый Junior борется с одинаковыми ветряными мельницами и постигает методы создания программ основываясь только на своих ошибках. Но ведь такие ошибки совершили уже очень многие. Почему до сих пор не создана система правил программирования, которая поможет обойти новоиспеченному кораблю-программисту подводные прибрежные камни? Ну, например, объяснение вреда использования метода «Copy-Paste» для развития кода. Если такие правила получится объяснить малым набором причин, их сформировавшим, то это объяснение обеспечит их запоминание и последующее использование в практике, тем самым поможет уклониться от бесчисленных грабель, разложенных тут и там.
Для компактного и полезного набора объяснений нужно:
Если обобщить, то нужны алгоритмы для написания и развития алгоритмов.
Задуманная серия статей не претендует на полное решение указанной проблемы. Предпринимается небесспорная попытка сделать первый шаг на пути к этому решению. Этот шаг состоит в выделении структуры и свойств главного кирпичика программиста — Алгоритма.
Задача
Сформулируем основную задачу, которую хочется решить. Для этого сначала запишем операции над алгоритмами, которые программист выполняет в ходе написания своего проекта:
Рассмотрим существующие на текущий момент варианты значения слова «алгоритм» в поисках подсказок, о том как можно работать с алгоритмами.
Так, например, формулировка «конечная совокупность точно заданных правил решения произвольного класса задач» говорит что есть возможность как-то «точно задать правила» из них собрать «совокупность» и этой совокупностью «решить» некоторый «класс задач».
Сразу возникает масса вопросов к этому определению:
Другая формулировка «набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи» говорит что есть «исполнитель», который может выполнять некоторые «действия», и при некотором «порядке» выполнения этих «действий» «решается задача». Вопросов не стало меньше:
Перечислено много вопросов, но они мало помогают в поиске методов работы с алгоритмом. Поэтому поставим себе меньшую задачу, но тоже очень нам важную. Давайте попробуем сформулировать, что делает алгоритм способом решения наших задач, и какие процессы являются для него «действиями». Даже решение этой «маленькой» задачи оказывается очень объемным для одной статьи, поэтому будем его разбивать на части. И поэтому первую статью серии целиком посвятим только «Действию» и его признакам, которые опущены в указанных выше определениях алгоритма, но являются очень важными для ответов на все заданные вопросы.
Определение алгоритма
Рассмотрим определение алгоритма, говорящее, что он — приводящая к решению задачи последовательность действий. Как программисту мне приходится писать много кода. Этот код состоит из частей. Такими частями являются и функции, и классы, и модули. Когда я пишу текст функции — я занимаюсь написанием алгоритма.
Раньше алгоритм создавали в виде блок схем и полуавтоматически компилировали в машинные коды. Сейчас я избавлен от необходимости быть художником и компилятором для написания программы. Текст моей функции — это запись алгоритма в текстовом виде — его текстовая блок-схема. Здесь можно вспомнить Scratch, где используется визуальное создание блок-схемы алгоритма без написания текста. Способ записи алгоритма сейчас не так важен.
Важно, что в написании алгоритма функции я могу использовать вызовы других функции, которые я или другой программист уже написал до этого момента. Вспоминая фразу «последовательность действий, приводящая к решению задачи», можно отметить, что функции, написанные ранее, являются моими «действиями». То есть «действия» могут быть функциями. Если обобщать, то «действия» могут быть алгоритмами.
Если «действие = алгоритм», то определение можно попробовать переписать рекурсивно «алгоритм — это приводящая к решению задачи последовательность использования существующих алгоритмов». Рекурсивные определение не самое простое, что можно записать в словаре обычного человека. Но для программиста и математика эта форма знакома. Мы умеем с ней работать, и это даёт нам преимущество в рассмотрении разных задач, разбиваемых на подобные себе подзадачи. Так давайте воспользуемся этим преимуществом.
Чтобы разрешить рекурсию нам необходимо найти:
Действие
Для начала рассмотрим «действие» и попробуем найти причину, обеспечивающую возможность использования существующего «действия» для создания нового алгоритма.
Этой причиной является возможность повторного использования «действия» с получением тождественного результата. Только тогда разработанный с использованием этого «действия» алгоритм решения некоторой задачи будет одинаково решать эту задачу снова и снова. Мы нащупали важные законы нашего мира, в котором:
Какие признаки «действия» кроме повторимости делают возможным его использование в создании алгоритма? Что является терминальным неделимым «действием»? Чтобы ответить на этот вопрос стоит рассмотреть разные примеры «действий» из нашего опыта. Программисты встречали их много раз. Это и сложение, и умножение, и установка цвета пикселя на экране. Но мы знакомы с ними и вне программирования. Вся наука основывается на повторяемых явлениях.
Закон гравитации, описывающий повторяющееся явление падения яблока, тоже может стать действием. Ведь любое яблоко будет падать на землю? Значит этот процесс можно использовать в качестве «действия»! Например решая задачу прогнать Ньютона от яблони, на которую Вы случайно забрались ранее.
Рассмотрим, что происходит при выполнении «действия». Например, во время падения яблока с ветки яблони на землю. В этом процессе происходит несколько изменений. Если вспомнить школьную физику и рассмотреть ситуацию в системе отсчета, привязанной к Земле, то сила гравитации вызывает изменение скорости яблока, разгоняя его. При этом в процессе отмечается еще одно важное изменение — уменьшается расстояние между яблоком и Землей.
В рамках примера процесса «Земля-Яблоко» можно отметить у «действия» следующие признаки:
Рассмотрим с этими признаками разные области и процессы, выделяя в них примеры «действий» и контролируя особенности указанных признаков в описании структуры «действия».
Физические процессы
Для физических систем, процессы которых мы наблюдаем в нашем мире, характерные объекты и изменения опираются на фундаментальные взаимодействия и потому их достаточно просто выделить по аналогии с гравитационным взаимодействием Земли и яблока. Например, для системы из протона и электрона или системы двух протонов.
Отдельно от этих простых взаимодействий двух объектов стоят многокомпонентные процессы, например, ядерные реакции (по структуре «действия» близки к химическим процессам, рассматриваемым далее). Сложны и процессы описываемые суммарным взаимодействием большого числа элементов, например, «идеальный газ». Пока отложим их рассмотрение и сосредоточимся на самых простых примерах.
Химические процессы
Перейдем к следующей большой области — химическим процессам. Химические реакции (например, ) по признаку своей повторимости так же являются «действиями». Объектами в них являются атомы и молекулы. Для описания происходящих изменений необходимо немного преобразовать «физические» изменения. Так изменения параметров движения в совокупности дают нам изменение температуры в ходе химической реакции. А среди изменений расстояний между молекулами мы, игнорируя броуновское движение, можем выделить фиксацию расстояния в виде повторимого формирования и разрушения связей между частями взаимодействующих молекул. Локальность для химической реакции тоже существует — это отсутствие реакции при нахождении гидроксида натрия и соляной кислоты в разных пробирках и наличие реакции при соприкосновении веществ. Конечно, в «химической» области «действий» есть особенности не сводящиеся к молекулам, например, фотохимические реакции, где к объектам необходимо добавить фотоны. Самые простые процессы выбраны для рассмотрения намеренно.
Математические процессы
Следующей областью выберем «действия» из известных нам абстрактных алгоритмов. Самые яркие их представители — математические процессы. В этой области есть действительно «сложные случаи», но для этой статьи достаточно хорошо знакомых примеров. Рассмотрим в качестве «действия» достаточно элементарную операцию — сложение. А примером этого «действия» выберем сложение математиком двух целых чисел.
В ситуации с математиком можно выделить много объектов, но с точки зрения «действия» («сложение математиком двух целых чисел»), объекта всего три: это объект «математик», объект «первое число» и объект «второе число». В отличие от всех рассмотренных ранее объектов числа являются обозначениями, то есть виртуальными объектами. И их преобразование в алгоритме более сложно устроено нежели изменение расстояния и параметров движения объектов, как это было для «химических» действий. Подробности такого преобразования — это тема отдельной увлекательной статьи. А в рамках текущей рассмотрим древнего математика, который складывает числа, используя кучки камешков (рим. ‘calculi’), и более «современного» математика, использующего абак. Абстракции таких способов вычисления суммы не так далеко отошли от физических и химических процессов, поэтому структура процессов их «действий» полностью описывается изменениями расстояний и связей.
Интересно, что на примере древнего математика становится понятен смысл слова «сложить», которое отсылает нас к действию «класть» и к фразе «положить вместе».
Сложение и древний математик
Для математика, оперирующего камешками, сумма это «действие» со следующими характеристиками.
Сложение и математик-абакист
У математика с абаком ситуация сложнее. Кучки разделены по значению на разрядные борозды.
Можно рассмотреть самый простой абак с двумя разрядами-бороздами. Пусть он будет десятичный. Тогда один камешек на борозде десятков соответствует десяти камешкам на борозде единиц. И 10 — это максимальное количество камешков на борозде единиц. По сравнению с действием первого математика меняется представление слагаемых. И в арсенале математика уже необходимы нескольких готовых «действий».
Локальность в этих математических «действиях» описывается отсутствием взаимодействия двух слагаемых, находящихся далеко от математика, и запуском процессов сложения когда все три объекта сложения «близко». Повторяемое изменение в математическом «действии» выражается в изменении связей между камнями и удерживающими их локациями (кучками, бороздами).
Сложение и машина Тьюринга
Можно пойти чуть дальше и заменить математика в таких «действиях» на «управляющее устройство» машины Тьюринга. Тогда «ячейки ленты» машины Тьюринга будут содержать слагаемые.
При этом остаётся и признак локальности как возможность взаимодействия управляющего устройства только с текущей ячейкой ленты, и признак изменения параметров объектов, который можно описать как изменение состояния ячеек.
Подробное описание исходных и результирующих состояний объектов, а так же «действий» производящих эти изменения для сложения, исполняемого машиной Тьюринга, оставим за рамками этой статьи. Но упомянем, что перейдя к машине мы снижаем требования к исполнителю «действия», что является главным способом для создания формальных методов работы с алгоритмом. Можно поставить себе целью упрощение каждой составляющей алгоритма до состояния, когда её выполнение можно будет поручить компьютеру. Тогда в определении алгоритма не останется тёмных мест, и многочисленные вопросы, перечисленные в начале, найдут свои ответы. Пока формализован только исполнитель. Скажем спасибо за это Тьюрингу и вспомним про «действие», формализация которого уже на пороге.
Выводы
Соберём всё, что мы отметили рассматривая разные примеры «действия»:
Признак Повторимости помогает нам в создании наших алгоритмов. С его использованием мы из всех процессов выделяем те, что являются «действием» и на их основе создаём новые алгоритмы. Более того этот признак достаточно прост и на основе его формализации можно снизить требования к системе обнаруживающей и создающей «действия» и поручить это нашему компьютеру.
Следующая статья серии (Часть 2) будет посвящена рассмотрению способов, с использованием которых «действия» могут быть сгруппированы в алгоритм. Этих способов достаточно много и есть предпосылки, что их описание не получится уместить в одну статью. Напишем — увидим.
Спасибо Вам за внимание.
Отзывы
Буду очень благодарен за отзывы и предложения, так как они помогают мне скорректировать направление развития работы в области.
Отдельное волнение у меня есть по стилю и форматированию, используемым в статье (кавычки, абзацы, курсив). Напишите, пожалуйста, если у Вас есть замечания к ним. Можно личным сообщением.
Презентация к уроку
Цель урока: Формирования у учащихся правильного понимания алгоритмов, их свойств, видов и практических навыков составления алгоритмов.
Задачи урока:
Дидактические: Обеспечить условия:
Воспитательные: Обеспечить условия:
Развивающие: Обеспечить условия:
Демонстрационный материал к уроку:
Ход урока
Понятие алгоритма
Появление алгоритмов связывают с зарождением математики.
Более 1000 лет назад (825 г.)ученый из города Хорезма Абдулла (или Абу Ждафар) Мухаммед бен Мусса аль-Хорезми создал книгу по математике, в тором описал способы выполнения арифметических действий над многозначными числами.
Алгоритм – описание последовательности действий, исполнение которых приводит к решению поставленной задачи за конечное число шагов.
Алгоритм — понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящих от исходных данных к искомому результату.
Свойства алгоритма
Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.
Пример: Алгоритм «Зарядка»
При словесно-формульном способе алгоритм записывается в виде текста с формулами по пунктам, определяющим последовательность действий.
Пусть, например, необходимо найти значение следующего выражения:
Словесно-формульным способом алгоритм решения этой задачи может быть записан в следующем виде:
При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.
Виды алгоритма
Линейный алгоритм – это такой, в котором все операции выполняются
последовательно одна за другой.
Пример: Алгоритм посадки дерева.
Разветвляющийся алгоритм – это алгоритм в котором выполняется либо одна, либо другая группа действий в зависимости от истинности или ложности условия.
Полная форма
Неполная форма
Пример: Если на улице дождь, то останемся дома, а если нет то идем гулять.
Циклический алгоритм – действия повторяются до тех пор, пока выполняется заданное условие.
Цикл с известным числом повторений
Цикл с известным числом повторений часто называют «циклом ДЛЯ»
Пример: Алгоритм «Упражнение для глаз»
Цикл с постусловием
Цикл с неизвестным числом повторений, в тором выход из цикла осуществляется при выполнении условия, принято называть «циклом с постусловием» или «циклом ПРИ»
Цикл с предусловием
Цикл с известным числом повторений, в котором цикл продолжается, пока выполняется условие, принято называть «циклом с предусловием» или «циклом ПОКА»
Алгоритм
Из Википедии — свободной энциклопедии
Алгори́тм (лат. algorithmi — от имени среднеазиатского математика Аль-Хорезми [1] ) — конечная совокупность точно заданных правил решения некоторого класса задач или набор инструкций, описывающих порядок действий исполнителя для решения определённой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться в произвольном порядке, параллельно, если это позволяют используемые исполнители.
Ранее в русском языке писали «алгорифм», сейчас такое написание используется редко, но тем не менее имеет место исключение (нормальный алгорифм Маркова).
Часто в качестве исполнителя выступает компьютер, но понятие алгоритма необязательно относится к компьютерным программам, так, например, чётко описанный рецепт приготовления блюда также является алгоритмом, в таком случае исполнителем является человек (а может быть и некоторый механизм, например ткацкий или токарный станок с числовым управлением, и пр.).
Можно выделить алгоритмы вычислительные (далее речь в основном идёт о них), и управляющие. Вычислительные, по сути, преобразуют некоторые начальные данные в выходные, реализуя вычисление некоторой функции. Семантика управляющих алгоритмов существенным образом может отличаться и сводиться к выдаче необходимых управляющих воздействий либо в заданные моменты времени, либо в качестве реакции на внешние события (в этом случае, в отличие от вычислительного алгоритма, управляющий может оставаться корректным при бесконечном выполнении).
Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако в явном виде понятие алгоритма сформировалось лишь в начале XX века.
Частичная формализация понятия алгоритма началась с попыток решения проблемы разрешения (нем. Entscheidungsproblem ), которую сформулировал Давид Гильберт в 1928 году. Следующие этапы формализации были необходимы для определения эффективных вычислений [2] или «эффективного метода» [3] ; среди таких формализаций — рекурсивные функции Геделя — Эрбрана — Клини 1930, 1934 и 1935 гг., λ-исчисление Алонзо Чёрча 1936 г., «Формулировка 1» Эмиля Поста 1936 года и машина Тьюринга.
Информационные технологии копия 2
Основы алгоритмизации и технологии программирования
Понятие алгоритма и его свойства
Каждый из нас постоянно решает множество задач: как быстрее обраться на работу, как лучше спланировать дела текущего дня и многие другие. Некоторые задачи мы решаем автоматически, так как на протяжении многих лет привыкли к их выполнению, другие требуют длительного размышления над решением, но в любом случае, решение каждой задачи всегда делится на простые действия.
Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (человека, робота, компьютера, языка программирования и т.д.). Свойством, характеризующим любого исполнителя, является то, что он умеет выполнять некоторые команды. Совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя. Алгоритм описывается в командах исполнителя, который будет его реализовывать. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Значение слова «алгоритм» очень схоже со значениями слов «рецепт», «метод», «процесс». Однако, в отличие от рецепта или процесса, алгоритм характеризуется следующими свойствами: дискретностью, массовостью, определенностью, результативностью, формальностью.
Дискретность (разрывность – противоположно непрерывности) – это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий, говорят: «Делится на шаги».
Массовость – применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня уравнения, либо два равных, либо делает вывод о том, что действительных корней нет.
Определенность (детерминированность, точность) – свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. Помните сказку про Ивана-царевича? «Шел Иван-царевич по дороге, дошел до развилки. Видит большой камень, на нем надпись: «Прямо пойдешь – голову потеряешь, направо пойдешь – жену найдешь, налево пойдешь – разбогатеешь. Стоит Иван и думает, что дальше делать». Таких инструкций алгоритм содержать не может.
Результативность – свойство, состоящее в том, что любой алгоритм должен завершаться за конечное (может быть очень большое) число шагов. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.
Формальность – это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.
Способы описания алгоритмов
Рассмотрим следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.
Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг, электропила, дрель и т.п.) имеет инструкцию по эксплуатации, т.е. словесное описание алгоритма, в соответствии которому данный прибор должен использоваться.
Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.
Псевдокод – описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.
Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.
Блок-схема – описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности, он обеспечивает «читаемость» алгоритма и явно отображает порядок: выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.
Рассмотрим некоторые основные конструкции, использующиеся для построения блок-схем (рис. 1).
(1) Блок, характеризующий начало/конец алгоритма (для подпрограмм – вызов/возврат);
(8) Блок – решение (проверка условия или условный блок);
(9) Блок, описывающий блок с параметром;
(10) Блок – границы цикла, описывающий циклические процессы типа: «цикл с предусловием», «цикл с постусловием»;
Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем она настолько достаточна, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования.
Программа – описание структуры алгоритма на языке алгоритмического программирования. Программа на языке декларативного программирования представляет собой совокупность описанных знаний и не содержит явного алгоритма исполнения.
Основные алгоритмические конструкции
Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические и рекурсивные.
Линейная алгоритмическая конструкция
Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i- гo действия (шага) выполняется (i+ 1)-е действие (шаг), если i-e действие – не конец алгоритма.
Опишем алгоритм сложения двух чисел на псевдокоде в виде блок-схемы (рис. 2).
Разветвляющаяся алгоритмическая конструкция
Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 3). Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния (рис. 4).
Рассмотрим стандартный алгоритм поиска наибольшего (наименьшего) значения среди нескольких заданных. Основная идея алгоритма сводится к следующему: за наибольшее (наименьшее) принимаем значение любого из данных. Поочередно сравниваем оставшиеся данные с наибольшим (наименьшим). если окажется, что очередное значение входного данного больше (меньше) наибольшего (наименьшего), то наибольшему (наименьшему) присваиваем это значение. Таким образом, сравнив все входные данные, найдем наибольшее (наименьшее) среди них. Алгоритм использует неполное ветвление.
Заданы три числа. Найти значение наименьшего из них Заданные числа обозначим: а, b, с; результирующее наименьшее – min. На рис. 5 представлена блок-схема алгоритма решения данной задачи.
Алгоритмическая конструкция «Цикл»
Циклической (или циклом) называют алгоритмическую конструкцию, в кoтoрoй некая, идущая подряд группа действий (шагов) алгоритма может выполняться несколько раз, в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется телом цикла. Любая циклическая конструкция содержит себе элементы ветвящейся алгоритмической конструкции.
Арифметический цикл
В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором – N + h, на третьем – N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему, чем К.
Вывести 10 раз слово «Привет!».
Параметр цикла обозначим i, он будет отвечать за количество выведенных слов. При i=1 будет выведено первое слово, при i=2 будет выведено второе слова и т. д. Так как требуется вывести 10 слов, то последнее значение параметра i=10. В заданном примере требуется 10 раз повторить одно и то же действие: вывести слово «Привет!». Составим алгоритм, используя арифметический цикл, в котором правило изменения параметра i=1,10, 1. т. е. начальное значение параметра i=1; конечное значение i=10; шаг изменения h=1. На рис. 6 представлена блок-схема алгоритма решения данной задачи.
Цикл с предусловием
Количество шагов цикла заранее не определено и зависит от входных данных задачи. В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ложь. При первом же несоблюдении условия цикл завершается.
Блок-схема данной конструкции представлена на рис. 7 двумя способами: с помощью условного блока а и с помощью блока границы цикла б. Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.
Цикл с постусловием
Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно. Как только оно становится истинным, выполнение команды прекращается. Блок-схема данной конструкции представлена на рис. 8 двумя способами: с помощью условного блока а и с помощью блока управления б.
Рекурсивный алгоритм
Рекурсивным называется алгоритм, организованный таким образом, что в процессе выполнения команд на каком-либо шаге он прямо или косвенно обращается сам к себе.
Простые типы данных: переменные и константы
Переменная – есть именованный объект (ячейка памяти), который может изменять свое значение. Имя переменной указывает на зн ачение, а способ ее хранения и адрес остаются скрытыми от программиста. Кроме имени и значения, переменная имеет тип, определяющий, какая информация находится в памяти. Тип переменной задает:
Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимого диапазона значений данного типа. Например, тип «байт» может принимать значения от О до 255, что в двоичном коде (255(10)=11111111(2)) соответствует ячейке памяти длиной в 8 бит (или 1 байт).
В описанных выше алгоритмах (примеры 1-3) все данные хранятся в виде переменных. Например, инструкция «Ввод двух чисел а, b » означает введение пользователем значений двух переменных, а инструкция «К=К + 1» означает увеличение значения переменной К на единицу.
Если переменные присутствуют в программе, на протяжении всего времени ее работы – их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения программы, называют динамическими.
Все остальные данные в программе, значения которых не изменяются на протяжении ее работы, называют константами или постоянными. Константы, как и переменные, имеют тип. Их можно указывать явно, например, в инструкции «К=К+1» 1 есть константа, или для удобства обозначать идентификаторами: pi=3,1415926536. Только значение pi нельзя изменить, так как это константа, а не переменная.
Структурированные данные и алгоритмы их обработки
Одномерный массив (шкаф ящиков в один ряд) предполагает наличие у каждого элемента только одного индекса. Примерами одномерных массивов служат арифметическая (аi) и геометрическая (bi) последовательности, определяющие конечные ряды чисел. Количество элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скобках, рядом с его именем. Например, если сказано: «задан массив A (10)», это означает, что даны элементы: a 1 , a 2 , …, a 10 . Рассмотрим алгоритмы обработки элементов одномерных массивов.
Ввод элементов одномерного массива осуществляется поэлементно, в порядке, необходимом для решения конкретной задачи. Обычно, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов. Алгоритм ввода элементов массива А(10) представлен на рис.9.
В заданном числовом массиве A(l0) найти наибольший элемент и его индекс, при условии, что такой элемент в массиве существует, и единственный.
Обозначим индекс наибольшего элемента т. Будем считать, что первый элемент массива является наибольшим (т = 1). Сравним поочередно наибольший с остальными элементами массива. Если оказывается, что текущий элемент массива а i (тот, c которым идет сравнение) больше выбранного нами наибольшего ат, то считаем его наибольшим (т=i) (рис.10).
Рассмотрим двумерный массив (шкаф с множеством ящиков, положение которых определяется двумя координатами – по горизонтали и по вертикали). В математике двумерный массив (таблица чисел) называется матрицей. Каждый ее элемент имеет два индекса а ij , первый индекс i определяет номер строки, в которой находится элемент (координата по горизонтали), а второй j – номер столбца (координата по вертикали). Двумерный массив характеризуется двумя размерностями N и М, определяющими число строк и столбцов соответственно (рис. 11).
Задана матрица символов (100х100), представляющая собой карту ночного неба; звездам на карте соответствует символы «*». Определить: сколько звезд на карте?
Алгоритм решения задачи достаточно прост, необходимо перебрать все элементы матрицы и посчитать, сколько среди них символов «*». Обозначим К переменную – счетчик. На рис 13. представлена блок-схема решения этой задачи.