Что такое островки лангерганса
Что такое островки лангерганса
Эндокринную функцию в поджелудочной железе выполняют скопления клеток эпителиального происхождения, получившие название островков Лангерганса и составляющие всего 1 —2 % массы поджелудочной железы — экзокринного органа, образующего панкреатический пищеварительный сок. Количество островков в железе взрослого человека очень велико и составляет от 200 тысяч до полутора миллионов.
В островках различают несколько типов клеток, продуцирующих гормоны: альфа-клетки образуют глюкагон, бета-клетки — инсулин, дельта-клетки — соматостатин, джи-клетки — гастрин и РР- или F-клетки — панкреатический полипептид. Помимо инсулина в бета-клетках синтезируется гормон амилин, обладающий противоположными инсулину эффектами. Кровоснабжение островков более интенсивно, чем основной паренхимы железы. Иннервация осуществляется постганлионарными симпатическими и парасимпатическими нервами, причем среди клеток островков расположены нервные клетки, образующие нейроинсулярные комплексы.
Рис. 6.21. Функциональная организация островков Лангерганса как «мини-органа». Сплошные стрелки — стимуляция, пунктирные — подавление гормональных секретов. Ведущий регулятор — глюкоза — при участии кальция стимулирует секрецию инсулина р-клетками и, напротив, тормозит секрецию глюкагона альфа-клетками. Всасывающиеся в желудке и кишечнике аминокислоты являются стимуляторами функции всех клеточных элементов «мини-органа». Ведущий «внутриорганный» ингибитор секреции инсулина и глюкагона — соматостатин, активация его секреции происходит под влиянием всасывающихся в кишечнике аминокислот и гастроинтестинальных гормонов при участии ионов Са2+. Глюкагон является стимулятором секреции как соматостатина, так и инсулина.
Инсулин синтезируется в эндоплазматическом ретикулуме бета-клеток вначале в виде пре-проинсулина, затем от него отщепляется 23-аминокис-лотная цепь и остающаяся молекула носит название проинсулина. В комплексе Гольджи проинсулин упаковывается в гранулы, в них осуществляется расщепление проинсулина на инсулин и соединительный пептид (С-пептид). В гранулах инсулин депонируется в виде полимера и частично в комплексе с цинком. Количество депонированного в гранулах инсулина почти в 10 раз превышает суточную потребность в гормоне. Секреция инсулина происходит путем экзоцитоза гранул, при этом в кровь поступает эквимолярное количество инсулина и С-пептида. Определение содержания последнего в крови является важным диагностическим тестом оценки секреторной способности (3-клеток.
Секреция инсулина является кальцийзависимым процессом. Под влиянием стимула — повышенного уровня глюкозы в крови — мембрана бета-клеток деполяризуется, ионы кальция входят в клетки, что запускает процесс сокращения внутриклеточной микротубулярной системы и перемещение гранул к плазматической мембране с последующим их экзоцитозом.
Секреторная функция разных клеток островков взаимосвязана, зависит от эффектов образуемых ими гормонов, в связи с чем островки рассматриваются как своеобразный «мини-орган» (рис. 6.21). Выделяют два вида секреции инсулина: базальную и стимулированную. Базальная секреция инсулина осуществляется постоянно, даже при голодании и уровне глюкозы крови ниже 4 ммоль/л.
Стимулированная секреция инсулина представляет собой ответ бета-клеток островков на повышенный уровень D-глюкозы в притекающей к бета-клеткам крови. Под влиянием глюкозы активируется энергетический рецептор бета-клеток, что увеличивает транспорт в клетку ионов кальция, активирует аденилатциклазу и пул (фонд) цАМФ. Через эти посредники глюкоза стимулирует выброс инсулина в кровь из специфических секреторных гранул. Усиливает ответ бета-клеток на действие глюкозы гормон двенадцатиперстной кишки — желудочный ингибиторный пептид (ЖИП). В регуляции секреции инсулина определенную роль играет и вегетативная нервная система. Блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и норадреналин через альфа-адренорецепторы подавляют секрецию инсулина и стимулируют выброс глюкагона.
Специфическим ингибитором продукции инсулина является гормон дельта-клеток островков — соматостатин. Этот гормон образуется и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную реакцию бета-клеток на глюкозный стимул. Образование в поджелудочной железе и кишечнике пептидов, аналогичных мосговым, например сомато-статина, подтверждает существование в организме единой APUD-системы. Секреция глюкагона стимулируется снижением уровня глюкозы в крови, гормонами желудочно-кишечного тракта (ЖИП гастрин, секретин, холе-цистокинин-панкреозимин) и при уменьшении в крови ионов Са2+. Подавляют секрецию глюкагона инсулин, соматостатин, глюкоза крови и Са2+. В эндокринных клетках кишечника образуется глюкагоноподобный пептид-1, стимулирующий всасывание глюкозы и секрецию инсулина после приема пищи. Клетки желудочно-кишечного тракта, продуцирующие гормоны, являются своеобразными «приборами раннего оповещения» клеток панкреатических островков о поступлении пищевых веществ в организм, требующих для утилизации и распределения участия панкреатических гормонов. Эта функциональная взаимосвязь нашла отражение в термине «гастро-энтеро-панкреатическая система».
Васкуляризированные островки Лангерганса
Заменитель поджелудочной железы можно вырастить в пробирке
Увенчались успехом эксперименты по выращиванию островков поджелудочной железы вместе с сосудами прямо «в пробирке». Это открытие принципиально важно для успешной трансплантации островковых клеток поджелудочной железы при диабете I типа.
Национальный научный фонд (National Science Foundation) профинансировал многоуниверситетское исследование под руководством ученых из Школы инженеров Свансона Университета Питтсбурга (University of Pittsburgh Swanson School of Engineering), которые изучают использование плюрипотентных стволовых клеток человека (hPSC) для создания островков поджелудочной железы в лаборатории. Основной целью исследования является разработка метода выращивания васкуляризированных островков in vitro, в пробирке, что, по мнению исследователей, приведет к повышению жизнеспособности островковых клеток и усилению их функции после трансплантации.
«Это первая удачная попытка создать in vitro васкуляризированные органоиды – островки поджелудочной железы из hPSCs», – объясняет Ипсита Банерджи (Ipsita Banerjee), руководитель исследования. «Благодаря совместным усилиям мы разработали метод имплантации фрагментов кровеносных сосудов в островки. Путем васкуляризации островков до их трансплантации в организм они с большей вероятностью выживут и могут быстрее регулировать уровень глюкозы в крови».
Что такое островки и почему они жизненно необходимы?
Крошечные скопления клеток, называемые островками Лангерганса, расположены по всей поджелудочной железе, и позволяют органу производить инсулин. Группы таких клеток были обнаружены еще в 1869 ученым Паулом Лангергансом, в честь которого и были названы. Клетки островков концентрированы преимущественно в хвосте поджелудочной железы, и составляют 2% от массы органа. Всего в паренхиме насчитывается около 1 миллиона островков.
Выявлено, что у новорожденных островки занимают 6% от всей массы органа. По мере взросления организма удельный вес структур, имеющих эндокринную активность, снижается. К пятидесяти годам их остается всего 1-2%. В течение суток островки Лангерганса секретируют около 2 миллиграммов инсулина.
Диабет I типа приводит к тому, что иммунная система разрушает эти островки. В результате пациенты должны ежедневно принимать инсулин, чтобы поддерживать уровень сахара в крови. Слишком высокий уровень сахара может приводить к гипергликемии, диабетическому кетоацидозу и, если эти состояния не купировать – к смерти. Пациенты должны самостоятельно регулировать уровень сахара в крови на протяжении всей своей жизни. Либо искать возможность для замены неработающей поджелудочной железы или ее активной части – островков Лангенгарса.
Зачем островкам нужны сосуды?
Островки поджелудочной железы имеют очень высокие потребности в кислороде. При пересадке их нужно как можно скорее «подключить» к сосудам организма-реципиента, иначе они начнут очень быстро терять способность регулировать уровень глюкозы в крови и отмирать. Исследователи начали искать новые методы, чтобы ускорить васкуляризацию островков после трансплантации, и пришли к выводу, что проще «вырастить» сосуды еще до пересадки, в пробирке, прямо внутри группы островковых клеток.
В эксперименте была использована новая структурирующая система – специальный гидрогель для создания трехмерной конфигурации клеточной культуры, которая имитирует способ образования поджелудочной железы естественным путем.
«Гидрогель подобен строительным лесам, и он помогает наращивать ячейки структуры в трехмерном пространстве», – говорит доктор Банерджи. «Обычно плюрипотентные стволовые клетки представляют собой структуру неконтролируемой конфигурации, однако, используя гидрогель, разработанный нашим сотрудником в штате Аризона, мы можем создать точную многоклеточную архитектуру под названием« сфероиды». В отличие от обычной двумерной культуры островковых клеток, выращенной в чашке Петри, островковые сфероиды, выращенные на гидрогеле, полностью идентичны тем структурам, которые образуются в организме естественным путем».
Кроме применения непосредственно для трансплантации, создание жизнеспособных васкуляризованных островков поджелудочной железы за пределами тела может стать ценным инструментом для проверки эффективности и токсичности новых лекарств для лечения поджелудочной железы. Кроме того, васкуляризация органелл in vitro открывает новые горизонты в области трансплантологии.
«Принципы предварительного проектирования васкуляризации перед трансплантацией может применяться к любому типу ткани, а не только в случае поджелудочной железы», – говорит доктор Банерджи. «Когда донорские островки используются для трансплантации, часть из них гибнет в результате процедуры. Мы ожидаем, что меры, которые мы принимаем в лаборатории до того, как новые клетки будут пересажены в тело пациента, будут иметь огромное значение для регенеративной медицины следующего поколения».
При вызванной стволовыми клетками васкуляризации наблюдалось значительное рассеивание эндотелиальных клеток и рост островков. Те островки, что уменьшались в размере, отличались слабой васкуляризацией. В течение всего периода культивирования наблюдалось выделение инсулина, что говорит о сохранении функции островков при взаимодействии со стволовыми клетками. Более того, при ко-культивировании наблюдалось значительное усиление генной экспрессии инсулина и глюкагона по сравнению с контролем – в 28,66 и в 24,4 раза соответственно. Это свидетельствует о том, что СК стимулируют и регенерацию эндокринных клеток.
Островки Лангерганса
Не путать с клетками Лангерганса, содержащимися в эпидермальных тканях
бьоял | |||||||||||
Островки Лангерганса, окраска гематоксилин-эозином. | |||||||||||
Поджелудочная железа собаки. 250x. | |||||||||||
Латинское название | Островки Лангерганса — скопления гормон-продуцирующих (эндокринных) клеток, преимущественно в хвосте поджелудочной железы. Открыты в 1869 году немецким патологоанатомом Паулем Лангергансом (1849—1888). Островки составляют приблизительно 1…2 % массы поджелудочной железы. Поджелудочная железа взрослого здорового человека насчитывает около 1 миллиона островков (общей массой от одного до полутора граммов), которые объединяют понятием орган эндокринной системы. СодержаниеИсторическая справкаВ дальнейшем благодаря ряду исследований, проведенных физиологами и патофизиологами в различных странах (проведение панкреатэктомии, получение избирательного некроза бета-клеток поджелудочной железы химическим соединением аллоксаном), получены новые сведения об инкреаторной функции поджелудочной железы. В 1907 году Lane & Bersley (Чикагский университет) показали различие между двумя видами островковых клеток, которые они назвали тип A (альфа-клетки) и тип B (бета-клетки). В 1921 году в лаборатории физиологии профессора J. Macleod в Торонтском университете молодому канадскому хирургу Фредерику Бантингу и его ассистенту студенту-медику Чарлзу Бесту удалось выделить инсулин. Островки Лангерганса
|
---|