Что такое осциллограф и для чего он предназначается
Что такое осциллограф?
Осциллограф – электронный прибор для измерения электрических сигналов в цепи и наблюдения за ними. Определение формы и параметров колебаний необходимо для отслеживания корректности работы оборудования.
Первые попытки создать прибор для определения электрических колебаний относятся ещё к 1880 году. Их делали французские и русские физики. Первые осциллографы были аналоговыми. С 1980-х годов сигналы стали фиксироваться с помощью цифрового оборудования.
Устройство и принцип действия прибора
Объясним устройство аналогового осциллографа просто, «для чайников». Прибор состоит из следующих элементов:
Для управления параметрами сигнала и его отображения на экране есть регуляторы. У старых моделей экрана не было. Изображение фиксировалось на фотоленте.
Принцип работы
При запуске прибора сигнал подаётся на вход канала вертикального отклонения. Он имеет высокое входное сопротивление. По тому же принципу работает вольтметр, измеряющий напряжение. Однако вольтметр не показывает временного графика колебаний напряжения.
Сигнал усиливается до необходимого уровня после подачи на вход. Он отображается на экране по вертикальной оси. Усиление требуется для работы отклоняющей системы лучевой трубки или преобразователя сигнала из аналогового в цифровой. Оно позволяет менять масштаб отображения колебаний на экране от крупного до мелкого.
Устройство
Лучевая трубка чувствительна к электрическим импульсам. Чем ниже их частота, тем выше чувствительность. В нынешних трубках количество лучей может составлять от одного до 16. Их количеству соответствует число сигнальных входов и отображающихся одновременно графиков.
Особенность цифрового осциллографа в том, что он имеет экран и преобразователь аналогового сигнала. У него есть память для сохранения данных о полученном графике колебаний. Часть информации анализируется в автоматическом режиме и отображается в обработанном виде. Аналоговый осциллограф не запоминает данные, а только показывает их в реальном времени.
Разверткой называется траектория движения луча, который улавливает колебания и выводит изображение на экран. Она бывает разной формы — эллиптической, круговой. Значение развёртки регулируется в зависимости от исследуемого сигнала по горизонтальной оси (временнóй).
Блок питания подаёт напряжение от сети 220 В на электронные схемы. Есть и аккумуляторные модели, способные работать автономно.
Виды осциллографов
По принципу действия осциллографы бывают цифровыми и аналоговыми. Существуют смешанные аналого-цифровые приборы. Всё чаще выпускают виртуальные. Там в качестве экрана используется другой прибор – монитор компьютера, телевизора.
Работа некоторых моделей основана на электромеханическом принципе:
Прибор может работать самостоятельно или являться приставкой к другому оборудованию (например, компьютеру). Во втором случае цена ниже, но сам прибор зависим от внешнего устройства.
Виды развёрток
В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:
Измеряемые процессы
По принципу работы приборы делят на:
Где применяют осциллографы?
Информация, которую даёт осциллограф:
Осциллографы используют как в практических, так и в научно-исследовательских целях. Для простых измерений можно воспользоваться мультиметром, но в большинстве случаев осциллограф незаменим.
Приборы для измерения колебаний применяют при настройке электронного оборудования. К примеру, для регулировки телевизионного сигнала необходимо получить его осциллографическое изображение. Приборы также используются при ремонте блоков питания, диагностике печатных плат.
При ремонте автомобилей устройство поможет получить данные о положении коленчатого и распределительного валов, датчиков положения. Данные осциллограммы расскажут о наличии импульса на катушке, укажут на неисправность свечей и проводов, диодного моста генератора.
Медицинское оборудование (кардиографы, энцефалографы) тоже работает по принципу осциллографирования. Только электрические колебания, измеряемые ими, происходят в живых организмах.
Методика измерений
Осциллограф измеряет электрическое напряжение и формирует амплитудный график электрических колебаний. Цифровые приборы могут запоминать полученный график, возвращаться к нему.
Колебания отображаются на экране в двухмерной системе координат (напряжение – вертикальная ось, время – горизонтальная ось), формируя график — осциллограмму. Есть ещё третий компонент исследований – интенсивность сигнала (или яркость).
При отсутствии входных импульсов на экране горизонтальная линия – «нулевая», обозначающая отсутствие напряжения. Как только на вход (или входы) прибора подаётся напряжение, на экране становятся видны один или несколько графиков одновременно (зависит от количества измеряемых сигналов).
График электрических колебаний по форме может представлять собой:
Для получения стабильного графика колебаний в приборе стоит блок синхронизации. Получить цикличное отображение колебаний можно только после установки значения синхронизации. Оно принимается за «стартовое», служит отправной точкой графика. Все скачки отображаются по отношению к этой точке.
Как выбрать
Нужно представлять, в каких целях и как часто будет использоваться прибор, для изучения каких сигналов он предназначен. Учитывайте количество точек для одновременного измерения, одиночность или периодичность колебаний. Иногда используются устройства советского производства. Но получить точную настройку с их помощью трудно.
Количество каналов
По количеству каналов осциллографы могут быть одноканальными, простыми (2-4 канала), продвинутыми (до 16 каналов). Несколько каналов позволяют одновременно анализировать поступающие сигналы.
Тип питания
Прибор с аккумулятором можно брать с собой на выезд. Это удобно для мастеров, которые проверяют оборудование по месту его нахождения. Если выезды не производятся, лучше брать работающий от сети осциллограф, поскольку он стабильнее и надёжнее.
Частота дискретизации
Частота дискретизации важна для измерения однократных и переходных процессов. Чем выше этот параметр, тем более точное изображение сигнала на экране удастся получить.
Полоса пропускания
Для простых исследований цифровых схем и усилителей оптимальная звуковая частота — 25 МГц. Для профессионального измерения нужен прибор, у которого этот параметр — до 200 или даже до 500 МГц. Современные линии связи работают на очень высоких частотах. Частота исследуемых сигналов должна быть в 3-5 раз меньше величины полосы пропускания.
Настройка осциллографа
Перед использованием нового устройства проводится его калибровка с помощью находящихся на корпусе генератора прямоугольных импульсов. Сигнальный щуп подключают к калибровочному выходу, при этом на экране появляется «пила» — зигзагообразная линия. Нужно проверить работу всех функций и регуляторов.
Сейчас осциллографы регулярно используют в сфере электроники. Есть большой выбор устройств, позволяющих наблюдать за параметрами электрических колебаний. Без осциллографа не обойтись ни инженеру-профи, ни рядовому любителю радиоэлектроники.
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз
Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.
Для чего предназначен осциллограф
Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:
Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:
Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.
Принцип действия осциллографа
Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:
За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально, всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.
На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.
Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.
Классификация и виды
Различают два основных вида осциллографов:
По принципу действия существуют следующая классификация:
Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.
Универсальные осциллографы делятся на два основных вида:
Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.
Универсальные и специальные устройства делятся на:
При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.
Устройство и основные технические параметры
Каждый прибор имеет ряд следующих технических характеристик:
Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.
Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.
Как выполняются измерения
Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.
Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.
Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.
Осциллограф
Осциллограф — это прибор, который показывает изменение напряжение во времени на каком-либо участке электрической цепи.Ось X на экране осциллографа — это время, ось Y — напряжение.
В этой статье мы рассмотрим три типа осциллографов, а также принципы их работы.
Аналоговый осциллограф
Его еще также называют электронно-лучевой осциллограф, так как он состоит из электронно-лучевой трубки. По сути электронно-лучевая трубка представляет из себя маленький кинескоп, на котором мы можем наблюдать какое-либо изменение электрического сигнала.
Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.
Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют «землей».
Более современные щупы уже выглядят вот так.
А вот и сам разъем щупа
Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.
Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.
При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.
Как измерить постоянное напряжение аналоговым осциллографом
Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает «постоянный ток». В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.
Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.
Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.
Далее сигнальный провод осциллографа цепляем на «плюс» питания, а нулевой — на «минус» питания. Далее наблюдаем вот такую картину.
Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку. Мы выставили коэффициент масштабирования по Y, что 1 клеточка — это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.
Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.
Смотрим, что произойдет с сигналом с напряжением в 1 Вольт
Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!
Что случится, если мы соединим сигнальный провод осциллографа с «минусом» питания, а нулевой с «плюсом» питания? В этом случае осциллограмма «пробьет пол» и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение «-2» Вольта.
Как измерить переменное напряжение аналоговым осциллографом
Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC — «переменный ток». Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.
Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.
По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так. Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.
В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.
Период — это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.
Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.
T — период сигнала, с
Для данного случая
V=1/T=1/0,02=50 Гц. Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.
Цифровой осциллограф
Цифровой осциллограф — это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!
Как подготовить цифровой осциллограф к работе
Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (CH1)
На щупе есть делитель. Ставим его ползунок на 10Х. В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала «10Х».
Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.
Все должно выглядеть приблизительно вот так:
На дисплее в это время происходит какой-то
В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку
Согласился с условиями автоматического позиционирования сигнала
Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его желательно корректировать каждый раз перед работой.
В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.
Крутим и смотрим, что у нас получается на дисплее.
Ого, слишком сильно крутанул винт.
Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.
Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно н а этом этапе цифровой осциллограф полностью готов к работе.
Как измерить постоянное напряжение цифровым осциллографом
Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC — direct current, что с английского означает «постоянный ток».
Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)
Все, после этого наш осциллограф полностью готов к измерению постоянного тока.
Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.
Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.
Смотрим на дисплей осциллографа
Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения. Постоянное напряжение — это такое напряжение, которое не изменяется во времени.
На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).
Как измерить переменное напряжение цифровым осциллографом
Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.
Выставляем напряжение на ЛАТРе 100 Вольт.
На осциллографе переключаем на АС, что означает alternating current — переменный ток.
Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.
С помощью кнопки «Measure» я вывел некоторые интересующие нас параметры:
Vk — среднеквадратичное значение напряжения. В данном случае он нам показывает напряжение, которое мы подавали с ЛАТРа — это 100 Вольт.
F — частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.
T — период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.
Как вывести все параметры сигнала
Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:
Сигнал с генератора частоты на экране осциллографа выглядит вот так.
А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.
Далее нажимаем кнопочку «Add» ( с англ. — добавлять), с помощью вспомогательной клавиши H1
И потом нажимаем кнопку «Show All» (с англ. — показать всё) с помощью вспомогательной клавиши F3
В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:
Описание характеристик сигналов
Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:
— Амплитудные
Давайте рассмотрим основные из них. Начнем слева-направо.
Period — с англ. период. Период сигнала — это время, за которое сигнал повторяется. В нашем случае период обозначается буквой «Т».
Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник
Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.
Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.
Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.
«Пико» — буквой «p»
«Нано» — буквой «n»
«Микро» обозначается буквой «u», как и в маркировке современных конденсаторов.
«Милли» — буквой «m».
Freq. Полное название frequency — с англ. частота. Обозначается буквой «F». Частоту очень легко можно вычислить по формуле, зная период Т.
Следующий показатель Mean. В нашем случае обозначается просто буковкой «V». Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:
Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:
Так как мы видим, что значение нашего квадратика равно 1 Вольту (внизу слева)
То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением
Остальные параметры сигнала не столь важны для начинающих электронщиков.
Плюсы и минусы цифрового осциллографа
Где купить цифровой осциллограф
Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:
Посмотреть его можете на Алиэкпрессе по этой ссылке.
USB осциллограф
USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.
У нас на обзоре USB осциллограф INTRUSTAR.
В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов
С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем CH1, что означает первый канал, а второй разъем CH2, то есть второй канал. Следовательно, осциллограф двухканальный. Справа видим два штыря. Эти штыри — генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой — сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.
В рабочем состоянии USB осциллограф выглядит вот так.
После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.
Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.
Плюсы и минусы USB осциллографа
Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.
Похожие статьи по теме «осциллограф»