Что такое открытый и закрытый ключ
Чем отличаются открытый и закрытый ключи ЭЦП?
При создании электронной цифровой подписи с помощью криптографических алгоритмов формируется ключевая пара — открытый и закрытый ключи. Расскажем подробно о том, что такое ключевая пара, чем отличаются части ЭЦП, какие функции они выполняют.
Открытый ключ ЭЦП
Эта часть ключевой пары представляет собой уникальный набор символов, который формируется криптопровайдером (средством криптографической защиты информации). Открытый ключ находится в сертификате проверки электронной подписи (в электронной и бумажной версии). Он доступен всем, так как используется для расшифровки ЭЦП. То есть с его помощью получатель подписанного электронного документа может идентифицировать и проверить ЭЦП. Удостоверяющие центры хранят выданные открытые ключи в специальном реестре.
Закрытый ключ ЭЦП
Это секретный уникальный набор символов, который также формируется криптопровайдером. Закрытый ключ необходим для формирования ЭЦП на электронном документе и хранится в зашифрованном виде на носителе (токене). Доступ к закрытому ключу имеет только владелец ЭЦП, он защищен PIN-кодом. Теоретически, скопировать закрытый ключ на другой носитель можно, но делать это рекомендуется, так как безопасность использования ЭЦП гарантирована только тогда, когда закрытый ключ существует в единственном экземпляре. Если носитель с закрытым ключом утерян, то в целях безопасности необходимо отозвать ЭЦП, чтобы злоумышленники не могли ей воспользоваться.
В ключевой паре открытая и закрытая части привязаны друг к другу.
Как найти и выгрузить ключи на компьютер?
Чаще всего появляется необходимость выгрузить открытый ключ, например, чтобы предоставить его контрагентам для проверки ЭЦП. На токене сертификат проверки ключа скрыт. Как его открыть? Сделать это можно через свойства браузера или программу КриптоПро CSP. Чтобы экспортировать ключ, в первую очередь необходимо подключить токен к компьютеру.
Через свойства браузера:
В ОС Windows необходимо открыть: «Пуск» — «Панель управления» — «Свойства браузера».
В появившемся окне выбрать вкладку «Содержание», а далее — «Сертификаты».
Появится список сертификатов, в котором следует выбрать нужный, а затем нажать кнопку «Экспорт».
Появится окно «Мастер экспорта сертификатов», где нужно выбрать «Не экспортировать закрытый ключ», если это не требуется.
Выбрать формат файла «Файлы в DER-кодировке X.509 (.CER)».
Выбрать место хранения ключа и сохранить.
Через КриптоПро CSP:
В ОС Windows надо перейти в «Пуск» — «Панель управления» — «КриптоПро CSP».
В открывшемся окне следует выбрать вкладку «Сервис» и нажать «Просмотреть сертификаты в контейнере».
Через кнопку «Обзор» нужно выбрать контейнер.
В окне «Сертификат для просмотра» следует нажать кнопку «Свойства» и на вкладке «Состав» нажать «Копировать в файл».
Далее порядок действий в окне «Мастер экспорта сертификатов» аналогичный: выбрать, нужно ли сохранять закрытый ключ, установить формат и определить место хранения.
Выгрузка закрытого ключа через свойства браузера выполняется по тому же алгоритму, что и в случае с открытым. Только в окне «Мастер экспорта сертификатов» нужно выбрать «Экспортировать закрытый ключ». А порядок действий при выгрузке из КриптоПро CSP следующий:
В ОС Windows нажать «Пуск» перейти на «Панель управления» и выбрать «КриптоПро CSP».
Далее — вкладка «Сервис» и кнопка «Скопировать контейнер».
Через кнопку «Обзор» нужно выбрать контейнер и подтвердить (потребуется ввести PIN-код).
Затем нужно ввести название копии закрытого ключа и нажать «Готово».
Далее нужно выбрать, куда будет записан ключ, установить пароль для обеспечения дополнительной защиты и подтвердить действия.
Ещё раз напомним, что экспортировать закрытый ключ без необходимости, не рекомендуется. Его может использовать любой, кто имеет доступ к компьютеру, на который он скопирован.
Заказав электронную цифровую подпись в СберКорус, вы сможете самостоятельно настроить компьютер для работы с ЭЦП, посмотрев видеоинструкцию. При возникновении сложностей мы поможем настроить компьютер бесплатно. А также в любое время проконсультируем по интересующим вопросам.
Асимметричное шифрование
Асимметричное шифрование — это метод шифрования данных, предполагающий использование двух ключей — открытого и закрытого. Открытый (публичный) ключ применяется для шифрования информации и может передаваться по незащищенным каналам. Закрытый (приватный) ключ применяется для расшифровки данных, зашифрованных открытым ключом. Открытый и закрытый ключи — это очень большие числа, связанные друг с другом определенной функцией, но так, что, зная одно, крайне сложно вычислить второе.
Асимметричное шифрование используется для защиты информации при ее передаче, также на его принципах построена работа электронных подписей.
Принцип действия асимметричного шифрования
Схема передачи данных между двумя субъектами (А и Б) с использованием открытого ключа выглядит следующим образом:
В такой схеме перехват любых данных, передаваемых по незащищенным каналам, не имеет смысла, поскольку восстановить исходную информацию возможно только при помощи закрытого ключа, известного лишь получателю и не требующего передачи.
Применение асимметричных алгоритмов
Асимметричное шифрование решает главную проблему симметричного метода, при котором для кодирования и восстановления данных используется один и тот же ключ. Если передавать этот ключ по незащищенным каналам, его могут перехватить и получить доступ к зашифрованным данным. С другой стороны, асимметричные алгоритмы гораздо медленнее симметричных, поэтому во многих криптосистемах применяются и те и другие.
Например, стандарты SSL и TLS используют асимметричный алгоритм на стадии установки соединения (рукопожатия): с его помощью кодируют и передают ключ от симметричного шифра, которым и пользуются в ходе дальнейшей передачи данных.
Также асимметричные алгоритмы применяются для создания электронных подписей для подтверждения авторства и (или) целостности данных. При этом подпись генерируется с помощью закрытого ключа, а проверяется с помощью открытого.
Асимметричные алгоритмы
Наиболее распространенные алгоритмы асимметричного шифрования:
Надежность асимметричного шифрования
Теоретически приватный ключ от асимметричного шифра можно вычислить, зная публичный ключ и механизм, лежащий в основе алгоритма шифрования (последнее — открытая информация). Надежными считаются шифры, для которых это нецелесообразно с практической точки зрения. Так, на взлом шифра, выполненного с помощью алгоритма RSA с ключом длиной 768 бит на компьютере с одноядерным процессором AMD Opteron с частотой 2,2 ГГц, бывшем в ходу в середине 2000-х, ушло бы 2000 лет.
При этом фактическая надежность шифрования зависит в основном от длины ключа и сложности решения задачи, лежащей в основе алгоритма шифрования, для существующих технологий. Поскольку производительность вычислительных машин постоянно растет, длину ключей необходимо время от времени увеличивать. Так, в 1977-м (год публикации алгоритма RSA) невозможной с практической точки зрения считалась расшифровка сообщения, закодированного с помощью ключа длиной 426 бит, а сейчас для шифрования этим методом используются ключи от 1024 до 4096 бит, причем первые уже переходят в категорию ненадежных.
Что касается эффективности поиска ключа, то она незначительно меняется с течением времени, но может скачкообразно увеличиться с появлением кардинально новых технологий (например, квантовых компьютеров). В этом случае может потребоваться поиск альтернативных подходов к шифрованию.
Публикации на схожие темы
Сквозное шифрование: что это и зачем оно нужно вам
Квантовые компьютеры и криптография для чайников
Квантовые компьютеры — для «чайников»
Эволюция шифровальщика JSWorm
Программы-вымогатели: пара хороших новостей
Дорога к «интернету вещей»: преимущества и риски смарт-езды
Ключевые понятия в шифровании
Иногда процесс шифрования является достаточно простым и автоматическим. Но иногда в нём случаются сбои. Чем больше вы знаете о шифровании, тем в большей безопасности вы будете при возникновении подобных ситуаций. Для начала, если вы этого ещё не сделали, рекомендуем ознакомиться с руководством «Что я должен знать о шифровании?»
В настоящем руководстве мы рассмотрим пять основных идей. Это важные понятия о процессе шифрования:
Шифр и ключ Anchor link
Вы наверняка сталкивались с чем-либо на первый взгляд непонятным. Это могло быть похоже на надпись на чужом языке или вовсе на какую-то бессмыслицу. Что-то препятствовало прочтению и пониманию. Но это вовсе не означает, что было использовано шифрование.
Каковы отличия чего-то зашифрованного от непонятного?
Шифрование — это математический процесс, используемый для превращения информации в нечитаемый (зашифрованный) вид. При этом восстановление первоначального вида информации (расшифровывание) возможно лишь с помощью специальных знаний. В процессе шифрования используются шифр и ключ.
Шифр — это набор правил (алгоритм), используемый при шифровании и расшифровывании. Это чётко определённые, выраженные в виде формулы правила, которым необходимо следовать.
Ключом является инструкция для шифра: как именно нужно шифровать и расшифровывать данные. Ключи являются одной из наиболее важных концепций в шифровании.
Один ключ или несколько? Anchor link
При использовании симметричного шифрования существует единственный ключ как для шифрования, так и расшифровывания данных.
Старые способы шифрования были симметричными. В «шифре Цезаря», использованном Юлием Цезарем, ключом для шифрования и для расшифровывания сообщений был сдвиг по алфавиту на три символа. Например, символ «A» будет изменён на «Г». Сообщение «ШИФРОВАНИЕ — ЭТО КРУТО» превратится с помощью этого ключа («три») в «ЫЛЧУСЕГРЛЗ АХС НУЦХС». Тот же самый ключ используется и для расшифровывания сообщения обратно в исходный вид. |
Симметричное шифрование все ещё применяется сегодня. Оно часто существует в форме «потоковых» и «блочных шифров», которые используют сложные математические процессы для усложнения взлома. В настоящее время процесс шифрования данных проходит в несколько этапов, максимально усложняя извлечение исходных данных при отсутствии подходящего ключа. Современные алгоритмы симметричного шифрования, такие как алгоритм Advanced Encryption Standard (AES), являются надёжными и быстрыми. Симметричное шифрование широко используется компьютерами для таких задач, как шифрование файлов, разделов жёстких дисков на компьютере, полного шифрования дисков и устройств, а также шифрования баз данных, например в менеджерах паролей. При расшифровывании информации, зашифрованной с помощью симметричного шифрования, у вас будут запрашивать пароль
. Именно поэтому мы рекомендуем использовать надёжные пароли и предоставляем пособие по созданию надёжных паролей для защиты зашифрованной информации.
Наличие лишь одного ключа может быть полезно, если вы единственный человек, нуждающийся в доступе к зашифрованной информации. Но обладание единственным ключом может стать проблемой при желании поделиться доступом к зашифрованной информации с другом, находящимся вдали от вас. Что, если вы не можете лично встретиться с ним для передачи ключа? И как поделиться ключом через небезопасное подключение к интернету?
Асимметричное шифрование, также называемое шифрованием с открытым ключом, решает эти проблемы. Асимметричное шифрование использует два ключа: закрытый ключ (для расшифровывания) и открытый ключ (для шифрования).
Симметричное шифрование
Асимметричное шифрование
Симметричное и асимметричное шифрование часто используются совместно для шифрования при передаче данных.
Асимметричное шифрование
: закрытые и открытые ключи Anchor link
Закрытый и открытый ключи создаются парами. Они математически связаны друг с другом. Вы можете представить их в виде камня, расколотого пополам. Если соединить обе половинки, то они идеально подойдут друг к другу, образуя единое целое. Ни одна часть никакого другого камня не подойдёт. Файлы открытого и закрытого ключей совпадают также. Они состоят из очень больших чисел, генерируемых компьютером.
Несмотря на своё название, открытый ключ не используется для открытия чего-либо (в отличии от реального ключа). Его предназначение заключается в другом. Более подробную информацию о работе открытых и закрытых ключей вы можете найти в нашем руководстве «Глубокое погружение в мир сквозного шифрования».