Что такое параллельное проецирование
Параллельное проецирование
Очевидно, при таком положении центра проекции и все остальные проецирующие лучи будут также параллельны [SA). Множество всех лучей пространства, параллельных одному лучу, имеющему несобственную точку, образуют связку, центр которой несобственная точка, совпадающая с центром проекции.
В связи с параллельностью проецирующих лучей, рассматриваемый способ проецирования называют параллельным, а полученные с его помощью проекции параллельными проекциями.
Чтобы осуществить параллельное проецирование необходимо иметь аппарат, который полностью определяется положением плоскости проекции α и направлением проецирования s.
Отмеченное ранее свойство центрального проецирования сохраняется и в данном случае. Применительно к параллельному проецированию оно может быть сформулировано:
Каждая точка пространства, при заданном аппарате проецирования, будет иметь одну и только одну параллельную проекцию.
Обратное утверждение, как и в случае центрального проецирования, не имеет места.
Для определения положения точки в пространстве необходимо иметь две ее параллельные проекции, полученные при двух различных направлениях проецирования.
В этом случае положение точки A определяется пересечением прямых, проведенных через A α 1 и A α 2 параллельно соответствующим направлениям s1 и s2.
На рисунке показано также нахождение положения в пространстве точки B по известным ее параллельным проекциям B α 1 и B α 2.
Параллельное проецирование
Параллельное проецирование является частным случаем центрального проецирования, когда центр проекций лежит в несобственной точке S, поэтому все проецирующие лучи параллельны.
| Аппарат параллельного проецирования задан, если задано положение плоскости проекций |
Все свойства центрального проецирования справедливы для параллельного проецирования:
Параллельное проецирование делится на:
Основные инвариантные (независимые) свойства параллельного проецирования.
При параллельном проецировании нарушаются метрические характеристики геометрических фигур (происходит искажение линейных и угловых величин), причём степень нарушения зависит как от аппарата проецирования, так и от положения проецируемой геометрической фигуры в пространстве по отношению к плоскости проекции.
| Пример: |
Но наряду с этим, между оригиналом и его проекцией существует определённая связь, заключающаяся в том, что некоторые свойства оригинала сохраняются и на его проекции. Эти свойства называются инвариантными (проективными) для данного способа проецирования.
В процессе параллельного проецирования (получения проекций геометрической фигуры по её оригиналу) или реконструкции чертежа (воспроизведения оригинала по заданным его проекциям) любую теорему можно составить и доказать, базируясь на инвариантных свойствах параллельного проецирования, которые в начертательной геометрии играют такую же роль, как аксиомы в геометрии.
Следовательно, можно утверждать, что в начертательной геометрии существуют две системы аксиом:
Отсюда ясно, насколько важно выяснить и хорошо усвоить эти инвариантные свойства.
1. Проекция точки есть точка.
2. Проекция прямой линии на плоскость есть прямая линия.
(Для всех прямых l, не параллельных направлению проецирования, проекция прямой есть прямая.)
3. Если в пространстве точка инцидентна (принадлежит) линии, то проекция этой точки принадлежит проекции линии.
4. Проекции взаимно параллельных прямых также взаимно параллельны.
5. Отношение отрезков прямой равно отношению проекций этих отрезков.
6. Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется в конгруэнтную фигуру.
При параллельном переносе плоскости проекций величина проекций не изменится, следовательно, мы можем не рисовать положение плоскости проекций.
Для построения обратимого чертежа необходимо иметь две взаимосвязанные проекции оригинала.
Поэтому только прямоугольное (ортогональное) проецирование, по крайней мере, на две взаимно перпендикулярных плоскости проекций является основным методом построения технического чертежа (метод Монжа).
Ортогональное (прямоугольное) проецирование обладает рядом преимуществ перед центральным и параллельным (косоугольным) проецированием.
К ним в первую очередь следует отнести:
Поэтому этот метод удобен для простановки размеров.
Параллельные проекции и их основные свойства
Параллельное проецирование (рис. 1.6) можно рассматривать как частный случай центрального проецирования, при котором центр проекций удален в бесконечность (5оо). При параллельном проецировании применяют параллельные проецирующие прямые, проведенные в заданном направлении относительно плоскости проекций. Если направление проецирования перпендикулярно плоскости проекций, то проекции называют прямоугольными или ортогональными, в остальных случаях— косоугольными (на рис. 1.6 направление проецирования указано стрелкой под углом а не равном 90° к плоскости проекций Р).
При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают следующие новые свойства.
1. Параллельные проекции взаимно параллельных прямых параллельны, а отношение длин отрезков таких прямых равно отношению длин их проекций.
Если прямые MN и KL (рис. 1.7) параллельны, то проецирующие плоскости Q и Т параллельны, так как пересекающиеся прямые в этих плоскостях взаимно параллельны: MN || KL по условию, Аар || Ссp || S. Следовательно, проекции трпр и kplp параллельны как линии пересечения параллельных плоскостей Q и T с плоскостью Р.
Отметим на прямой MN произвольный отрезок АВ и на прямой KL — произвольный отрезок CD. Проведем в плоскости Q через точку А прямую А—1 || арbр и в плоскости Т через точку С — прямую
C—2 || cpdp. Отрезки [A—1] = [apbp], [C—2] = [Cpdp] как отрезки параллельных между параллельными. Отрезки С—2 || с,dР || aрbр и, следовательно, С— 2 || А— 1. Отрезки В— 1 || D—2 || S, треугольник АВ—1
треугольнику CD—2, так как все их стороны взаимно параллельны. Из подобия треугольников АВ— 1 и CD—2 следует:
Из рассмотренного следует:
а) если длина отрезка прямой делится точкой в каком-либо отношении, то и длина проекции отрезка делится проекцией этой точки в том же отношении (рис. 1.8):
б) проекции равных по длине отрезков взаимно параллельных прямых взаимно параллельны и равны по длине.
Это очевидно, так как (см. рис. 1.7) при | AB|:|CD|=1 будет | арbр | = | cpdp|. Поэтому при косоугольном проецировании в общем случае параллелограмм, ромб, прямоугольник, квадрат проецируются в параллелограмм.
2. Плоская фигура, параллельная плоскости проекций, проецируется при параллельном проецировании на эту плоскость в такую же фигуру.
3. Параллельный перенос фигуры в пространстве или плоскости проекций не изменяет вида и размеров проекции фигуры.
Параллельные проекции, как и центральные при одном центре проекций, также не обеспечивают обратимости чертежа. Применяя приемы параллельного проецирования точки и линии, можно строить параллельные проекции поверхности и тела. Параллельные проекции применяют для построения наглядных изображений различных технических устройств и их деталей, например аксонометрических проекций, рассматриваемых ниже.
Параллельное проецирование
Аппаратом параллельного проецирования является плоскость проекций p и заданное направление проецирования s. Центр проецирования S удален в бесконечность. Сущность способа в том, что все проецирующие лучи параллельны друг другу. Параллельное проецирование является частным случаем центрального проецирования.
Определим параллельные проекции точек A и B (рис. 1.3а).
Для этого через точки параллельно направлению проецирования проведем проецирующие лучи до пересечения с плоскостью p и найдем проекции точек Ap и Bp.
Обратим внимание, что каждой точке пространства соответствует проекция на плоскости. Однако каждой проекции на плоскости соответствует бесконечное множество точек пространства, т.е. проекция точки на плоскость не определяет ее положение в пространстве.
Рис. 1.3а. Параллельное проецирование.
Для однозначного определения точки в пространстве необходимо иметь два направления проецирования s1 и s2 (рис. 1.3б). Тогда две проекции на плоскость A1p и А2p однозначно определяют ее положение в пространстве.
Рис. 1.3б. Параллельное проецирование.
Основные свойства параллельного проецирования
При проецировании между геометрическим объектом и его проекцией существует геометрическая взаимосвязь. Некоторые свойства оригинала сохраняются и на пропорции. Такие неизменные свойства называются инвариантными (независимыми).
Перечислим их без доказательства.
1. проекция точки есть точка.
2. Проекция прямой есть прямая (в общем случае).
3. Не изменяется взаимная принадлежность геометрических объектов и их проекций.
4. Проекции отрезков взаимно параллельных прямых параллельны.
5. Проекции точки пересечения линии есть точки пересечения проекций этих линий.
6. При прямоугольном проецировании прямой угол проецируется без искажения, если одна из его сторон параллельна плоскости проекции, а другая ей не принадлежит.
ГЛАВА 2. ТОЧКА
2.1. Ортогональная система двух плоскостей проекций.
Эпюр Монжа
Ортогональное или прямоугольное проецирование является частным случаем параллельного (косоугольного) проецирования. Направление проецирующих лучей в ортогональном проецировании перпендикулярно плоскости проекций.
Зададим две взаимно перпендикулярные плоскости проекций p1 ^ p2 (рис. 2.1) p1 – горизонтальная плоскость проекций, p2 – фронтальная плоскость проекций. Линия пересечения плоскостей называется осью проекций и обозначается х12.
Рис. 2.1. Система 2 х плоскостей проекций.
Четыре двухгранных угла, на которые плоскости делят пространство, называются четвертями.
Спроецируем точку А, произвольно выбранную в первой четверти, в данной системе плоскостей проекций. Направление лучей проецирования s1 перпендикулярно p1 и s2 перпендикулярно p2. А1 – горизонтальная проекция точки А, А2 – фронтальная проекция точки А. Проецирующие лучи АА1 и АА2 образуют плоскость, которая пересекает плоскость проекций по прямым АхА1 и АхА2. Эти прямые перпендикулярны оси x12 и называются линиями проекционной связи.
Рис. 2.2. Эпюр точки.
Эпюром точки называется чертеж, на котором изображены две проекции точки, расположенные в проекционной связи.
Две проекции точки вполне определяют ее положение в пространстве. Если из проекции А1 и А2 восстановить перпендикуляры к плоскостям проекций, то точка А определится однозначно. Точка А в пространстве определена тремя координатами x, y, z, которые можно измерять на эпюре.
1.3 Параллельное проецирование
Параллельное проецирование можно рассматривать как частный случай центрального проецирования.
Если центр проекций при центральном аппарате проецирования перенести в бесконечность, то проецирующие лучи можно считать параллельными. Отсюда аппарат параллельного проецирования состоит из плоскости проекций П и направления Р. При центральном проецировании проецирующие лучи выходят из одной точки, а при параллельном проецировании — параллельны между собой.
В зависимости от направления проецирующих лучей параллельное проецирование может быть косоугольным, когда проецирующие лучи наклонены к плоскости проекций, и прямоугольным (ортогональным), когда проецирующие лучи перпендикулярны к плоскости проекций.
Рассмотрим пример косоугольного параллельного проецирования.
Построим параллельную проекцию А1В1 отрезка АВ, на плоскость П1, при заданном направлении проецирования Р не П1. Для этого необходимо провести проецирующие прямые через точки А и В, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1 и В1 точек А и В. Соединив параллельные проекции А1 и В1 мы получим параллельную проекцию А1В1 отрезка АВ.
Аналогично можно построить параллельную проекцию А1В1С1D1 четырёхугольника ABCD на плоскость П1, при заданном направлении проецирования Р не перпендикулярных П1.
Для этого необходимо провести проецирующие прямые через точки А, В, C, D, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1, В1, С1, D1 точек A, B, C, D. Соединив параллельные проекции А1, В1, С1, D1 мы получим параллельную проекцию А1В1С1D1 четырёхугольника ABCD.
Свойства проекций при параллельном проецировании:
Первые шесть свойств центрального проецирования справедливы и для параллельного проецирования. Перечислим ещё несколько свойств присущих параллельному проецированию:
1. Проекции параллельных прямых параллельны.
2. Если точка делит длину отрезка в отношении m:n, то проекция этой точки делит длину проекции отрезка в том же отношении.
Пусть точка С принадлежит отрезку АВ, причем |АС| : |СВ| = 2 : 1. Построим параллельную проекцию А1В1 отрезка АВ. Точка С1 А1В1. Проведём АC’ || А1C1 и CB’ || C1B1, получим два подобных треугольника АCC’ и CBB’. Из их подобия следует пропорциональность сторон: |АC| : |СВ| = |AC’| : |CB’|, но |CB’| = |С1В1|, а |AC’| = |А1C1|, отсюда |АC| : |СВ| = |А1С1| : |C1B1|.
3. Плоская фигура, параллельная плоскости проекций, проецируется без искажения.
Возьмём треугольник АВС и спроецируем его на две параллельные плоскости проекций П1‘ и П1. Так как длины отрезков равны |А1 А1‘| = |В1 В1‘| = |С1 С1‘| и отрезки параллельны, то четырёхугольники А1 А1‘ В1 В1‘, В1 В1‘ С1С1‘, С1 С1‘А1А1‘ являются параллелограммами. Следовательно, противоположные стороны их равны по длине |А1 В1| = |А1‘ В1‘|, |В1 С1| = |В1‘ С1‘|, |А1 С1| = |А1‘ С1‘|, а значит, треугольники равны.
Аналогично, тоже самое можно доказать и для любой другой плоской фигуры. Параллельное проецирование, в отличие от центрального, обладает меньшей наглядностью, но обеспечивает простоту построения и большую взаимосвязь с оригиналом.