Что такое перечисление элементов множества
Что такое множество в математике и как оно обозначается
Множество – это количество предметов или чисел, обладающих общими свойствами.
Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.
В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.
Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.
Границы совокупности обозначаются фигурными скобками < >.
А = <а, в, с, у>– А состоит из четырех элементов.
Записать совокупность Z согласных букв в слове «калькулятор»:
Z = <к, л, т, р>, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.
Принадлежность элементов множеству обозначается знаком – Є.
Пример: N = , а Є N – элемент «а» принадлежит N.
Выделяют три вида множеств:
пустые (обозначаются Ø) – не имеющие элементов.
Пример: А = <а, в, с, у>и В = <а, в, с, е, к>– все элементы А являются элементами совокупности В, следовательно А ⊆ В.
Если множества состоят из одинаковых элементов, их называют равными.
Пример: А = <23, 29, 48>и В = <23, 29, 48>, тогда А = В.
В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.
Множество натуральных чисел
Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.
Множество целых чисел
Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:
Множество рациональных чисел
Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:
Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:
Следовательно, N и Z являются подмножествами Q.
Операции над множествами
Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.
Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.
Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.
Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.
В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.
Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:
Объединение
Пересечение
Дополнение
С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами.
Свойства операций над множествами
Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:
Коммутативность – переместительные законы:
умножения S ∩ D = D ∩ S;
сложения S ∪ D = D ∪ S.
Ассоциативность – сочетательные законы:
умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);
сложения (S ∪ F) ∪ G = S ∪ (F ∪ G).
Дистрибутивность – законы распределения:
умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);
умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);
сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F).
если S ⊆ Fи F ⊆ J, то S ⊆ J;
если S ⊆ F и F ⊆ S, то S = F.
Идемпотентность объединения и пересечения:
О других свойствах операций можно узнать из картинки:
Счетные и несчетные множества
Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов.
Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.
Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.
§1. Множества и операции над ними
Объяснение и обоснование
В курсах алгебры и алгебры и начал математического анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество М состоит из чисел 1; 2; 3, то его обозначают так: М = <1; 2; 3>. Тот факт, что число 2 входит в это множество (является элементом данного множества М), записывается с помощью специального значка ∈ следующим образом: 2 ∈ М; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: 5 ∉ М.
Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например: множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом ∅, множество всех натуральных чисел — буквой N, множество всех целых чисел — буквой Z, множество всех рациональных чисел — буквой Q, а множество всех действительных чисел — буквой R.
Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества А = <7>и M = <1; 2; 3>— конечные, потому что содержат конечное число элементов, а множества N, Z, Q, R — бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило (характеристическое свойство), которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, А = <–1; 0; 1>(множество задано перечислением элементов), B — множество всех четных целых чисел (множество задано характеристическим свойством всех элементов множества). Последнее множество иногда записывают так: B = или так: B = ∈ Z> — здесь после вертикальной черточки записано характеристическое свойство*.
В общем виде запись множества с помощью характеристического свойства можно обозначить так: A =
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, <1; 2; 2>= <1; 2>, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Если каждый элемент множества A является элементом множества B, то говорят, что множество A является подмножеством множества B.
Это записывают следующим образом: A ⊂ B.
Например, <1; 2>⊂ <0; 1; 2; 3>, N ⊂ Z (поскольку любое натуральное число — целое), Z ⊂ Q (поскольку любое целое число — рациональное), Q ⊂ R (поскольку любое рациональное число — действительное).
Полагают, что всегда ∅ ⊆ A, то есть пустое множество является подмножеством любого множества.
Иногда вместо записи A ⊂ B используется также запись A ⊆ B.
Сопоставим определение равенства множеств с определением подмножества. Если множества А и В равны, то: 1) каждый элемент множества А является элементом множества В, следовательно, А — подмножество В (A ⊆ B); 2) каждый элемент множества В является элементом множества А, следовательно, В — подмножество А (B ⊆ A). Таким образом,
два множества равны тогда и только тогда, когда каждое из них является подмножеством другого.
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера–Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами N, Z, Q, R.
Теоретический материал на тему «Общие понятия теории множеств. Операции над множествами и их свойства.»
Множество – определенная совокупность объектов.
Объекты, из которых состоит множество, называются элементами множества .
Множество домов на данной улице, множество натуральных чисел, множество студентов группы и т. д.
Множество не содержащее ни одного элемента называется пустым (обозначается: Ø).
Множества из элементов которого составляем конкретное множество называется универсальным ( обозначается: U ).
U – множество людей на земле, А – студенты группы Эп-305.
Тема 2.2. Способы задания множеств
Чтобы задать множество, нужно указать, какие элементы ему принадлежат. Это можно сделать различными способами:
1) Перечислением всех элементов множества в фигурных скобках.
Р( x ) = x 

M = < x : Р( x )> или M = < x : x 

Множество M можно задать и перечислением его элементов:
Если множество состоит из небольшого количества элементов, то его удобно задавать перечислением всех элементов, если же элементов много или множество имеет бесконечное число элементов, то оно задается с помощью характеристического предиката.
Тема 2.3. Операции над множествами
Множество А называется подмножеством м ножества В, если все элементы множества А содержатся во множестве В.


# Пустое множество Ø является подмножеством всех множеств.
# Универсальное множество U содержит все множества.
# Если 
А=<0, 1, 2, 3>, В=<0, 1>, 
2) Объединением двух множеств называется множество, содержащее все элементы обоих множеств.

3) Пересечением двух множеств называется множество, состоящее из общих элементов обоих множеств.
А=<К, А, Т, Я>, В=<К, О, С, Т, Я>, 
4) Разностью множеств А и В называется множество, состоящее из всех элементов множества А не содержащихся в В.
5) Симметрической разностью множеств А и В называется множество, состоящее из всех элементов множества А не содержащихся в В и всех элементов множества В не содержащихся в А.

Степенью множества называется декартовое произведение множества A само на себя n раз.


Свойства операций над множествами
4) Закон поглощения.
А 
А 
8) Свойство единицы.
9) Закон де Моргана
Мощностью к онечного множества называется число его элементов.
Мощность множества X обозначается: | X |
Содержание:
Основные понятия:
Кантор описывает множество следующим образом:
Множество S есть любое собрание определенных и различимых между собой объектов пашей интуиции и интеллекта, мыслимое как единое целое. Эти объекты называются элементами множества S
Рис. 2.1. Множество А называют подмножеством другого множества U или множество А включено во множество U, если каждый элемент множества А является одновременно элементом множества U. Это обозначается 
Свойства включения:
Множество, не содержащее ни одного элемента, называется пустым и обозначается 
Множество 


Множество всех подмножеств множества А называется множеством-степенью
Если А не содержит элементов, т.е. 

Несложно убедиться в том, что множество-степень 
Основные операции над множествами
Суммой или объединением двух или произвольного (даже бесконечного) числа заданных множеств называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из заданных множеств. Эта операция над множествами обозначается знаком 
Произведением или пересечением двух или произвольного (даже бесконечного) числа заданных множеств называется множество, состоящее из всех элементов, принадлежащих каждому из заданных множеств. Эта операция над множествами обозначается знаком 

Два множества называются непересекающимися (или расчлененными) если 
Разностью множеств А и В или дополнением В до А называется множество, состоящее только из тех элементов А, которые не входят в В. Эта операция над множествами обозначается знаком \.
Часто все рассматриваемые множества считают подмножествами одного основного множества U. В таком случае разность U \ А (дополнение А до U) обозначают, как
Симметрической разностью множеств А и В называется множество С: 
Обозначается симметрическая разность: 
Для подмножеств данного множества U выполняются следующие законы:
Закон коммутативности (переместительный закон):
Закон ассоциативности (сочетательный закон) для любой тройки множеств А, В и С:
Закон дистрибутивности (распределительный закон) для любой тройки множеств А, В и С:
Свойства фигурируют попарно таким образом, что каждое получается из соседнего заменой 


Принцип двойственности. Для любого тождества множеств двойственное ему выражение также является тождеством.
Очевидно, что операция разность не обладает свойствами коммутативности и ассоциативности, в то же время операция симметрическая разность и коммутативна, и ассоциативна.
Очевидно, что 

Отображения
Элемент 








Отображение 



Отображение 





Отображение 
Равенство двух отображений 


Произведение двух отображений 





Для преобразований 
Коммутативный закон для произведения преобразований в общем случае не выполняется, т.е. 
Если между двумя множествами можно задать биективное отображение (установить взаимно однозначное соответствие между их элементами), то такие множества называются эквивалентными или равномощными. Конечные множества равномощны только в том случае, когда число их элементов одинаково.
Бесконечные множества также можно сравнивать между собой.
Два множества имеют одинаковую мощность или называются эквивалентными (обозначение А = В), если между их элементами можно установить взаимно однозначное соответствие, т.е. если можно указать некоторое правило, в соответствии с которым каждому элементу одного из множеств соотносится один и только один элемент другого множества.
Если же подобное отображение невозможно, то множества имеют различную мощность; при этом оказывается, что в последнем случае, каким бы образом мы не пытались привести в соответствие элементы обоих множеств, всегда останутся лишние элементы и притом всегда от одного и того же множества, которому приписывается более высокое значение кардинального числа или говорят, что это множество имеет большую мощность.
Бесконечное множество и некоторое его подмножество могут быть эквивалентными.
Множество, эквивалентное множеству натуральных чисел, называется счетным множеством. Для того чтобы множество А было счетным, необходимо и достаточно, чтобы каждому элементу а множества А был поставлен в соответствие его порядковый номер 
Отношения эквивалентности и упорядоченности
В математике понятие отношения используется для обозначения какой-либо связи между объектами. Отношение есть некоторое множество упорядоченных пар <х,у), где 
Часто приходится рассматривать несколько элементов множества как эквивалентные, потому что по определенным признакам один элемент может быть заменен другим. Так, например, по признаку величины дроби 
Особенности природы элементов множества в большинстве случаев позволяют установить между ними отношения полного (или совершенного) порядка. Это отношение по определению обладает следующими свойствами:
Если между элементами множества определено также и отношение эквивалентности, то между элементами устанавливается отношение неполного или нестрогого порядка:
Возможны случаи, когда некоторые элементы множества не сравнимы. Такие множества называются частично упорядоченными.
Способы задания множеств
Как в повседневной, так и в научной жизни часто говорят о чертах какого-либо коллектива, совокупности некоторых объектов. Так, например, можно говорить о студентах группы некоторого института, о совокупности точек внутри некоторого круга и т.д.
Понятие множества в математике выведено из понятия совокупностей, образуемых из предметов, сведенных в одно целое. Предметы, собранные во множество, называются элементами множества. Понятие множество и элемент считаются основным понятиями и не сведены к другим понятиям путем применения формального определения. Таким образом, под множеством, мы будем понимать любое объединение в одно целое М определенных вполне различимых объектов m из нашего восприятия или мысли, которые называются элементами М
Каждое множество считается самостоятельной осмысленной вещыо, как бы осмысленной оболочкой его элементов. Множество
считается известным, если заданы его элементы; множество определяется раз и навсегда заданием его элементов; множества не зависят or времени.
Следовательно, множество однозначно определяется его элементами.
Множество, у которого ни один предмет не является элементом, называется пустым множеством. Пустое множество обозначается символом 
Для обозначения множеств обычно применяются заглавные латинские буквы. Выражение 
Выражение 
Теорема 1.1.1. Два множества тождественны (равны) тогда и только тогда. если их элементы одинаковы.
Доказательство. Если два множества тождественны (равны), то на основе понятия тождественности элементы обоих множеств одинаковы.
С другой стороны, если о двух множествах нам известно, что их элементы тождественны, то эти два множссгва тождественны, так как множество однозначно определяется его элементами.
В определениях, касающихся геометрических мест, всегда присутствует отождествление множеств, заданных двумя разнымиопределениями.
Например. Перпендикулярная липия, пересекающая отрезок прямой, является геометрическим местом точек, расположенных на одинаковом расстоянии от двух концов озрезка. Это означает следующее: В плоскости множество точек перпендикулярной линии, пересекающей в середине отрезок прямой, тождественно множеству точек, расположенных на одинаковом расстоянии от обоих концов отрезка.
Множество часто задается в следующем виде: элементы множества заключаются внутри фигурных скобок: <. >. Подобной записью может быть конкретное перечисление элементов множества или задание такого определения, которым элементы множества однозначно задаются.
Заметим, что один предмет в одном множестве является элементом только один раз, даже если предмет повторяется несколько раз.
Тождественные множества связываются знаком равенства (=):
Множество А считается подмножеством В, если каждый элемент А является и элементом В, что обозначается выражением 
Понятие части (подмножества) в теории множеств отличается от обычного понятия части. В обычном понимании часть всегда меньше целого. А по понятию части в теории множеств целое также входит в понятие части, т.е. каждое множество является элементом самого себя, гак как каждый элемент А является элементом А, значит 
Множество А является действительным подмножеством множества B, если А является частью В, но не тождественно с ним, что обозначается 
Примеры:
Не существует никакого ограничения в отношении того, насколько много (или мало) элементов может быть в одном множеств: в одном множестве может быть любое, даже бесконечное количество элементов.
Сравнивать множества можно, используя понятие взаимно однозначного соответствия между элементами.
Если каждому элементу множества А по некоторому закону ставится в соответствие определенный элемент множества В и если при этом каждый элемент множества В оказывается поставленным в соответствие одному и только одному элементу множества А, то говорят, что между А и В установлено взаимно однозначное соответствие.
Особую роль в теории множеств играет универсальное множество, которое часто называют просчранством. Это некоторое множество, фиксированное в рамках данной математической теории и содержащее в качестве элементов все объекты, рассматриваемые в этой теории.
Алгебраические операции над множествами
Определим операции, выполняемые над множествами.
а) Пересечением множеств Ми N называется множество, которое будет обозначаться М 


Эта запись означает, что пересечение M
N. Например, если М = <0,1,2,3>, а N = <1,4,3,6>, то М
Если А 


А 
Вели 
А и Б называются посторонними множествами.
Если есть совокупность множеств 


принадлежащих одновременно всем множествам совокупности 
6) Объединением двух множеств А и В называется множество A 

Эта запись означает, что объединение A 

Легко увидеть, что если А и В являются ограниченными множествами без общих элементов, то количество элементов A
Так же действительны соотношения: 


В общем случае, когда имеется совокупность множеств 



в) Множество элементов Е, не принадлежащих некоторой его части А, называется дополнением (разностью) к А в Е и обозначается через 

Для операции разности справедливы следующие соотношения:
г) Произведением А х В двух множеств А и В называется множество всевозможных упорядоченных пар (а, Ь), образованных из элементов а множества А и элементов b множества В, т.е. 
Пары (а, b) и (b, а) с 
Пример:

Справедливы следующие операции для декартового произведения множеств:
Понятие множества широко используется в экономических исследованиях. Так при изучении системы производства одного предприятия или нескольких, которые потребляют продукты: сырьё, энергию и трудовые ресурсы и производят в соответствии с некоторой технологией другие продукты-изделия, составляется математическая модель, где используется множество


Выпуклые множества. Пересечение выпуклых множеств
В первом пункте мы определили множество, указали способы его задания. Теперь мы укажем некоторые дополнительные свойства множеств. Для этого введем ряд определений.
Окрестностью точки 
точек 

Таким образом, окрестность образуют все точки х, удаленные от точки а на расстояние меньшее r.
Точка 
Точка пространства называется внешней по отношению к некоторому множеству точек, если она с некоторой окрестностью не принадлежит этому множеству.
Точка пространства называется граничной, если в любой её окрестности имеются точки как принадлежащие множеству так и не принадлежащие ему. Множество, содержащее все граничные точки, называется замкнутым.
Например, отрезок является замкнутым множеством.
Множество (тело) называется выпуклым, если оно вместе со своими двумя любыми точками Р и Q содержит все точки отрезка 
Примером выпуклого множества может служить отрезок. Из геометрии известны фигуры: треугольник, квадрат, прямоугольник, ромб, круг, эллипс. Множества точек, ограниченные эти фигурами, являются выпуклыми. В пространстве выпуклыми множествами являются: шар, эллипсоид, конус, цилиндр и другие.
Для выпуклых множеств, справедлива следующая теорема.
Теорема 1.3.1. Пересечение выпуклых множеств (тел) есть выпуклое множество, если оно не пусто.
Доказательство. Пусть имеется не пустое пересечение выпуклых множеств. Возьмём две произвольные точки Р u Q, принадлежащие этому пересечению. По определению пересечения эти точки принадлежат каждому из множеств, а так как эти множества выпуклы, то вместе с точками Р и Q им принадлежат и все точки отрезка PQ. Следовательно, все точки отрезка PQ принадлежат и пересечению, что и доказывает его выпуклость.
Точка множество называется крайней, если она не является внутренней ни для какого отрезка, целиком принадлежащего множеству.
Так у выпуклого многоугольника крайними точками являются его вершины. Их конечное число. В пространстве многогранником называется множество с конечным числом крайних точек. Следовательно. выпуклый многогранник является замкнутым выпуклым множеством.
Высказывание
Математическая логика является современной формой так называемой формальной логики, применяющей математические методы для исследования своего предмета. В формальной логике и, соответственно, математической логике, собраны результаты законов структуры правильных выводов. Вывод является таким мыслительным процессом, в результате которого появляются новые открытия на основании уже имеющихся, без практических исследований. Рассмотрим пример вывода:
Предпосылки: Если будет раздача премии, то мы выполним план.
Будет раздача премии.
Окончательные выводы: Мы выполним план.
Если принять правильность предпосылок, то следует принять и правильность окончательного вывода. Обычно вместо предложений могут быть записаны любые такие изъявительные предложения, значения которых может быть правильно или ложно; следует оставить неизменённым только расположение слов «если» и «то» и расположение предложений, то есть структуру вывода. Структуру вывода можно выразить следующей схемой:
Путем изменения условий могут быть построены различные теории логики. Важнейшими главами математической логики является калькуляция высказываний и калькуляция предикатов.
Определение 1.4.1. Под термином высказывания подразумевается такое изъявительное предложение, которое является однозначно или правильным, или ложным.
Высказывание удовлетворяет условиям:
Следовательно, каждое высказывание имеет значение 1 (истинно) или 0 (ложно).
В выводах могут фигурировать высказывания (либо в виде предпосылок, либо как окончательный вывод), возникшие из одного или нескольких высказываний, путем применения некоторого грамматического метода; они называются сложными высказываниями.
Определение 1.4.2. Под термином калькуляция высказываний подразумевается такой метод, с помощью которого из одного или нескольких высказываний получается такое высказывание, правильность или ложность которого однозначно определяется правильностью или ложсностью членов.
Операции над высказываниями
Отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность
Простейшими примерами операций калькуляции высказываний является отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность и т.д.
Определение 1.5.1. Под отрицанием высказывания А подразумевается высказывание «Неправильно, что А» или некоторая грамматически преобразованая форма данного высказывания.
По значению выражения «неправильно» отрицание А правильно тогда и только тогда, если самоё А неправильно; следовательно, отрицание действительно есть операция калькуляции высказываний.
Например: отрицание предложения «мотор работает» является предложение «мотор не работает».
Отрицание является (унарной) одночленной операцией. Отрицание А обозначается символом 
Закон двойного отрицания: 
Здесь и в дальнейшем свойство высказываний «правильное» и «ложное» называется логическими значениями и обозначается 1 и О (п. и л.). Тогда операции, проводимые на логических значениях, называются логическими операциями. Для выражения любых логических значений вводятся логические переменные; они обозначаются символами 
Следовательно, логические переменные могут принимать два значения 1 или 0. При использовании нескольких операций последовательно порядок выполнения отдельных операций обозначается скобками.
В общем случае, n-члснной логической операцией называется каждая такая функция, областью существования которой является упорядоченное множество всех выражений, образуемых из логических значений 1 и 0 с длиной выражения n, а значением её является одно из двух логических значений 1 и 0.
Определение 1.5.2. Под конъюнкцией двух высказываний А и В подразумевается высказывание «А и В».
По значению союза «и» конъюнкция является правильной тогда и только тогда, если оба её члена правильны, т.е. используя логические переменные можно записать:
Таблица значений конъюнкции имеет вид:
Теорема 1.5.1. Любая логическая операция может быть выражена через операции отрицания и конъюнкции.
В области логических операций для контроля любого тождества составляется общая таблица операций, представленных по обеим сторонам знака =. Результат операций указывается в столбцах.
Пример:

Решение:
Доказательство данного равенства проведём в табл. 3:
Определение 7.5.3. Под дизъюнкцией двух высказываний А и В подразумевается высказывание «А или В».
По значению союза «или» дизъюнкция является ложной, если оба её члена ложны, т.е. используя логические переменные можно записать:

Дизъюнкция выражается с помощью операции конъюнкции и отрицания б следующей форме:
Таблица значений дизъюнкции имеет следующий вид:
По аналогии с теоремой 3 можно сформулировать следующую теорему
Теорему 1.5.2. Каждая логическая операция может быть выражена с помощью только операций дизъюнкции и отрицания.
Например, операция конъюнкции выражается с помощью операций дизъюнкции и отрицания в виде: 
Определение 1.5.4. Операция, обозначаемая 
называется импликацией (с предварительным членом р и с последующим q).
Иначе её обозначение 

Таблица значений импликации имеет следующий вид: Таблица 5
И конъюнкция, и дизъюнкция выражаются с помощью операций импликации и отрицания: 
Поэтому любая логическая операция может быть выражена ( помощью операций импликации и отрицания.
Выражения вида: «если А, то В», «неправильно, что: А и не В» «В если только А», «только тогда А, если В», «Достаточным условием В является А», «Необходимым условием А является В» соответственно обозначаются А 

Определение 1.5.5. Операция, обозначаемая
называется эквивалентностью (читается р эквивалентно q). Выражениями данной операции являются следующие:
Так как высказывание 
p=q, то данная логическая операция соответствует образованию
сложного предложения вида «А тогда и только тогда, когда В». Таблица значений эквивалентности имеет вид:
1) операция взаимоисключающего или (р или же q): 
2) операция «ни-ни» (обозначается 

Предикаты и кванторы
Кроме заполнения оставленных свободных мест названиями имеется и другой способ образования высказываний из предикатов: квантификация. Например, из открытого предложения «если х представляет собой дифференцируемую функцию, то функция х-непрерывная функция», подставив перед предложением «Для каждого л», получим следующее: Для каждого х, если х представляет собой дифференцируемую функцию, то x представляет собой непрерывную функцию. Текст «Для каждого x» обозначается символом 
Существует ещё экзистенциальный квантор, который заменят текст «Имеется такое х» или «Существует такое х» и обозначается 
Для точного анализа вводятся следующие понятия:
Предикаты обозначаются символами 
Жирными буквами обозначаются предикаты, а строчными буквами- аргументы предиката как функции; количеством последних определяется размерность предиката.
Например. Пусть Н- множество натуральных чисел, тогда предикат неделимого числа Fx определяется следующим образом:
Множества, операции над ними
Понятие множества является одним из основных в математике. Оно принадлежит к числу первичных, не определяемых через более простые.
Под множеством будем понимать совокупность объектов, объединенных по какому-либо признаку. Слова «совокупность», «набор», «система», «объединение» и другие являются синонимами слова «множество». Например, можно говорить о множестве студентов в институте, множестве букв в алфавите, множестве целых чисел и т. д. Из приведенных примеров следует, что множество может содержать как конечное, так и бесконечное число объектов некоторой природы. Объекты, из которых состоит множество, называются его элементами или точками. Принадлежность элемента 








Два множества 
















Множество, не содержащее ни одного элемента, будет называться пустым множеством и обозначаться 













Пересечением множеств 




Объединением множеств 



Разностью множеств 





Пусть 




Таким образом, все элементы, которые не принадлежат множеству 

Логические символы
Часто используются также логические символы следствия 
Грани числовых множеств
Говорят, что множество 




Множество, ограниченное и сверху, и снизу, называется ограниченным, т. е. существуют два числа 






Множество, не ограниченное сверху или снизу, называется неограниченным.
Если число 





Наименьшая (наибольшая) из всех верхних (нижних) граней называется точной верхней (нижней) гранью множества и обозначается символом 


Точные верхняя и нижняя грани множества могут принадлежать или не принадлежать этому множеству. Если множество 
Теорема 1*. Всякое ограниченное сверху (снизу) числовое множество имеет точную верхнюю (нижнюю) грань.
Предельные точки числового множества. Открытые и замкнутые множества
Множество вещественных чисел 



Множество вещественных чисел 





Геометрически 




Точка 





Точка 


Точка 

Точка 








Если множество 


При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.



























































































