Что такое переходный металл в химии
Общее понятие
Переходные металлы образуют соединения, в которых проявляют положительные степени окисления. Наиболее заметно различие свойств в IV-VIII подгруппах, где побочные составляют металлы, а главные — неметаллы. Находящиеся в самой таблице символы обозначаются — d, а буквой f — лантаноиды и актиноиды. Самые выраженные из этой категории: Cr, Mn, Fe, Cu, Zn, и Ag. История открытия указывает на то, что все они в свободном состоянии являются металлами. Внешний номер электронной оболочки совпадает с номером периода.
К самым известным на Земле d-металлам относится железо, следующее сразу после алюминия. Большая часть представлена оксидами или сульфидами. В свободном виде встречается лишь медь. Соединения d-металлов также обнаружены на Луне.
Из всех групп химических элементов переходные достаточно трудно идентифицировать из-за разногласий по поводу того, что именно должно быть в них включено. По одной версии переходными считаются вещества с не полностью заполненной d-электронной подоболочкой.
Место в периодической таблице
Переходные металлы расположены в группах от IB до VIIIB с:
Последние представлены лантаноидами и актиноидами — f-элементами, входящими в особую группу. Остальные составляют d-элементы.
Химические свойства
В соединениях атомы используются как валентные s- и p, так и d-электроны. Исходя из этого, d-элементы обладают переменной валентностью, что не наблюдается в основных подгруппах. По этой причине они могут образовывать комплексные соединения.
Все переходные металлы по структуре твердые, имеют высокую температуру плавления и кипения.
При перемещении слева направо в таблице у 5 d-орбиталей обнаруживается большая заполняемость. Из-за слабой связи электронов увеличивается электропроводность и гибкость.
Всем им присуща низкая энергия ионизации, необходимая при удалении электрона от свободного атома. До сих пор ученые спорят относительно классификации элементов на границе между основной группой и переходными металлами, размещенными в правой части таблицы. Ими являются цинк (Zn), кадмий (Cd) и ртуть (Hg). Внешне они напоминают металлы:
Схожесть физических свойств элементов двух этих групп проявляется в том, что лучше всего электричество проводят переходный металл медь и относящийся к основной группе алюминий. Особенность — элементы основной группы легко образуют стабильные соединения с нейтральными молекулами воды или аммиака.
Значение переходных элементов
В жизнедеятельности человека они выполняют важную функцию. Без них организм не может существовать:
Яркие представители — чугун и сталь, используемые в тяжелой промышленности.
В черной металлургии их получают из железной руды. Вначале выплавляется чугун, а затем из него — сталь. Углерода в чугуне больше 1,7%, а в стали — меньше этого значения.
Благодаря добавкам — хрому, марганцу и никелю — стали обретают другие качества. Так, хром повышает прочность и устойчивость к действию кислот. Наиболее употребительные сплавы на основе меди: бронза, латунь и мельхиор. Особенно широкое применение нашли: сталь, чугун и бронза. Велика значимость железа, неслучайно по его содержанию сплавы подразделяются на черные и цветные.
Характеристики железа
Этот элемент представляет наибольший интерес, поскольку составляет важные соединения, среди которых железная кислота и соли. Чаще всего не используется как чистое вещество, а в виде сплавов с углеродом и другими элементами. Взаимодействует с:
Переходные металлы играют огромную роль в жизни людей.
По этой причине их изучение включено в обязательный курс школьной программы. Наиболее подробно о свойствах рассказывается на уроках химии в старших классах при проведении лабораторных работ.
Переходные металлы — характеристика, свойства и строение
В периодической таблице все элементы подразделяются на 4 категории: основная, переходная, лантаноиды и актиноиды. К основным в группе относятся активные металлы в 2 колонках по крайней левой части таблицы Менделеева и металлы, полуметаллы и неметаллы в 6 столбцах крайней правой. Переходные металлы — это металлические элементы, являющиеся своеобразным мостом между сторонами системы. Все они применяются в качестве катализаторов.
Общее понятие
Переходные металлы образуют соединения, в которых проявляют положительные степени окисления. Наиболее заметно различие свойств в IV-VIII подгруппах, где побочные составляют металлы, а главные — неметаллы. Находящиеся в самой таблице символы обозначаются — d, а буквой f — лантаноиды и актиноиды. Самые выраженные из этой категории: Cr, Mn, Fe, Cu, Zn, и Ag. История открытия указывает на то, что все они в свободном состоянии являются металлами. Внешний номер электронной оболочки совпадает с номером периода.
К самым известным на Земле d-металлам относится железо, следующее сразу после алюминия. Большая часть представлена оксидами или сульфидами. В свободном виде встречается лишь медь. Соединения d-металлов также обнаружены на Луне.
Из всех групп химических элементов переходные достаточно трудно идентифицировать из-за разногласий по поводу того, что именно должно быть в них включено. По одной версии переходными считаются вещества с не полностью заполненной d-электронной подоболочкой.
Место в периодической таблице
Переходные металлы расположены в группах от IB до VIIIB с:
Последние представлены лантаноидами и актиноидами — f-элементами, входящими в особую группу. Остальные составляют d-элементы.
Химические свойства
В соединениях атомы используются как валентные s- и p, так и d-электроны. Исходя из этого, d-элементы обладают переменной валентностью, что не наблюдается в основных подгруппах. По этой причине они могут образовывать комплексные соединения.
Все переходные металлы по структуре твердые, имеют высокую температуру плавления и кипения.
При перемещении слева направо в таблице у 5 d-орбиталей обнаруживается большая заполняемость. Из-за слабой связи электронов увеличивается электропроводность и гибкость.
Всем им присуща низкая энергия ионизации, необходимая при удалении электрона от свободного атома. До сих пор ученые спорят относительно классификации элементов на границе между основной группой и переходными металлами, размещенными в правой части таблицы. Ими являются цинк (Zn), кадмий (Cd) и ртуть (Hg). Внешне они напоминают металлы:
Схожесть физических свойств элементов двух этих групп проявляется в том, что лучше всего электричество проводят переходный металл медь и относящийся к основной группе алюминий. Особенность — элементы основной группы легко образуют стабильные соединения с нейтральными молекулами воды или аммиака.
Значение переходных элементов
В жизнедеятельности человека они выполняют важную функцию. Без них организм не может существовать:
Яркие представители — чугун и сталь, используемые в тяжелой промышленности.
В черной металлургии их получают из железной руды. Вначале выплавляется чугун, а затем из него — сталь. Углерода в чугуне больше 1,7%, а в стали — меньше этого значения.
Благодаря добавкам — хрому, марганцу и никелю — стали обретают другие качества. Так, хром повышает прочность и устойчивость к действию кислот. Наиболее употребительные сплавы на основе меди: бронза, латунь и мельхиор. Особенно широкое применение нашли: сталь, чугун и бронза. Велика значимость железа, неслучайно по его содержанию сплавы подразделяются на черные и цветные.
Характеристики железа
Этот элемент представляет наибольший интерес, поскольку составляет важные соединения, среди которых железная кислота и соли. Чаще всего не используется как чистое вещество, а в виде сплавов с углеродом и другими элементами. Взаимодействует с:
Переходные металлы играют огромную роль в жизни людей.
По этой причине их изучение включено в обязательный курс школьной программы. Наиболее подробно о свойствах рассказывается на уроках химии в старших классах при проведении лабораторных работ.
Что такое переходный металл в химии
Периодическая система всегда под руками
В органической химии элементов немного, и можно не сомневаться, что любой человек, осмелившийся назвать себя химиком, помнит, где находится углерод, кислород, азот и галогены, и уж тем более водород. В химии переходных металлов элементов намного больше, и упомнить их все не всем по силам, и человек, даже отдавший химии всю жизнь, имеет полное право замешкаться, вспоминая, где, например, находится какой-нибудь иридий, и элемент ли это вообще, а может быть цветок какой аленький или синенький.
Но здесь это совершенно необходимо – мы все время будем считать электроны, оценивать положение элементов в группах и рядах, и не попадаться на глупые вопросы, например, про катализ кросс-сочетания фосфиновыми комплексами свинца. Фосфиновые комплексы у свинца вполне могут быть, но металл это непереходный, а следовательно нам в этом курсе малоинтересный. Вторая буква в символе просто предательская – перевернем ее и все встанет на свои места.
Поэтому сразу обзаведемся Периодической таблицей элементов. Для наших целей больше подходит не привычная с детства (раннего или позднего, кому как повезло) уютная и компактная короткопериодная таблица, восходящая еще к Д.И.Менделееву, а так называемая длиннопериодная. Историческая короткопериодная таблица была основана на ранжировании элементов по единственно доступному в глубокой древности параметру, атомным весам. Ни о каких электронах, а тем более атомных орбиталях, валентных оболочках и пр. тогда не было известно совершенно ничего. Короткопериодная форма поэтому мешает в группах элементы различных типов, разделяя их только по неочевидным на близорукий взгляд главным и побочным подгруппам. Но самая неудачная особенность исторической формы – запихивание 15 элементов в одну восьмую группу, что делает непростым понимание того, чем все эти восхитительные элементы различаются, и почему только им, благородным газам и металлам, и тройке более банальных металлов досталась такая свалка. Воздадим поэтому должное восхищение величию исторической Таблицы, и перейдем к более современной форме, которая построена по заполнению валентных уровней электронами, и четко разделяет разные блоки элементов.
Вот она, в некрасивом, но максимально авторитетном виде, рекомендованным Международным союзом по чистой и прикладной химии (IUPAC), в Номенклатуре неорганических и координационных соединений 2005 года. Многим она как-то интуитивно не нравится, она слишком длинная и плохо вписывается на задние страницы тетрадей и учебников, не умещается целиком в поле зрения, и вообще какая-то странно ступенчатая, на нормальную таблицу никак не похожа. Читать ее приходится, мотая головой слева направо и обратно, почти как болельщику на теннисном матче. Но структура у нее совершенно гениальная – элементы расположены строго по мере заполнения валентных оболочек, поэтому все элементы естественным путем образуют блоки s-, p-, d- и f-элементов (последние приходится вынести наружу, но место их в таблице хорошо понятно. Вместо восьми групп имеем 18, а это очень важное число в счете электронов, соответствующее полностью заполненной валентной spd-оболочке. Да, при этом оказались обижены первые три периода, которым эти 18 электронов могут только присниться, и которые обречены блюсти более скромный 2-х и 8-электронный счет (правило октета Льюиса), но это мелочи.
Кто-то может спросить, а какая разница, какой Таблицей пользоваться, все равно все понимают, как они устроены, и что там где. Безусловно это так, но здесь имеются в виду конкретные и простые вещи, в первую очередь система нумерации групп и рядов. Если мы будем, например, упоминать металлы 8-й группы, то это однозначно и только железо-рутений-осмий, а не вообще все 9 или даже 15 элементов, как в исторической таблице. И мы не будем падать в обморок от ссылок на элементы 10-й или 12-й групп. И не будем путать второй ряд переходных металлов с вторым периодом, и не будем возмущенно вопрошать, откуда там взялись переходные металлы, когда каждый знает, что во втором периоде из металлов только литий и бериллий.
D-Элементы
В длиннопериодной Таблице элементы расположены строго по мере заполнения валентных уровней, участвующих в образовании химических связей и вообще в любой химической деятельности. Напомню, что заполнение уровней атомов элементов происходит в соответствии с их относительной энергией снизу вверх (это называется принципом Aufbau, в разных формулировках также называется принципом Маделунга-Клечковского), причем эмпирически (спектроскопически) установлен порядок заполнения, удобно представляемый простой диаграммой: выписываем все уровни в порядке появления, и дальше снимаем слоями по диагонали. Получаем сразу и принцип заполнения оболочек, и то, как происходит комплектование периодов в Таблице. Только в первых трех периодах уровни заполняются просто и скучно – по номеру оболочки (точнее, значению главного квантового числа n). В четвертом и пятом d-уровни из предыдущей оболочки выплывают и встают между очередными s и p-уровнями. Это очень важно, так как в значительной степени определяет место интересующих нас элементов, переходных металлов, в Таблице – они нагло влезают между s- и р-элементами, то есть между самыми металлическими металлами (щелочными и щелочноземельными) и неметаллами вместе с примкнувшими к ним металлоидами и горсткой непереходных металлов. Валентные оболочки в этих двух периодах содержат s, p, d уровни, то есть в сумме могут принять 18 электронов. Как увидим скоро, это священное число химии переходных металлов. В шестом периоде происходит следующий сюрприз – влезает “забытый” f-уровень с на две единицы меньшим номером, причем до d-уровня, и его неспешное заполнение дает семейство f-элементов, лантанидов. А уж дальше идут нормальные d-элементы, но сильно отличающиеся от родственников с верхних этажей как раз наличием этого уже заполненного f-уровня. Можно было бы ожидать, что в этом ряду произойдет и расширение числа электронов на валентной оболочке на 14 f-электронов, но это не так – заполненный f-уровень становится внутренним, и напрямую в образовании связей не участвует, валентная оболочка по-прежнему остается sdp-типа и вмещает 18 электронов, а на особые свойства этих элементов довесок в виде полного f-уровня влияет косвенно, в основном через эффект сильно потяжелевшего и несущего очень большой дополнительный положительный заряд ядра. Про следующий период говорить ничего не будем, там все радиоактивное и малостабильное, кроме самого начала очередной порции f-элементов, но мы договорились, что f-элементами заниматься не будем вообще. Пока не сбылось древнее пророчество о наличии “островка стабильности” среди трансурановых элементов, пополнения семейства переходных металлов чем-то осязаемым ждать не приходится. В 7 периоде ничего не появилось, хотя он полностью заполнен и даже названия все даны. Подождем восьмого.
Электроны на d-уровне
Посмотрим теперь на d-элементы повнимательнее. Есть три полных ряда таких элементов. В каждом последовательно заполняется соответствующий d-уровень. Всего d-орбиталей пять, а d-электронов, соответственно, десять. Поэтому и в каждом ряду есть десять элементов, располагающихся в группах от 3 до 12. Номера групп с 3 по 7 соответствуют исторической Таблице Менделеева, только там используется понятие “побочная подгруппа”, а в длиннопериодной Таблице все группы равноправны (хотя термин main group elements, элементы главных (под)групп, очень широко распространен для обозначения s- и p-элементов и не собирается сдавать позиции). При заполнении оболочек у атома каждого элемента, к сожалению, наблюдаются достаточно серьезные отклонения от простого порядка, когда каждый следующий электрон просто занимал бы следующее свободное место. Электроны вообще очень капризные ребята, их квантовые привычки непросто понять и запомнить. В первом ряду все еще достаточно просто, достаточно усвоить, что при возможности полностью заполнить (в каждой ячейке по два спаренных) или полузаполнить (в каждой ячейке по одному неспаренному) d-уровень, все остальное уходит на второй план, и выбивающуюся из ряда конфигурацию атомов хрома или меди, заимствующих электрон с уже заполненного s-уровня, запомнить несложно. Но во втором или третьем ряду даже эти простые идеи как-то перестают работать однозначно.
К счастью, в реальной химии редко имеют дело с одиночными атомами, а когда образуется коодинационное соединение, комплекс, картина просто радикально упрощается. Считается, что так как в образовании связей с лигандами в первую очередь участвуют именно d-орбитали, то в комплексах они стабилизируются и опускаются ниже s-орбиталей.
А если это объяснение кажется несколько натянутым и неубедительным, то можно просто подумать о том, что в комплексах металлов все равно из валентных орбиталей металла и орбиталей лигандов образуются новые орбитали комплекса, металл все равно отдает на это все, что у него есть, и электроны придется переразмещать заново, снизу вверх, уже на орбиталях комплекса, далеко не все из которых сохранят чистый d-характер как в исходном атоме металла. Поэтому то, что называется d-электронной конфигурацией атома металла в комплексе, на самом деле совершенная формальность, а раз так, то нет смысла это усложнять и лучше воспользоваться самым простым вариантом из возможных – берем все, что есть, и для удобства считаем размещенным на d-орбиталях металла.
Иными словами, для целей координационной химии электроны на атомах металлов в степени окисления 0 (что это означает, скоро обсудим, а пока примем просто за точку отсчета) размещаются на d-орбиталях, пока уровень не будет заполнен полностью. Это невероятно удобно, потому что число d-электронов становится равным номеру группы в длиннопериодной Таблице. Сколько валентных электронов, скажем, у ниобия? – ниобий в 5 группе, значит пять. А у иридия? – в 9-й группе, значит девять.
Так и будет до 10 группы (никель-палладий-платина), когда d-уровень полностью заполнится, и настанет черед s-уровня, того самого, который в изолированном атоме был ниже d-уровня. Теперь он выше и берет первый следующий электрон в 11 группе (медь-серебро-золото), образуя конфигурацию с полностью заполненным d-уровнем, который поэтому сразу становится внутренним, и полузаполненным s-уровнем. О, так значит металлы этой группы не переходные металлы, а s-элементы, и права была историческая таблица Менделеева, когда помещала их в одну группу с щелочными металлами? Права, но не совсем, и в следующем слайде мы увидим, что претензии металлов группы меди на то, чтобы на полных основаниях примыкать к семье переходных металлов, очень основательны. А вот в 12 группе положение, на первый взгляд, похожее, но на самом деле радикально другое – там второй электрон попадает на s-уровень, а d-уровень окончательно становится внутренним.
Валентные состояния d-элементов. Переходные металлы.
Легко определить и число электронов на атомах металлов в разных степенях окисления. Для металлов характерны положительные степени окисления (есть и отрицательные, но об этом после). Так как положительная степень окисления – это просто недостаток электронов до числа, положенного каждому элементу, берем нульвалентный элемент и вычитаем. Вот что получается для первого ряда (для остальных будет то же самое). Очевидно, что отнять у атома больше, чем у него есть, невозможно. Поэтому максимальная положительная степень окисления не может быть больше номера группы, но не больше восьми. В этом одна из причин деления переходных металлов на ранние и поздние. Ранние – это те, которых можно достаточно легко ободрать до нитки (до d 0 ), а поздние – те, которые этому успешно сопротивляются. Железо – поздний переходный металл, хотя у него есть степень окисления +8, но достичь ее очень трудно и она очень неустойчива. Во втором и третьем ряду металлы легче расстаются с электронами, и степени окисления +8 для рутения и особенно осмия намного проще достигаются (недавняя история с радиоактивным загрязнением изотопом рутения этим и объясняется), но все равно эти элементы классифицируются как поздние переходные металлы. Вообще, группы 7 и 8 иногда обзывают как ни то, ни се (middle transition metals), но это скверная привычка. Чуть позже уточним эту странную классификацию (ранние-поздние), так как она играет значительную роль в химии переходных металлов.
Следовательно, элементы 12 группы (цинк-кадмий-ртуть) не являются переходными металлами, d-оболочка у них всегда заполнена и спрятана очень глубоко – в комплексах этих металлов граничные орбитали всегда сидят только на лигандах, почти никогда не бывает смещения электронной плотности металл-лиганд и других атрибутов электронной структуры комплексов настоящих переходных металлов. Эти металлы очень похожи на обычные непереходные p-элементы, следующие прямо за ними: цинк-галлий, кадмий-индий и особенно ртуть-таллий-свинец.
Или ничего, или всё: ранние и поздние переходные металлы
Деление переходных металлов на ранние и поздние очень популярно и часто используется, но точного определения не имеет. Это деление связано с одной очень понятной тенденцией в заполнении валентных оболочек и устойчивости валентных состояний разных элементов. Аналогия довольно прозрачная: где в таблице находятся самые металлические (наиболее электроположительные или наименее электроотрицательные) металлы (щелочные и щелочноземельные)? Слева, в начале периодов. А где находятся самые неметаллические (самые электроотрицательные) неметаллы (галогены и кислород)? Справа, в конце периодов. У первых очень мало электронов, проще их отдать, образуя катионы с зарядом, соответствующим номеру группы. У вторых, наоборот, почти полный комплект, и хочется получить недостающее.
В заключение подчеркнем, что деление переходных металлов на ранние и поздние – просто удобное упрощение, позволяющее грубо классифицировать элементы и в самых общих чертах понимать, какой химии мы ожидаем от представителей групп. Сказать точно, где кончаются первые и начинаются вторые, и наоборот, точно невозможно и не имеет никакого смысла. Собственно как и в химии непереходных элементов, где совершенно нет четкого представления о том, где кончаются неметаллы и начинаются металлы, из-за чего в той химии даже появляется пограничная группа металлоидов, столь же нечеткая. Тем более не имеет смысла выделение в особую группу каких-то средних переходных металлов, хотя этот термин встретить можно, но крайне трудно понять, что же он может означать, и зачем его вводить. Один средневековый христианский мыслитель, брат Вильям Оккамский, советовал в любой мыслительной деятельности не умножать сущностей сверх необходимого, то есть не вводить избыточных и нечетких понятий там, где уже существуют более осмысленные и определенные понятия. Вот и мы не будем, и обойдемся ранними и поздними переходными металлами. К тому же не стоит забывать, что в действительности каждый – каждый! – металл уникален, ни один не повторяет свойства другого хотя бы на 10%, и каждый имеет свою уникальную роль, свои реакции, свое применение, ни один нельзя заменить на другой, а все вместе они создают фантастическое разнообразие молекул и взаимодействий.















