Что такое первая и вторая космические скорости
Что такое первая и вторая космические скорости?
Мы – земляне – привыкли, что твердо стоим на земле и никуда не улетаем, а если подкинем какой-нибудь предмет в воздух, то он обязательно упадет на поверхность. Всему виной создаваемое нашей планетой гравитационное поле, которое искривляет пространство-время и заставляет брошенное в сторону, например, яблоко лететь по искривленной траектории и пересечься с Землей.
Гравитационное поле создает вокруг себя любой объект, и у Земли, обладающей внушительной массой, это поле довольно сильно. Именно поэтому строятся мощные многоступенчатые космические ракеты, способные разгонять космические корабли до больших скоростей, которые нужны для преодоления гравитации планеты. Значение этих скоростей и получили названия первая и вторая космические скорости.
Понятие первой космической скорости очень простое – это скорость, которую необходимо придать физическому объекту, чтобы он, двигаясь параллельно космическому телу, не смог на него упасть, но в то же время оставался бы на постоянной орбите.
Формула нахождения первой космической скорости не отличается сложностью:где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;
Попробуйте подставить в формулу необходимые значения (G – гравитационная постоянная всегда равна 6,67; масса Земли равна 5,97·10 24 кг, а её радиус 6371 км) и найти первую космическую скорость нашей планеты.
В результате мы получим скорость, равную 7,9 км/с. Но почему, двигаясь именно с такой скоростью, космический аппарат не будет падать на Землю или улетать в космическое пространство? Улетать в космос он не будет из-за того, что данная скорость пока еще слишком мала, чтобы преодолеть гравитационное поле, а вот на Землю он как раз и будет падать. Но только из-за высокой скорости он все время будет «уходить» от столкновения с Землей, продолжая в то же время свое «падение» по круговой орбите, вызванной искривлением пространства.
Спутник, двигаясь вокруг Земли с первой космической скорость, остается на стабильной орбите
Это интересно: по такому же принципу «работает» и Международная Космическая Станция. Находящиеся на ней космонавты все время проводят в постоянном и непрекращающемся падении, которое не заканчивается трагически вследствие высокой скорости самой станции, из-за чего та стабильно «промахивается» мимо Земли. Значение скорости рассчитывается исходя из высоты орбиты, на которой летает станция.
Но что делать, если мы захотим, чтобы космический аппарат покинул пределы нашей планеты и не был зависим от ее гравитационного поля? Разогнать его до второй космической скорости! Итак, вторая космическая скорость – это минимальная скорость, которую необходимо придать физическому объекту, чтобы он преодолел гравитационное притяжение небесного тела и покинул его замкнутую орбиту.
Значение второй космической скорости тоже, зависит от массы и радиуса небесного тела, поэтому для каждого объекта она будет своей. Например, чтобы преодолеть гравитационное притяжение Земли, космическому аппарату необходимо набрать минимальную скорость 11.2 км/с, Юпитера — 61 км/с, Солнца — 617,7 км/с.
Космический аппарат, разогнанный до второй космической скорости, преодолевает гравитационное поле и покидает замкнутую орбиту тела
Вторую космическую скорость(V2) можно рассчитать, используя следующую формулу:
где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;
Но если известна первая космическая скорость исследуемого объекта (V1), то задача облегчается в разы, и вторая космическая скорость (V2) быстро находится по формуле:
Это интересно: вторая космическая формула черной дыры больше 299 792 км/c, то есть больше скорости света. Именно поэтому ничто, даже свет не может вырваться за ее пределы.
Помимо первой и второй комических скоростей существуют третья и четвертая, достичь которых нужно для того, чтобы выйти за пределы нашей Солнечной системы и галактики соответственно.
Иллюстрация: bigstockphoto | 3DSculptor
Космические скорости
Если прилагать больше сил при бросании, то он упадет дальше. Отсюда следует, что при отсутствии сопротивления воздуха и при наличии большой скорости тело может даже не приземляться на поверхность. Это говорит о его дальнейшем описывании круговых траекторий, не изменяя высоты относительно земной поверхности.
Первая космическая скорость
Вторая космическая скорость
Для ее нахождения следует произвести вычисление работы, потраченную против сил земного притяжения для соударения с поверхности Земли на бесконечность. При удалении такого тела получаем:
Существует связь между первой и второй скоростями
Квадрат скорости убегания равняется ньютоновскому потенциалу в заданной точке, то есть:
Нужная величина скорости не зависит от направления движения тела. На это влияет вид траектории, по которой происходит удаление от земной поверхности.
Чтобы тело смогло стартовать с поверхности планеты, оно должно обладать второй космической скоростью при малом значении h и большом значении гравитационной силы. Как только ракета начнет удаляться от Земли, гравитационная постоянная будет уменьшаться вместе со значением, необходимым для убегания кинетической энергии.
Третья космическая скорость
Еще в СССР были достигнуты космические скорости.
Дано:
Решение
Значение g принимает ускорение свободного падения на Юпитере.
Значение m определено как масса спутника, а М – масса самой планеты.
Получаем, что из уравнения ( 2 ) найдем ускорение свободного падения для планеты из
Закон Кеплера
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Форма Земли
Сейчас нам сложно представить, что раньше люди верили, будто Земля плоская. У греков, например, плоскость просто парила в воздухе и была окружена ледниками. А в Индии верили, что планета покоится на трех слонах, которые стоят на черепахе. Впрочем, кое-кто до сих пор так думает. Доказательств того, что наша планета на самом деле не плоская — много, но вот вам парочка, чтобы можно было поддержать светскую беседу.
Гравитация
Гравитация всегда притягивает все в сторону центра масс. Наша Земля — сферической формы, а центр масс сферы находится как раз в ее центре.
Гравитация притягивает все объекты на поверхности в направлении ядра Земли, то есть вниз, независимо от их местоположения — что мы всегда и наблюдаем.
Если представить, что Земля плоская, то гравитация должна будет притягивать все, что на поверхности, к центру плоскости. То есть если вы окажетесь у края плоской Земли, гравитация будет тянуть вас не вниз, а к центру диска.
Чтобы доказать свою точку зрения, сторонникам плоской Земли придется поискать на планете место, где вещи падают не вниз, а вбок.
Если бы Земля была плоской, да еще и со слонами и черепахой, то при лунном затмении мы бы видели не равномерно растущую тень, а примерно такую картину:
Но, пожалуй, это сильно отличается от реальности.
На плоскую Землю свет от Солнца падал бы, как свет от фонаря. То есть высокие объекты в противоположном от Солнца направлении после заката оставались бы в тени.
А на шарообразной Земле небоскребы или горы будут освещены Солнцем после заката или перед рассветом.
Именно это вы увидите, если застанете рассвет или закат в горах — или посмотрите на фотографии.
Окей, Земля все-таки не плоская — с этим разобрались. Но и шаром ее назвать нельзя: Земля имеет форму эллипсоида.
Эллипсоид — это такой приплюснутый шар, в сечении у которого эллипс. Именно по траектории эллипса вращаются все спутники.
Эллипс
Эллипс — это замкнутая прямая на плоскости, частный случай овала. У эллипса две оси симметрии — горизонтальная и вертикальная, которые состоят из двух полуосей.
А еще у эллипса два фокуса — это такие точки, сумма расстояний от которых до любой точки P(x,y) является постоянной величиной.
Небесное тело | Масса (по отношению к массе Земли) | v 1, км/с | v 2, км/с |
---|---|---|---|
Луна | 0,0123 | 1,680 | 2,375 |
Меркурий | 0,055 | 3,05 | 4,3 |
Марс | 0,108 | 3,546 | 5,0 |
Венера | 0,82 | 7,356 | 10,22 |
Земля | 1 | 7,91 | 11,2 |
Уран | 14,5 | 15,6 | 22,0 |
Нептун | 17,5 | 24,0 | |
Сатурн | 95,3 | 36,0 | |
Юпитер | 318,3 | 61,0 | |
Солнце | 333 000 | 437 | 617,7 |
Сириус В | 325 675 | 10 000 | |
Нейтронная звезда | 666 000 | 200 000 | |
Кварковая звезда | 832 500 | 300 000 | |
Чёрная дыра | 832 500 — 5,6·10 15 | не имеет |
См. также
Законы и задачи | Законы Ньютона • Закон всемирного тяготения • Законы Кеплера • Задача двух тел • Задача трёх тел • Гравитационная задача N тел • Задача Бертрана • Уравнение Кеплера |
---|---|
Небесная сфера | Система небесных координат: галактическая • горизонтальная • первая экваториальная • вторая экваториальная • эклиптическая • Международная небесная система координат • Сферическая система координат • Ось мира • Небесный экватор • Прямое восхождение • Склонение • Эклиптика • Равноденствие • Солнцестояние • Фундаментальная плоскость |
Параметры орбит | Кеплеровы элементы орбиты: эксцентриситет • большая полуось • средняя аномалия • долгота восходящего узла • аргумент перицентра • Апоцентр и перицентр • Орбитальная скорость • Узел орбиты • Эпоха |
Движение небесных тел | Движение Солнца и планет по небесной сфере • Эфемериды Конфигурации планет: противостояние • квадратура • парад планет • Кульминация • Сидерический период • Орбитальный резонанс • Период вращения • Предварение равноденствий • Синодический период • Сближение Затмение: солнечное затмение • лунное затмение • сарос • Метонов цикл • Покрытие • Прохождение • Либрация • Элонгация • Эффект Козаи • Эффект Ярковского • Эффект Джанибекова |
Астродинамика | |
Космический полёт | Космическая скорость: первая (круговая) • вторая (параболическая) • третья • четвёртая Формула Циолковского • Гравитационный манёвр • Гомановская траектория • Метод оскулирующих элементов • Приливное ускорение • Изменение наклонения орбиты • Стыковка • Точки Лагранжа • Эффект «Пионера» |
Орбиты КА | Геостационарная орбита • Гелиоцентрическая орбита • Геосинхронная орбита • Геоцентрическая орбита • Геопереходная орбита • Низкая опорная орбита • Полярная орбита • Тундра-орбита • Солнечно-синхронная орбита • Молния-орбита • Оскулирующая орбита |
Полезное
Смотреть что такое «Космическая скорость» в других словарях:
космическая скорость — наименьшая начальная скорость, которую необходимо сообщить телу, чтобы оно, начав движение вблизи небесного тела, преодолело его притяжение. Эта скорость зависит от массы небесного тела. Для планеты Земля различают три космические скорости.… … Энциклопедия техники
космическая скорость — kosminis greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Kritinis kosminio aparato greitis, kurį pasiekęs aparatas gali toliau iš inercijos skrieti reikiama kosmine trajektorija. atitikmenys: angl. cosmic velocity vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
космическая скорость — kosminis greitis statusas T sritis fizika atitikmenys: angl. cosmic velocity vok. kosmische Geschwindigkeit, f rus. космическая скорость, f pranc. vitesse cosmique, f … Fizikos terminų žodynas
Четвёртая космическая скорость — Млечный путь Четвёртая космическая скорость минимально необходимая скорость тела, позволяющая преодолеть притяжение … Википедия
Третья космическая скорость — Третья космическая скорость минимальная скорость, которую необходимо сообщить находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы[1][2]. При… … Википедия
Четвертая космическая скорость — Млечный путь Четвёртая космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от… … Википедия
первая космическая скорость — минимальная скорость v1, при достижении которой тело массой m (например, космический корабль), находящееся в гравитационном поле небесного тела массой M>>m (например, Земли), может стать его спутником с круговой траекторией. Для искусственного… … Энциклопедический словарь
третья космическая скорость — минимальная скорость, которую нужно сообщить телу (например, космическому аппарату) вблизи поверхности Земли, чтобы оно могло, преодолев притяжение Земли и Солнца, навсегда покинуть Солнечную систему. Третья космическая скорость равна… … Энциклопедический словарь
- Что такое диез в музыке
- Что такое булатная оборона