Что такое пирамидная система
Пирамидная система
Пирамидная система — одно из поздних приобретений эволюции. Низшие позвоночные пирамидальной системы не имеют, она появляется только у млекопитающих, и достигает наибольшего развития у обезьян и особенно у человека. [1] Пирамидная система играет особую роль в прямохождении. [2]
Содержание
Пирамидный путь
Кора полушарий головного мозга в V слое содержит клетки Беца (или гигантские пирамидные клетки). [3]
В 1874 году ученый Владимир Алексеевич Бец обнаружил и описал гигантские пирамидальные клетки коры головного мозга (клетки Беца).
Волокна перекрещиваются на границе головного и спинного мозга (большая часть — в продолговатом мозге, меньшая — в спинном). Далее они проходят через спинной мозг (передние и боковые столбы спинного мозга). В каждом сегменте спинного мозга эти волокна образуют синаптические окончания (см. Синапс), которые отвечают за определенный участок тела (шейный отдел спинного мозга — за иннервацию рук, грудной — за туловище, а поясничный отдел — за ноги). [3] Импульсы от коры головного мозга эти волокна передают либо непосредственно, либо через вставочные нейроны. [1]
Проекционные зоны коры головного мозга
Непосредственное раздражение определенных участков коры головного мозга приводит к судорогам мышц, соответствующих участку коры — проекционной двигательной зоне. При раздражении верхней трети передней центральной извилины возникает судорога мышц ноги, средней — руки, нижней — лица, причем, на стороне, противоположной очагу раздражения в полушарии. Эти судороги носят название парциальных (джексоновских). Их открыл английский невролог Д. Х. Джэксон (1835—1911). В проекционной двигательной зоне каждого полушария головного мозга представлены все мышцы противоположной половины тела. [2]
Типы нервных волокон
Пирамидная система человека содержит около 1 млн нервных волокон. Различают следующие типы волокон: [1]
Тип нервных волокон | Диаметр | Скорость проведения | Функция |
---|---|---|---|
Толстые, быстропроводящие | 16 мкм | до 80 м/с | обеспечивают быстрые фазные движения |
Тонкие, медленнопроводящие | 4 мкм | от 25 до 7 м/с | отвечают за тоническое состояние мышц |
Наибольшее количество пирамидных клеток (клеток Беца) иннервирует мелкие мышцы, отвечающие за тонкие дифференцированные движения кисти, мимику и речевой акт. Значительно меньшее их количество иннервирует мышцы туловища и нижних конечностей. [2]
Патология
Повреждения пирамидной системы проявляются параличами, парезами, патологическими рефлексами. [1]
Поражение пирамидной системы может быть вызвано воспалением (см. Энцефалит), нарушением мозгового кровообращения (см. Инсульт), опухолью, черепно-мозговой травмой и другими причинами. [2]
В зависимости от локализации патологического процесса различают следующие проявления. [2]
Локализация патологического процесса пирамидного пути | Симптомы |
---|---|
проекционные зоны коры головного мозга | центральный паралич (или парез), см. ниже. |
в области внутренней капсулы | гемиплегия — паралич руки и ноги на стороне, противоположной локализации очага. |
в области ствола мозга | Альтернирующие синдромы — сочетание гемиплегии на стороне, противоположной очагу, с признаками нарушения функций черепно-мозгового нерва на стороне поражения. |
в спинном мозге | Гемиплегия или паралич ноги на стороне повреждения — перекрест волокон остался выше. |
Центральный (спастический) паралич, или парез
Также называется — пирамидная недостаточность, спастическая атаксия, болезнь Пьера Мари. Возникает при поражении проекционной зоны коры головного мозга. Если поражены клетки Беца в коре головного мозга (или их аксоны), то возникает спастический (от слова спазм, то есть когда тонус мышц повышен) паралич. При этом клетка Беца начинает посылать избыточное количество нервных импульсов к мышцам. Это приводит к повышению мышечного тонуса и рефлексов, и возникает дрожание. Это состояние называют центральным параличом (при неполной утрате произвольных движений — центральным парезом). При центральном параличе(парезе) нарушения питания конечности(гипотрофии, атрофии) не происходит. [3]
Периферический (вялый) паралич, или парез
Если поражены нервные клетки (или их отростки) в спинном мозге, то возникает вялый, или периферический паралич (а при неполной утрате функции — парез) — снижение мышечного тонуса, вплоть до полной парализации мышцы. [3]
Методы диагностики пирамидной недостаточности
Лечение пирамидной недостаточности
Лечение направлено на основное заболевание, а также на восстановление двигательных функций при параличах. [2]
В лечении придерживаются принципа увеличения физической нагрузки. [3]
См. также
Примечания
Полезное
Смотреть что такое «Пирамидная система» в других словарях:
ПИРАМИДНАЯ СИСТЕМА — (systema pyramidales), пирамидный путь, кортикоспинальный тракт, система нервных центров и нервных путей, начинающихся от крупных пирамидных нейронов коры больших полушарий (в осн. передних отделов неокортекса), аксоны к рых заканчиваются на… … Биологический энциклопедический словарь
ПИРАМИДНАЯ СИСТЕМА — (сиы.: пирамидный путь, tractus cortico spinalis) с точки зрения фило и онтогенеза в отличие от экстрапирамидной или палеокинетической, как связанная с неэнцефалоном, называется неокинетической системой. Являясь неэнцефали ческим образованием,… … Большая медицинская энциклопедия
ПИРАМИДНАЯ СИСТЕМА — в физиологии основной эфферентный проводящий путь коры головного мозга, передающий импульсы движений. Начинается от гигантских нервных клеток передней центральной извилины коры головного мозга и оканчивается на двигательных нейронах передних… … Большой Энциклопедический словарь
пирамидная система — (физиол.), основной эфферентный проводящий путь коры головного мозга, передающий импульсы движений. Начинается от гигантских нервных клеток передней центральной извилины коры головного мозга и оканчивается на двигательных нейронах передних рогов… … Энциклопедический словарь
Пирамидная система — пирамидный путь, система нервных структур, участвующих в сложной и тонкой координации двигательных актов. У низших позвоночных П. с. нет, она появляется только у млекопитающих, образуя эфферентную часть двигательного анализатора (См.… … Большая советская энциклопедия
ПИРАМИДНАЯ СИСТЕМА — [от греч. pyramis (piramidos) пирамида] система нервных центров и нервных путей, начинающихся от крупных пирамидных нейронов коры больших полушарий, аксоны которых заканчиваются на клетках спинного мозга; участвует в тонкой координации… … Психомоторика: cловарь-справочник
ПИРАМИДНАЯ СИСТЕМА — (физиол.), осн. эфферентный проводящий путь коры головного мозга, передающий импульсы движений. Начинается от гигантских нерв. клеток передней центр. извилины коры головного мозга и оканчивается на двигат. нейронах передних рогов спинного мозга … Естествознание. Энциклопедический словарь
Пирамидная система — – нервная структура, обеспечивающая произвольные движения и представленная мультиполярными нервными клетками лобной коры, протяжёнными аксонами, которые в составе моносинаптического проводящего пути направляются к моторным нейронам ядер черепных… … Энциклопедический словарь по психологии и педагогике
Система Пирамидная, Путь Пирамидный (Pyramidal System) — система нервных волокон, по которым произвольные двигательные импульсы от пирамидных клеток, расположенных в коре предцентральной извилины, направляются к двигательным ядрам черепных нервов и передним рогам спинного мозга. Пирамидный путь делится … Медицинские термины
Что такое пирамидная система
Существуют следующие нисходящие проводящие пути:
• корково-спинномозговой проводящий путь (пирамидный проводящий путь);
• ретикуло-спинномозговой проводящий путь (экстрапира-мидный путь);
• преддверно-спинномозговой проводящий путь;
• покрышечно-спинномозговой проводящий путь;
• шовно-спинномозговой проводящий путь;
• проводящие пути аминергических систем ЦНС;
• проводящие пути вегетативной нервной системы.
Корково-спинномозговой проводящий путь
Корково-спинномозговой проводящий путь представляет собой крупный проводящий путь произвольной двигательной активности. Около 40 % его волокон начинается из первичной моторной коры прецентральной извилины. Остальные волокна берут начало из дополнительной моторной области на медиальной стороне полушария, премоторной коры головного мозга на латеральной стороне полушария, соматической сенсорной коры, коры теменной доли и коры поясной извилины. Волокна от двух вышеупомянутых сенсорных центров заканчиваются на чувствительных ядрах ствола головного мозга и спинного мозга, где они регулируют передачу чувствительных импульсов.
Корково-спинномозговой проводящий путь спускается вниз через лучистый венец и заднюю ножку внутренней капсулы к стволу головного мозга. Затем он проходит в ножке (головного мозга) на уровне среднего мозга и базилярной части моста, достигая продолговатого мозга. Здесь он образует пирамиду (отсюда название — пирамидный проводящий путь).
Демонстрация хода волокон пирамидного пути с левой стороны.
Дополнительная моторная область на медиальной стороне полушария.
Стрелкой показан уровень перекреста пирамид. Чувствительные нейроны выделены синим цветом. Коронарный срез бальзамированного головного мозга пациента с последующей обработкой сульфатом меди (окраска по Маллигану),
демонстрирующий неокрашенные корково-спинномозговые волокна, идущие через ядра моста в сторону пирамид.
Характеристика волокон корково-спинномозгового пути выше уровня спинномозгового перехода:
• около 80 % (70-90 %) волокон переходят на противоположную сторону на уровне перекреста пирамид;
• эти волокна спускаются по противоположной стороне спинного мозга и составляют латеральный корково-спинномозговой проводящий путь (перекрещивающийся корково-спинномозговой проводящий путь); оставшиеся 20 % волокон не перекрещиваются и продолжают спускаться вниз в передней части спинного мозга;
• половина из этих неперекрещивающихся волокон вступает в передний/вентральный корково-спинномозговой проводящий путь и располагается в вентральном/переднем канатике спинного мозга на шейном и верхнем грудном уровнях; данные волокна переходят на противоположную сторону на уровне белой спайки и иннервируют мышцы передней и задней стенок брюшной полости;
• другая половина вступает в латеральный корково-спинномозговой проводящий путь на своей половине спинного мозга.
Считают, что корково-спинномозговой проводящий путь содержит около 1 млн. нервных волокон. Средняя скорость проведения импульса составляет 60 м/с, что указывает на средний диаметр волокна, равный 10 мкм («правило шести»). Около 3 % волокон — очень крупные (до 20 мкм); они отходят от гигантских нейронов (клетки Беца), расположенных в основном в области двигательной коры, отвечающей за иннервацию нижних конечностей. Все волокна корково-спинномозгового пути — возбуждающие и в качестве медиатора используют глутамат.
Пирамидный проводящий путь.
КСП — корково-спинномозговой проводящий путь;
ПКСТ — передний корково-спинномозговой проводящий путь;
ЛКСП — латеральный корково-спинномозговой проводящий путь.
Обратите внимание: показан только двигательный компонент; компоненты теменной доли опущены.
Клетки-мишени латерального корково-спинномозгового пути:
а) Мотонейроны дистальных отделов конечностей. В передних рогах серого вещества спинного мозга аксоны латерального корково-спинномозгового пути могут непосредственно образовывать синапсы на дендритах α- и γ-мотонейронов, иннервирующих мышцы конечностей, особенно верхних (однако, как правило, это происходит через интернейроны в пределах серого вещества спинного мозга). Отдельные аксоны латерального корково-спинномозгового пути могут активировать «большие» или «малые» двигательные единицы.
Двигательная единица — это комплекс, состоящий из нейрона переднего рога спинного мозга и всех мышечных волокон, которые этот нейрон иннервирует. Нейроны малых двигательных единиц избирательно иннервируют небольшое количество мышечных волокон и участвуют в выполнении тонких и точных движений (например, при игре на пианино). Нейроны переднего рога, иннервирующие крупные мышцы (например, большую ягодичную мышцу), способны по отдельности вызвать сокращение сотни мышечных клеток сразу, так эти мышцы отвечают за грубые и простые движения.
Уникальное свойство этих корковомотонейронных волокон латерального корково-спинномозгового пути демонстрирует понятие «фракционирования», относящееся к переменной активности интернейронов, в результате чего небольшие группы нейронов могут быть избирательно активированы для выполнения конкретной общей функции. Это легко показать на указательном пальце, который может быть согнут или разогнут независимо от положения других пальцев (хотя три из его длинных сухожилий имеют общее начало с мышечным ложем всех четырех пальцев).
Фракционирование имеет большое значение при выполнении привычных движений, таких как застегивание пальто или завязывание шнурков. Травматическое или другое повреждение корковомотонейронной системы на любом уровне влечет за собой утрату навыков выполнения привычных движений, которые затем редко поддаются восстановлению.
При выполнении данных движений α- и γ-мотонейроны активируются совместно через латеральный корково-спинномозговой проводящий путь таким образом, что веретена мышц, первично задействованных в движении, посылают импульсы об активном растяжении, а веретена мышц-антагонистов — о пассивном растяжении.
Продолговатый мозг и верхние отделы спинного мозга, вид спереди.
Продемонстрированы три группы нервных волокон левой пирамиды.
б) Клетки Реншоу. Функции синапсов латерального корково-спинномозгового пути на клетках Реншоу довольно многочисленны, так как торможение на некоторых клеточных синапсах главным образом происходит за счет интернейронов типа Iа; на других синапсах данную функцию выполняют клетки Реншоу. Вероятно, наиболее важная функция — контроль совместного сокращения основных движущих мышц и их антагонистов для фиксации одного или нескольких суставов, например при работе с кухонным ножом или лопатой. Совместное сокращение происходит за счет инактивации ингибирующих интернейронов Iа клетками Реншоу.
в) Возбуждающие интернейроны. Латеральный корково-спинно-мозговой проводящий путь влияет на деятельность двигательных нейронов, расположенных в средней части серого вещества и в основании переднего рога спинного мозга, иннервирующих осевые (позвоночные) мышцы и мышцы проксимальных отделов конечностей посредством возбуждающих интернейронов. г) la-ингибирующие интернейроны. Эти нейроны также расположены в средней части серого вещества спинного мозга и активируются латеральным корково-спинномозговым путем в первую очередь при совершении произвольных движений.
Активность Ia-интернейронов способствует расслаблению мышц-антагонистов до того, как начнут сокращаться мышцы-агонисты. Кроме того, они вызывают рефрактерность мотонейронов мышц-антагонистов к стимуляции афферентами нервно-мышечного веретена при их пассивном растяжении во время движения. Последовательность процессов при произвольном сгибания коленного сустава показана на рисунке ниже.
(Обратите внимание на терминологию: в спокойном положении стоя колени человека «закрыты» в небольшом переразгибании, а четырехглавая мышца бедра находится в неактивном состоянии, о чем свидетельствует «свободное» положение надколенника. При попытке сгибания одного или обоих колен происходит подергивание четырехглавой мышцы бедра в ответ на пассивное растяжение в ней десятков мышечных веретен. Поскольку таким образом происходит сопротивление сгибанию, рефлекс называют рефлексом сопротивления.
С другой стороны, во время произвольного сгибания коленного сустава мышцы способствуют данному движению с помощью такого же механизма, но уже через рефлекс помощи. Изменение знака с отрицательного на положительный называют рефлексом перемены направления.)
д) Пресинаптические ингибиторные нейроны, обеспечивающие рефлекс растяжения. Рассмотрим движения спринтера. На каждом шаге сила тяжести тянет его тело вниз, на выпрямленное четырехглавой мышцей колено. В момент соприкосновения с землей все нервно-мышечные веретена в сокращенной четырехглавой мышце резко растягиваются, в результате чего возникает опасность разрыва мышцы. Сухожильный орган Гольджи обеспечивает некоторую защиту посредством внутреннего торможения, однако основной защитный механизм обеспечивает латеральный корково-спинномозговой путь через пресинаптическое торможение афферентов веретен вблизи их контакта с мотонейронами.
В то же время удлинение паузы до ахиллового рефлекса служит преимуществом в этой ситуации, так как происходит восстановление мотонейронов, иннервирующих заднюю часть голени, для следующего рывка. Предполагают, что степень подавления рефлекса растяжения со стороны латерального корково-спинномозгового пути зависит от конкретных движений.
е) Пресинаптическое ингибирование чувствительных нейронов первого порядка. В заднем роге серого вещества спинного мозга существует некоторое подавление передачи чувствительных импульсов в спиноталамический проводящий путь при совершении произвольных движений. Это происходит путем активации синапсов, образованных ингибирующими вставочными нейронами и первичными чувствительными нервными окончаниями.
Еще более тонкую регуляцию наблюдают на уровне тонкого и клиновидного ядер, где волокна пирамидного пути (после пересечения) способны усиливать передачу чувствительных импульсов во время медленных аккуратных движений или ослаблять ее во время совершения быстрых движений.
Последовательность событий при выполнении произвольного движения (сгибания колена). МН — мотонейроны.
(1) Активация la интернейронов ингибирует их антагонисты-α-мотонейроны.
(2) Активация агонистов α- и γ-мотонейронов.
(3) Активация экстрафузальных и интрафузальных мышечных волокон.
(4) Импульсация от активно растянутых нервно-мышечных веретен увеличивает активность агониста а-мотонейрона и снижает активность его антагонистов.
(5) Iа-волокна от пассивно растянутых нервно-мышечных веретен-антагонистов направляются к соответствующим рефрактерным а-мотонейронам.
Обратите внимание: последовательность «γ-мотонейронон—Ia-волокно—α-мотонейрон» образует γ-петлю.
Редактор: Искандер Милевски. Дата публикации: 15.11.2018
ПИРАМИДНАЯ СИСТЕМА
Пирамидная система [tractus pyramidalis (PNA)] — система эфферентных проекционных нервных волокон, связывающих двигательные центры коры головного мозга с двигательными ядрами черепно-мозговых нервов и клетками ядер передних рогов спинного мозга и участвующих в осуществлении произвольных движений. Свое название Пирамидная система получила от пирамид, образованных волокнами корково-спинномозгового (пирамидного) пути и расположенных на вентральной поверхности продолговатого мозга (см.).
Содержание
Сравнительная анатомия
В процессе филогенеза Пирамидная система впервые появляется у млекопитающих. У низших млекопитающих ее корковый центр не обособлен из первоначально недифференцированной коры. Верхний этаж коры слабо развит, состоит из двух узких слоев (II и III). Значительно шире нижний этаж, включающий слои V и VI. У грызунов уже можно выделить в коре поля 4 и 6. У хищных в поле 4 выявляются гигантские пирамидные клетки. В отряде приматов происходит дальнейшее увеличение ширины слоя III. У человека структура коры поля 4 головного мозга характеризуется выраженной пирамидизацией нейроцитов, упорядоченным их видом, мощным слоем III, наличием гигантопирамидальных нейроцитов (невроцитов, Т.) в слое V, агранулярностью (отсутствием ясно выраженных зернистых слоев II и IV; зернистые элементы в них замещены мелкими пирамидными клетками), максимальной шириной коры (3—4 мм). Подобную структуру сохраняет поле 6, но гигантопирамидальные нейроциты в нем отсутствуют.
В онтогенезе корковый центр отчетливо обособляется в начале второй половины внутриутробного развития и до рождения в нем сохраняется слой IV. У взрослого человека пирамидный путь занимает ок. 30% площади поперечного сечения спинного мозга, у высших обезьян — более 21%, У собак — менее 7 %.
Анатомия и гистология
Пирамидный путь состоит из мякотных и безмякотных волокон диам. 1—8 мкм, количество которых несколько выше перекреста пирамид колеблется от 700 000 до 1 300 000 на одной стороне; волокна преимущественно тонкие, скудно миелинизированные (лишь ок. 3% из них имеет толстую миелиновую оболочку), являются аксонами гигантопирамидальных нейроцитов.
Физиология
Пирамидная система является общей для многих моторных рефлекторных дуг. С помощью микроэлектродной техники (см. Микроэлектродный метод исследования) установлено, что гигантопирамидальные нейроциты коры головного мозга, от которых начинается часть волокон П. с., могут активизироваться не только соматическими, но и оптическими, акустическими, вкусовыми и другими раздражениями. В связи с этим гигантопирамидальные нейроциты называют полисенсорными, т. е. реагирующими на многие виды сенсорных раздражителей.
Известно, что в пирамидах продолговатого мозга проходит только пирамидный путь и это дает возможность в лабораторных условиях производить изолированное повреждение П. с. у животных. Перерезка пирамид продолговатого мозга у собак, напр., приводит к незначительным нарушениям двигательных функций. В первые дни после операции у них обнаруживается расстройство походки, к-рое в последующие дни исчезает. Условные двигательные рефлексы, выработанные у собак до операции, сохраняются и после нее, а в стадии компенсации двигательных расстройств вырабатываются четкие сгибательные условные рефлексы. Двусторонняя пирамидотомия у кошек также не препятствует восстановлению ранее выработанных и образованию новых условных двигательных и пищевых рефлексов. Изолированное повреждение П. с. не вызывает тех нарушений, к-рые описывают как синдром пирамидного поражения. Клинический синдром пирамидного поражения, по-видимому, обусловлен сочетанным повреждением проводников пирамидной системы и сопутствующих им экстрапирамидных нисходящих путей, что приводит к растормаживанию внутрисегментарной фазической и топической рефлекторной деятельности. Эти данные подтверждаются клиническими наблюдениями, показавшими, что педункулотомия (изолированная перерезка пирамидного пути в ножке мозга) при различных формах двигательных нарушений (гемибализм, тремор и др.) не приводит к спастическому параличу с повышением сухожильных рефлексов, а вызывает противоположные явления, такие, как понижение тонуса мышц, удлинение латентного периода двигательных условных реакций, их астеничность и др. Все это дало основание некоторым исследователям заключить, что П. с. оказывает тонизирующее действие на спинальные моторные функции. Подобную гипотезу высказывал Ч. Шеррингтон (1906), наблюдавший явления спинального шока (см. Спинной мозг) в результате пирамидотомии. Однако этот механизм не является универсальным. Так, в частности, пирамидотомия вызывает спинальный шок только у высших животных. Электрофизиол, исследованиями установлено также, что П. с., оказывая воздействие на спинальные моторные центры, повышает их функциональную активность, усиливает моносинаптические ответы флексорных мотонейронов и подавляет ответы мотонейронов-экстензоров. Пирамидные влияния приводят к торможению мышц, участвующих в тонических антигравитационных рефлексах, и к активации тех мышц, к-рые участвуют в фазных сгибательных рефлексах.
Пирамидная система состоит из двух основных компонентов: быстропроводящего и медленнопроводящего. Первый обеспечивает быстрые (фазные) двигательные реакции организма. Он состоит из толстых нервных волокон, берущих начало от гигантопирамидальных нейроцитов коры. Второй компонент обеспечивает регуляцию тонических реакций произвольных мышц и представлен тонкими волокнами.
Пирамидная система, т. о., является эфферентным звеном, посредством которого осуществляется кортикальная регуляция активности спинальных мотонейронов. Выпадение функции П. с. может привести к определенному нарушению этого регулирования. Относительно быстрая компенсация пирамидных нарушений у животных позволяет допустить, что импульсация, идущая от клеток коры больших полушарий, достигает конечного мотонейрона не только через пирамидный, но и другие пути, в т. ч. через красноядерно-спинномозговой, преддверно-спинномозговой, ретикулярно-спинномозговой и покрышечно-спинномозговой пути.
Патология
Нарушение функции Пирамидной системы той или иной степени выраженности наблюдается при органических заболеваниях и поражениях ц. н. с. Симптомокомплекс поражения П. с. отмечается при многих дегенеративных заболеваниях нервной системы, напр, при боковом амиотрофическом склерозе, особенно его форме с преимущественной пирамидной недостаточностью (см. Амиотрофический боковой склероз), и семейной спастической параплегии Штрюмпелля (см. Параплегия). К этой же группе заболеваний относят синдром Миллса — унилатеральный восходящий паралич неясной этиологии, начинающийся обычно в возрасте 40— 60 лет с пареза дистальных отделов нижней конечности, распространяющегося постепенно на проксимальные отделы нижней и верхнюю конечности и переходящего затем в полную спастическую гемиплегию (см.) с вегетативными, а иногда и трофическими нарушениями на парализованных конечностях. Поражение П. с. часто наблюдается при нарушениях кровообращения в головном или спинном мозге (см. Инсульт, Кризы). При церебральных сосудистых кризах признаки поражения П. с., как и другие очаговые симптомы, часто имеют преходящий характер и сравнительно быстро исчезают. Симптомами пирамидной недостаточности нередко сопровождаются опухоли головного и спинного мозга, инфекционные, интоксикационные и травматические поражения ц. н. с. Для пирамидного синдрома характерны нарушения произвольных движений, центральные парезы и параличи с повышением мышечного тонуса по спастическому типу (см. Параличи, парезы), высокие сухожильные и периостальные рефлексы, отсутствие или понижение кожных рефлексов — брюшных, кремастер-рефлекса (см. Брюшные рефлексы, Рефлекс), патол, рефлексы, особенно на ногах — рефлексы Бабинского, Оппенгейма, Гордона, Шеффера, Россолимо, Менделя — Бехтерева и др. (см. Бабинского рефлекс, Гордона рефлексы, Россолима рефлекс, Рефлексы патологические); на руках преобладают рефлексы флексорной группы. Характерным пирамидным симптомом является симптом Жюстера — укол булавкой кожи в области тенара (возвышения большого пальца кисти) вызывает сгибание большого пальца и приведение его к указательному при одновременном разгибании остальных пальцев и тыльном сгибании кисти и предплечья. Нередко отмечается симптом складного ножа — при пассивном сгибании спастичной нижней конечности и разгибании верхней рука исследующего испытывает резкое пружинящее сопротивление, к-рое затем внезапно ослабевает. При поражении П. с. выявляются глобальные, координаторные и имитационные синкинезии (см.).
Клин, варианты поражения П. с. весьма разнообразны. Наиболее часто наблюдается капсулярная гемиплегия (см.). Она характеризуется спастическим параличом конечностей на стороне, противоположной патол, очагу, с более глубоким поражением руки, чем ноги, типичной позой Вернике—Манна (рис. 2) и так наз> «походкой косаря».
Спастичности а затем и контрактура парализованных мышц возникают вследствие одновременного поражения во внутренней капсуле волокон пирамидной: и экстрапирамидной систем. При двустороннем поражении спинного мозга ниже шейного, но выше пояснично-крестцового утолщения наблюдается спастическая нижняя параплегия, а при локализации патологического процесса выше шейного утолщения — тетраплегия (квадриплегия) или более редкая тринлегия.
Большим своеобразием отличаются поражения корковых центров П. с. В связи с широким пространственным соматотоппческим расположением корковых структур этих центров в полушариях головного мозга их поражения чаще всего проявляются как моноллегия: паралич одной руки или йоги, кисти или стопы и даже отдельных пальцев. Возможно также поражение отдельных черепных нервов, чаще лицевого и подъязычного. Недостаточность лицевого нерва проявляется параличом или парезом мышц нижней половины лица, т. к. они в отличие от верхней половины лица имеют одностороннюю надъядерную иннервацию; при этом иногда больной не может закрыть глаз (сомкнуть веки) на парализованной стороне (симптом Ревийо).
Поражение П. с. устанавливают на основании исследования двигательной активности больного и выявления пирамидных симптомов, данных анамнеза, особенностей клин, течения и результатов специальных исследований.
Дифференциальную диагностику пирамидных параличей проводят с периферическими параличами и парезами, возникающими вследствие поражений периферического двигательного нейрона и характеризующимися низким мышечным тонусом, снижением или отсутствием сухожильных и периостальных рефлексов, выраженной атрофией мышц с изменением их электровозбудимости — реакций перерождения (см. Параличи, парезы). Необходимо учитывать, что отмечаемое иногда при пирамидных параличах снижение мышечного тонуса, сухожильных и периостальных рефлексов, как правило, связано с состоянием диасхиза (см.), после устранения которого наступает повышение тонуса и рефлексов.
Лечение
Лечение поражений пирамидной системы чаще консервативное, иногда оперативное и направлено прежде всего на основное заболевание. При проведении консервативного лечения применяют лекарственные средства, улучшающие метаболизм в нервной ткани и проведение нервного импульса, нормализующие мышечный тонус и др. Широко используется ЛФК, массаж, физиобальнеотерапия, ортопедическое лечение. Оперативное лечение чаще проводят при поражениях Пирамидной системы, вызванных опухолями и травмами головного и спинного мозга, а также острым нарушением мозгового кровообращения.
Библиография: Боголепов Н. К. Нарушения двигательных функций при сосудистых поражениях головного мозга, М., 1953; Гранит Р. Основы регуляции движений, пер. с англ., М., 1973; Дзугаева С. Б. Проводящие пути головного мозга человека (в онтогенезе), М., 1975; 3авалишин И. А. и Новикова В.П. Анализ механизмов двигательных нарушений при боковом амиотрофическом склерозе, Журн, невропат, и психиат., т. 79, № 12, с. 1635, 1979; Костюк П. Г. Структура и функция нисходящих систем спинного мозга, Л., 1973; он же, Физиология центральной нервной системы, с. 11 и др., Киев, 1977; Лунев Д. К. Нарушения мышечного тонуса при мозговом инсульте, М., 1974; Многотомное руководство по неврологии, под ред. Н. И. Гращенкова, т. 1, кн. 2, с. 182, М., 1960; Саркисов С. А. Очерки по структуре и функции мозга, М., 1964; Старобинец М. X. и Волкова Л. Д. Патофизиология пирамидного синдрома, Журн, невропат, и психиат., т. 78, № 6, с. 931, 1978; Турыгин В. В. Проводящие пути головного и спинного мозга, Омск, 1977; Хондкариан О. А. Боковой амиотрофический склероз, М., 1957; Шеррингтон Ч. Интегративная деятельность нервной системы, пер. с англ., Л., 1969; Clara М. Das Nervensystem des Menschen, Lpz., 1959; Handbook of clinical neurology, ed. by P. J. Yinken a. G. W. Bruyn, v. 1, p. 152, Amsterdam a.o., 1975; Lassek A. M. The pyramidal tract, Springfield, 1954.
Л. А. Кукуев; Л. С. Гамбарян (физ.), В. В. Турыгин (ан., гист.).