Что такое плазма солнца
Что такое плазма? Для тех, кто не понимает физику
Как образуется плазма
Представьте себе, что вы нагреваете контейнер, полный льда, и наблюдаете, как он переходит из твердого состояния в жидкое и затем в газ. По мере того как температура поднимается, молекулы воды становятся более энергичными и возбудимыми и перемещаются все более и более свободно. Если вы продолжите нагрев, то при температуре около 12 тысяч градусов по Цельсию атомы сами начнут распадаться. Электроны убегут из ядер, оставляя позади заряженные частицы, известные как ионы, которые, в итоге, оказываются в супе электронов. Это и есть состояние плазмы.
Плазма в физике и в крови
Еще одним интересным свойством плазмы является ее способность поддерживать так называемые гидромагнитные волны-выпуклости, которые движутся через плазму вдоль линий магнитного поля, подобно тому, как колебания распространяются вдоль гитарной струны. Когда в 1942 году шведский ученый Ханнес Альфвен, который впоследствии стал лауреатом Нобелевской премии, впервые предположил существование этих волн, сообщество физиков отнеслось к этому скептически. Но после того, как Альфвен прочитал лекцию в Чикагском университете, известный физик и преподаватель Энрико Ферми подошел к нему, чтобы обсудить теорию, признав, что такие волны могут существовать.
Термоядерный синтез
Одним из самых больших стимулов развития современной плазменной науки является перспектива управляемого термоядерного синтеза, при котором атомы сливаются вместе и выделяют интенсивные, но управляемые всплески энергии. Это обеспечило бы почти безграничный источник безопасной, экологически чистой энергии, но это не такая простая задача. Прежде чем на Земле произойдет такое слияние, плазма должна быть нагрета до более чем 100 миллионов градусов по Цельсию, что примерно в 10 раз горячее, чем центр Солнца. Но и это не самое сложное, поскольку ученым удалось достичь такой температуры в 1990-е годы. Однако горячая плазма очень нестабильна, поэтому ее трудно хранить и ею трудно управлять.
Попытки достичь управляемого термоядерного синтеза датируются началом 1950-х годов. В то время исследования проводились тайно Соединенными Штатами, а также Советским Союзом и Великобританией. В США, Принстонский Университет был точкой опоры для этого исследования. Там физик Лайман Спитцер начал проект Matterhorn, в рамках которого секретная группа ученых пыталась достичь управляемого термоядерного синтеза с помощью устройства под названием «стелларатор». У них не было компьютеров, и приходилось полагаться только на собственные расчеты. Хотя они не решили головоломку, они в конечном итоге разработали «энергетический принцип», который и сегодня остается мощным методом проверки идеальной стабильности плазмы.
Плазма в околоземном пространстве
Плазма также связана с физикой пространства вокруг Земли, где вещества переносятся с помощью ветров, генерируемых в верхней атмосфере Солнца. Нам повезло, что магнитное поле Земли защищает нас от заряженных плазменных частиц и разрушительного излучения такого солнечного ветра, однако все наши спутники, космические корабли и астронавты подвергаются этому воздействию. Их способность выжить в этой враждебной среде зависит от понимания и приспособления к причудам плазмы.
В новой области, известной как «космическая погода», физика плазмы играет роль, аналогичную динамике жидкости в наземных атмосферных условиях. Есть такое явление, как магнитное пересоединение, при котором линии магнитного поля в плазме могут разрываться и пересоединяться, что приводит к быстрому высвобождению энергии. Считается, что этот процесс питает солнечные вспышки, хотя детальное понимание остается труднодостижимым. Но в будущем мы сможем предсказывать солнечные бури так же, как и плохую погоду на Земле.
В чем плазма помогает нам сегодня
Возможно, однажды физика плазмы даст нам представление о том, как впервые сформировались звезды, галактики и скопления галактик. Согласно стандартной космологической модели, плазма была распространена в ранней Вселенной, затем все стало остывать и заряженные электроны и протоны связывались вместе, чтобы сделать атомы водорода электрически нейтральными. Это состояние продолжалось до тех пор, пока не образовались первые звезды и черные дыры, которые начали излучать радиацию, после чего Вселенная «реионизировалась» и вернулась в состояние плазмы.
Сегодня благодаря плазме ученые могут находить черные дыры. Они настолько плотные, что практически не отражают свет, поэтому практически невидимы для прямого наблюдения. Однако черные дыры, как правило, окружены вращающимся диском плазменного вещества, который движется в пределах гравитационного притяжения черной дыры и испускает фотоны высокой энергии. Именно их ученые могут наблюдать в рентгеновском спектре.
Плазма все еще кажется нам довольно экзотичным состоянием вещества, но по мере того, как мы будем учиться использовать ее потенциал и расширять наш взгляд на космос, она в один прекрасны день может стать для нас такой же обычной, как лед и вода. А если мы когда-нибудь достигнем контролируемого ядерного синтеза, то без плазмы мы больше просто не сможем жить.
В океане плазмы
Большая часть материи во Вселенной находится в «четвертом состоянии вещества». Но так было не всегда.
Основное прибежище плазмы на нашей планете — ионосфера. За ее пределами плазма порождается в ходе некоторых природных процессов (например, грозовых разрядов), а также во время работы научных и бытовых приборов и технологических установок (например, дуговых сварочных аппаратов). Ионы имеются даже в пламени обычной спички, но их концентрация составляет ничтожные доли процента, поэтому о настоящей плазме тут не может быть и речи. Зато во Вселенной плазменное состояние обычной (не темной) материи отнюдь не редкость, а самая что ни на есть норма. Космос — это настоящий океан плазмы, она буквально везде — от звездных недр и окрестностей до практически пустого межзвездного пространства.
В последние годы астрофизики и космологи пришли к единой точке зрения относительно того, что происходило в нашей Вселенной, когда ее возраст перевалил за одну микросекунду (более ранние события все еще служат предметом дискуссий). В это время случилась так называемая Великая аннигиляция тогда еще свободных кварковых частиц, которая уничтожила все антикварки, однако пощадила возникший до этого мизерный избыток кварков (как и почему это произошло, рассказано в «ПМ» №3, 2010). К тому времени, когда возраст мироздания достиг 10 микросекунд, кварки слились в тройки (порождая барионы — протоны и нейтроны) и пары (нестабильные мезоны, в основном пионы). На каждый барион приходилось около миллиарда высокоэнергетичных фотонов, температура которых в те времена составляла порядка 4 трлн градусов. На десятой микросекунде Вселенная заполнилась сверхгорячей плазмой чудовищной плотности (примерно 100 млн тонн на кубический сантиметр), состоящей в основном из высокоэнергетичных лептонов — электронов и позитронов, порождаемых из-за высокой температуры гамма-квантами. По сей причине эту фазу ранней истории Вселенной называют лептонной эрой (а предшествующую ей — кварковой). Размер наблюдаемой Вселенной тогда был меньше сотни астрономических единиц, то есть сильно уступал размерам современной Солнечной системы.
В истории мироздания очень важна трехминутная отметка. На этой стадии впервые появилась возможность формирования составных ядер — ядер дейтерия (протон плюс нейтрон). Энергия связи такого ядра равна 2,2 МэВ, что соответствует температуре в 25 млрд градусов. Температура упала до этой величины, когда Вселенной было всего четверть секунды. Можно подумать, что дейтерий начал образовываться уже тогда, но такой вывод будет ошибочным. Электромагнитное излучение Вселенной еще долго содержало достаточное количество горячих фотонов, которые разбивали новорожденные ядра дейтерия. Дейтерий смог «выжить», лишь когда доля фотонов с энергией более 2,2 МэВ сократилась до одной миллиардной (общее число фотонов в полтора миллиарда раз превышало число подлежащих объединению барионов!). Это произошло, когда возраст Вселенной достиг одной минуты, а еще через две минуты процесс синтеза дейтерия пошел в полную силу. Новорожденные ядра этого изотопа принялись присоединять по одному протону и одному нейтрону (в любом порядке) — так появились альфа-частицы, ядра гелия. Этот процесс занял всего несколько минут и охватил практически все нейтроны (очень небольшая их часть пошла на не переработанный в гелиевом синтезе дейтерий, гелий-3 и литий-7). Исходное соотношение числа протонов и нейтронов равнялось 7:1, и каждая новая альфа-частица оставляла после себя 12 незадействованных протонов. Так космическое пространство оказалось заполненным ядрами водорода (75% общей массы) и гелия (25%). В наше время эти показатели равны 74% и 24% — оставшиеся 2% приходятся на более тяжелые элементы, порожденные процессами звездного нуклеосинтеза.
Плазма космических пустот
Хотя звездная и околозвездная плазма вносит основной вклад в энергетику Большого космоса, в общей массе барионной материи ее доля не превышает нескольких процентов.
Большая часть барионной материи (порядка 80%) приходится на заряженные частицы, рассеянные в пространстве между галактиками и их скоплениями. Еще около 10% составляет вещество, заполняющее внутригалактическое пространство, которое тоже проявляет типичные плазменные свойства. «Межгалактическая среда по составу чрезвычайно проста. Она преимущественно состоит из одиночных протонов и электронов, но включает частицы гелия и более тяжелых элементов, — объясняет Эллен Цвейбел, профессор астрономии Висконсинского университета в Мэдисоне. — Это самое разреженное вещество во Вселенной — на 1 м 3 пространства не приходится и одной протонно-электронной пары (вблизи галактик и галактических кластеров этот показатель выше на один-два порядка). Именно поэтому межгалактическую плазму трудно наблюдать с помощью астрономических приборов. Кое-какую информацию удается получить при изучении спектров поглощения фотонов атомами элементов тяжелее водорода. Протоны и электроны межгалактической плазмы, как и любые заряженные частицы, взаимодействуют с космическими магнитными полями. Такие поля точно имеются вблизи галактик, но до сих пор не известно, существует ли единое фоновое магнитное поле, пронизывающее Вселенную. Некоторые астрофизики полагают, что такое поле существует, хоть мы не понимаем механизма его возникновения и не в состоянии измерить, так как его напряженность очень мала, меньше триллионной доли тесла. Возможно, что эту задачу со временем удастся решить, изучая поведение частиц межгалактической плазмы».
При синтезе гелия выделяется изрядная энергия (за счет этого горят звезды и взрываются водородные бомбы). Всего за несколько минут во вселенской термоядерной печи сгорело в сто раз больше водорода, чем потом во всех звездах нашей Вселенной. Однако при этом ничего особенного не произошло — Вселенная лишь немного нагрелась, после чего продолжала остывать входе дальнейшего расширения. Поскольку потепление охватило весь объем космоса, оно не породило компактных областей горячего сжатого газа в более холодной и разреженной среде, которые возникают при детонации любого заряда (хоть химического, хоть атомного). Таким образом, гигантское выделение энергии в ходе первичного нуклеосинтеза практически не сказалось на эволюции Вселенной (к слову, то же самое можно сказать и о двух еще более сильных прогревах космоса во время аннигиляции кварков и антикварков, а затем электронов и позитронов).
Первичный нуклеосинтез вновь преобразовал состав горячей плазмы юной Вселенной. А вот потом в течение 400 000 лет она не претерпевала никаких качественных превращений. Все это время, во-первых, остывал радиационный фон, причем весьма быстро, пропорционально четвертой степени растущего линейного размера Вселенной. Во-вторых, уменьшалась плотность и обычной, и темной материи, но несколько медленней (как третья степень). Плотность фотонной энергии падала быстрее, поскольку растяжение пространства не только рассеивало кванты по все большему и большему объему, но и увеличивало длины их волн, тем самым снижая частоты. Когда Вселенной стукнуло 57 000 лет, плотность лучевой энергии сравнялась с плотностью энергии частиц, а потом начала от нее отставать — наступил конец радиационной эры.
Каким тогда казался бы космос разумному наблюдателю, если бы таковой существовал? Когда Вселенной стукнуло 50 000 лет, она впервые засветилась видимым для нас голубым светом (до этого реликтовые фотоны были ультрафиолетовыми, а еще раньше, когда возраст Вселенной двигался от полутора минут к 600 годам, — рентгеновскими). К 200 000 лет цвет фотонного фона сместился от голубого к желтому, еще через 200 000 лет стал оранжевым, а по достижении миллиона лет сделался темно-красным. В возрасте Вселенной 5 млн лет ее температура упала до 600 К, практически все реликтовые фотоны перешли в инфракрасную зону и в космическом пространстве настала беспросветная тьма. Она начала рассеиваться лишь после появления самых первых звезд, где-то через 200 млн лет после Большого взрыва.
Эхо Большого взрыва
Рекомбинация космической материи не только перевела ее из ионизированного состояния в нейтральный газ, но и положила конец очень интересному явлению — плазменному звуку. Об этом «ПМ» рассказал профессор Аризонского университета Дэниел Айзенстайн.
«Звук в любой газовой среде — это колебательный процесс, в ходе которого в ней распространяются волны сжатия и разрежения. В воздухе звук переносится благодаря столкновениям между молекулами газа. В возрасте космической плазмы 100 000 лет каждый кубический сантиметр пространства содержал 2000 электронов и менее 200 ядер гелия. Однако в этом же объеме находилось приблизительно 3 трлн фотонов, которые и создавали упругую среду. Хотя давление в этой среде было крайне низким (одна стотысячная атмосферы), звук в ней распространялся со скоростью почти 60% скорости света. В зонах максимума лучевого давления температура и яркость фотонного газа возрастали, в зонах минимума — падали. Поскольку фотоны не особенно больших энергий никак не замечают присутствия друг друга, в фотонном газе звуковые колебания могли распространяться лишь в присутствии заряженных частиц, на которые рассеивались световые кванты. После рекомбинации свежеиспеченные атомы прекратили чувствовать давление света, а освободившиеся фотоны разлетелись по космическому пространству. Существовавшие в те времена колебания плотности фотонного газа законсервировались до наших дней. Температура реликтовых фотонов, пришедших из разных участков небосвода, колеблется с амплитудой порядка 1/100 000. Эти осцилляции и есть следы звуковых волн, некогда распространявшихся в фотонном газе.
Но что же все-таки произошло через 380 000 лет после Большого взрыва? Несколькими десятками тысяч лет ранее электроны начали объединяться с ядрами. Сначала альфа-частицы присоединяли к себе по единственному электрону и превращались в однократно ионизированные атомы, а затем и по второму, так что получались нейтральные атомы гелия. Позднее это же случилось и с протонами, которые положили начало атомам водорода. Подобные слияния стали возможными потому, что в лучевом фоне сократилось количество фотонов с энергией больше энергии ионизации атомов гелия и водорода. Процесс рекомбинации растянулся на 80 000 лет и практически завершился, когда температура фотонного фона упала ниже 3000 К. Повторилась трансформация, имевшая место в односекундной Вселенной: тогда пространство стало прозрачным для нейтрино, а теперь — для квантов электромагнитного излучения. Остывшие фотоны уже не могли рассеиваться на нейтральных атомах и, как некогда нейтрино, отправились в беспрепятственное путешествие по космосу. Эти реликтовые фотоны, остывшие с тех пор до 2,7 К, мы называем фоновым микроволновым излучением.
Солнечная плазма
В центральной зоне Солнца идут реакции термоядерного синтеза. Ионов как таковых там нет, элементы представлены голыми ядрами и электронами, погруженными в газ из гамма-квантов.
Хотя удельная плотность этой среды десятикратно превышает плотность свинца, она обладает динамическими характеристиками типичной плазмы.
Некоторые ядра пробиваются к поверхности светила, попадают во все более и более холодные слои и обрастают электронными оболочками. Атомам многоэлектронных элементов, входящих в состав солнечной атмосферы, как правило, не хватает всего одного-двух электронов. Правда, в верхних ее слоях, в зоне солнечной короны, где температуры измеряются миллионами градусов, степень ионизации возрастает (следует заметить, что уникальная структура коронального спектра объясняется присутствием сильно ионизированных атомов железа).
В состав солнечной атмосферы также входят ядра водорода и гелия, отрицательные ионы водорода (они играют немалую роль в поглощении инфракрасного и видимого света), и даже, в самых холодных участках, молекулы воды и моноокиси углерода — и, естественно, электроны. Так что это многокомпонентная плазма, в которой происходят сложные динамические процессы с непременным участием сильных и быстро изменяющихся магнитных полей.
На внешней границе солнечной атмосферы тяготение уже не в состоянии удерживать частицы плазмы, которые уходят в межпланетное пространство и заполняют его вплоть до границ гелиосферы.
Этот феномен называется спокойным солнечным ветром. Его состав совпадает с составом плазмы короны — это протоны и электроны с небольшой добавкой альфа-частиц, ионов кислорода, железа, кремния и некоторых других элементов.
К спокойному ветру периодически добавляются выбросы менее плотной, но зато более нагретой плазмы, порожденной мощными корональными возмущениями. Эти потоки постепенно уносят угловой момент Солнца, уменьшая скорость его осевого вращения. Не стоит удивляться, что молодые звезды солнечного типа обычно совершают полный оборот гораздо быстрее, чем наше светило.
В итоге в космическом пространстве не стало свободных заряженных частиц — то есть плазма, в той или иной форме существовавшая как минимум с микросекундного возраста Вселенной, исчезла! В результате рекомбинации она на многие миллионы лет уступила место нейтральному водородно-гелиевому газу, соседствовавшему (и взаимодействовавшему посредством гравитации!) со столь же нейтральными частицами темной материи. Когда Вселенная состарилась до 100 млн лет, а температура фонового излучения опустилась до 80 К, темная материя начала стягиваться за счет собственного тяготения во все более и более плотные сгустки. Еще через 100 млн лет эти сгустки смогли втягивать в себя частицы космического газа, из которых сформировались коллапсирующие облака, положившие начало первым звездам. Уже предшественники первого поколения таких светил, так называемые протозвезды, возродили плазменное состояние материи, которое с тех пор и доминирует в космосе.
Небесные экстремалы
Межзвездный газ относительно спокоен лишь вдалеке от массивных обитателей космического пространства, а в их окрестностях он значительно нагревается и обретает множество экзотических свойств.
«Компактные космические объекты, такие как нейтронные звезды и черные дыры, нередко имеют компаньонов — обычные звезды, — объясняет «ПМ» специалист по теоретической астрофизике из Принстонского университета Анатолий Спитковский. — Такой объект своим гравитационным притяжением вытягивает вещество из атмосферы звезды-соседки, и вокруг него формируется так называемый аккреционный диск. Температура во внутренних зонах такого диска достигает миллиона градусов. Эти области заполнены вращающейся горячей плазмой, которая выдает себя рентгеновским излучением. В этой плазме возникают магнитные поля, которые могут стать причиной образования джетов — струйных выбросов плазменных частиц, направленных перпендикулярно плоскости аккреционного диска. Еще более экстремальная плазма существует около поверхности быстро вращающихся намагниченных нейтронных звезд. Там имеются мощные электрические поля, которые отрывают электроны с поверхности звезды и разгоняют их вдоль закрученных силовых линий магнитного поля до энергий порядка триллиона электрон-вольт. Двигаясь по этим искривленным траекториям, электроны излучают гамма-кванты, которые в сильном магнитном поле порождают электронно-позитронные пары. Таким образом, нейтронная звезда оказывается окружена магнитосферой, состоящей из электронов и позитронов».
Облако плазмы с Солнца накрыло Землю. Как это скажется на людях и планете?
Облако плазмы, выброшенное с Солнца, неопасно для людей. Однако это явление все-таки может повлиять на происходящее на планете. Об этом «360» рассказал главный научный сотрудник лаборатории «Рентгеновская астрономия Солнца» ФИАН Сергей Богачев.
Несмотря на такие грозные слова, как „вспышка“, „облако плазмы“, надо понимать, что речь идет о физическом явлении. Это явление известно науке. Оно регулярно происходит с какой-то периодичностью. Действительно, три года Солнце было в спокойном состоянии и такого рода феноменов не было. Вот это такое первое событие. Оно является предвестником некоего роста активности Солнца, который ученые тоже ожидали и который, видимо, в ближайшие два-три года пройдет
Ученый также объяснил, что такое облако плазмы.
«Это солнечное вещество. В некоторым смысле тот газ, который три дня светил на солнце, неожиданно для нас оказался около нашей планеты», — сказал он.
Собеседник «360» подчеркнул, что никакой опасности для человечества это явление не несет. Ведь люди живут на Земле «под защитой атмосферы, магнитного поля», поэтому «прямо сюда к нам эта плазма не проникнет».
Тем не менее облако плазмы может повлиять на работу космических аппаратов, нагрузки на них увеличатся. Возможны перебои в связи.
«Кроме того, какие-то отголоски до Земли доходят. Так называемые магнитные бури, полярные сияния. Вероятность этих событий повышена в ближайшие сутки», — заключил эксперт.
Предположительно, уже через день облако пройдет мимо Земли.
Вспышка на Солнце произошла вечером 7 декабря. Тогда звезда выбросила облако плазмы, которое спустя три дня достигло Земли.
Насколько опасна солнечная плазма?
25-08-2011, 10:18 | Наука и техника / Размышления о науке | разместил: VP | комментариев: (0) | просмотров: (2 782)
Группа астрофизиков из Юго-Западного научно-исследовательского института и Национальной солнечной обсерватории в США провела наблюдения за гигантским облаком солнечной плазмы, сформированным в результате выброса коронального вещества в межпланетное пространство в декабре 2008 года, чтобы определить, может ли это представлять опасность для Земли.
Корональным выбросом массы (coronal mass ejection, или, сокращенно, CME) называют выброс вещества из солнечной короны. Впервые наблюдение СМЕ в видимом диапазоне длин волн было выполнено в начале 1970-х годов при помощи коронографа, установленного на седьмой орбитальной солнечной обсерватории (OSO-7). Однако подобного рода наблюдения затруднены, так как диск коронографа вырезает яркий диск Солнца из поля зрения прибора, и предположения о возможном источнике коронального выброса делаются на основе наблюдений другими приборами в других диапазонах волн. Поэтому во многих случаях невозможно определить, в каком направлении движется облако плазмы — к Земле или от Земли. Чтобы уточнить результаты наблюдений, в настоящее время астрофизики используют пару космических аппаратов STEREO, которые разведены на большие углы по земной орбите.
СМЕ не зависят от солнечных вспышек. В отличие от последних, во время которых энергия, накопленная в активных областях Солнца, переходит в электромагнитное излучение, при корональных выбросах она расходуется на ускорение огромных масс вещества.
Выброс состоит из плазмы, куда входят в основном электроны и протоны, а также небольшое количество более тяжелых элементов — гелия, кислорода, железа и других. Характерным свойством такого выброса является то, что облако плазмы имеет форму гигантской петли, оба или одно основание которой «цепляются» за солнечную атмосферу. Магнитное поле внутри выброса, как правило, мощнее, чем в обычном солнечном ветре, и представляет собой скрученные в жгут силовые линии.
В том случае, если СМЕ направлены в сторону Земли, они вызывают на нашей планете определенные процессы: например, полярные сияния и магнитные бури. Последние, по предположению медиков (правда, до сих пор не доказанному), способны существенно влиять на здоровье людей. К группе риска относятся в первую очередь те, кто страдает сердечно-сосудистыми недугами: им рекомендуют в дни магнитных бурь быть особенно осторожными.
Кроме того, считается, что СМЕ могут вносить помехи в работу электрооборудования и электронных устройств. Это может вызывать сбои в работе компьютеров, связи и измерительных приборов, что чревато довольно серьезными последствиями. Поэтому существует необходимость прогнозировать корональные выбросы.
«Раньше орбитальные аппараты могли наблюдать выбросы лишь на небольшом участке пространства, приближенном к Солнцу, — комментирует одна из участников исследования, гелиофизик Алисия Рейнард. — Определяя скорость CME по этим неполным данным, мы оценивали время его подхода к Земле, получая неточные прогнозы с погрешностью в несколько часов».
В конце 2008 года аппарат STEREO-А, движущийся по орбите, близкой к земной, находился более чем в 100 миллионах километров от нашей планеты, что облегчило наблюдения за СМЕ. Американские исследователи проанализировали изображения, полученные с камер зонда, регистрирующих солнечный свет, рассеивающий электроны в облаке плазмы. Хотя по мере движения и расширения СМЕ значительно тускнеет, и потому вблизи Земли его довольно сложно зафиксировать, американцам, однако, удалось реконструировать все этапы эволюции выброса. Для этого им пришлось потратить более двух лет на обработку изображений. При этом результаты расчетов плотности газа в выброшенном плазменном облаке, непосредственно связанной с яркостью последнего, полностью согласовались с данными измерений, выполненных при помощи другой аппаратуры.
Если подобная методика обработки данных окажется эффективной, это позволит впредь составлять более точные прогнозы космической погоды и оценивать массу CME. А значит, мы сможем быть заранее готовыми к магнитным бурям и прочим «критическим» явлениям, связанным с воздействием солнечной плазмы. Как говорится, кто предупрежден, тот вооружен!
Однако данное исследование говорит и о том, что, возможно, страх перед СМЕ является абсолютно необоснованным. Ведь в исследуемом случае при значительной мощности вспышки до Земли дошло, в общем-то, ничтожно малое количество частиц (недаром было зафиксировано, что у орбиты Земли поток стал весьма тусклым), которые вряд ли сильно повлияли на магнитное поле самой планеты. Так что, возможно, то, что мы называем магнитными бурями, вызванными СМЕ, на самом деле имеет совсем другую природу (например, это явление порождается массовым «самогипнозом» — люди просто верят в то, что магнитные бури плохо влияют на их здоровья и в результате настолько убеждают себя в этом, что с самочувствием действительно начинаются проблемы).
Однако полностью исключать возможность влияние СМЕ на биологические процессы нашей планеты, конечно же, нельзя. И теперь, после того, как STEREO-А показал себя замечательным «охотником» на СМЕ, у гелиофизиков появился шанс подробнее изучить данное явление…
- Что такое долихосигма сигмовидной кишки
- Что такое мягкая пшеница