Что такое плазматическая мембрана каково ее значение 6 класс
Что такое плазматическая мембрана каково ее значение 6 класс
Подробное решение параграф § 3 по биологии для учащихся 6 класса, авторов Сонин Н.И. 2018
Вопросы и задания
Вопрос 1. Какие части обязательны для клеток всех живых организмов? Почему?
Каждая клетка имеет три главные части: наружную мембрану, которая одевает клетку, цитоплазму — полужидкую массу, которая составляет основное содержимое клетки, и ядро — небольшое плотное тельце, расположенное в цитоплазме.
Вопрос 2. Вспомните, какая наука изучает строение и функции клеток.
Цитология — наука о строении и функциях клеток.
Вопрос 3. Что такое плазматическая мембрана, каково её значение?
Любая клетка имеет плазматическую мембрану (от латинского «мембрана» — кожица, плёнка). Она защищает внутреннее содержимое клетки от воздействий внешней среды. Выросты и складки на поверхности мембраны способствуют прочному соединению клеток между собой. Мембрана пронизана тончайшими канальцами. По канальцам мембраны осуществляется перенос питательных веществ и продуктов жизнедеятельности клетки.
Вопрос 4. В чём сущность фагоцитоза? Объясните, почему фагоцитоз невозможен в растительной клетке.
Фагоцитоз (от греческого «фагео» — пожирать, «цитоз» — клетка) — поглощение клеткой крупных молекул органических веществ и даже целых клеток.
В этом процессе непосредственное участие принимает плазматическая мембрана. Путём фагоцитоза питаются многие простейшие. У позвоночных животных способность к фагоцитозу сохранили лишь некоторые клетки. Например, у человека это белые клетки крови — лейкоциты. Захватывая и «пожирая» болезнетворные микроорганизмы, они предохраняют нас от опасных инфекций.
В растительной клетке фагоцитоз не возможен, т.к. она покрыта плотной оболочкой, которая поддерживает постоянную форму клетки.
Вопрос 5. В чём состоит роль рибосом в организме?
Рибосомы обеспечивают сборку сложных молекул белков.
Вопрос 6. Как строение эндоплазматической сети связано с выполняемыми ею функциями?
Эндоплазматическая сеть представлена сетью многочисленных мелких канальцев и полостей, соединённых между собой. Такое строение позволяет ей связывать все части клетки между собой, участвовать в образовании и транспортировке различных органических веществ.
Вопрос 7. Прочитав текст на с. 19—20, объясните, как связаны между собой аппарат Гольджи и лизосомы.
Лизосомы образуются в аппарате Гольджи.
Вопрос 8. Вспомнив основные свойства живого, объясните, почему клетка, не имеющая митохондрий и рибосом, существовать не может.
Рибосомы осуществляют синтез белковых молекул. Энергия, необходимая для процессов жизнедеятельности, накапливается в митохондриях. Так, без белка и энергии не осуществлялся бы рост и развитие – важнейшее свойство живого. За счет этих процессов также осуществляется обмен веществ и энергии.
Вопрос 9. Клубень картофеля на свету зеленеет. С превращением каких органоидов в клетке это связано?
Это связано с преобразованием бесцветных пластид, в которых накапливаются запасные питательные вещества (например, крахмал в клубнях картофеля). Вместо них появляются зелёные пластиды, или хлоропласты, которые содержат пигмент хлорофилл, придающий клубням зелёный цвет.
Вопрос 10. Расскажите о значении клеточного ядра.
Важнейшая часть клетки — ядро. Обычно оно находится в центре клетки. Ядро содержит одно или несколько ядрышек. В ядре хранится наследственная информация о данной клетке и об организме в целом.
Вопрос 11. Что такое хромосомы, какова их роль в клетке? Сколько хромосом у человека?
Хромосома — это нитевидная структура клеточного ядра, несущая генетическую информацию в молекулах нуклеиновой кислоты, которая становится видной при делении клетки.
У человека 46 хромосом. В клетках хромосомы одинакового строения и размера образуют пары. Хромосомы одной пары называют гомологичными.
12. Составьте и заполните таблицу «Органоиды и их функции».
13. Составьте таблицу «Сравнение строения растительной и животной клеток» (работа в малых группах).
14. Почему вирусам для жизнедеятельности необходима клетка?
Вирус — неклеточная форма жизни. Они могут существовать только в клетках других организмов — это опасные внутриклеточные паразиты. Вирусы очень просто устроены: это молекула нуклеиновой кислоты, заключённая в защитную белковую оболочку. Вне клетки—хозяина вирусы не проявляют признаков жизни и ведут себя как обычные химические соединения.
Плазматическая мембрана
Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.
Содержание
Основные сведения
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Функции биомембран
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Структура и состав биомембран
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.
Мембранные органеллы
Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
Какое строение имеет плазматическая мембрана? Каковы ее функции?
Какое строение имеет плазматическая мембрана? Каковы ее функции? 17.01.201318.01.2013 Aeon
Какое строение имеет плазматическая мембрана? Каковы ее функции?
Основу структурной организации клетки составляют биологические мембраны. Плазматическая мембрана (плазмалемма) — это мембрана, окружающая цитоплазму живой клетки. Мембраны состоят из липидов и белков. Липиды (в основном фосфолипиды) образуют двойной слой, в котором гидрофобные «хвосты» молекул обращены внутрь мембраны, а гидрофильные — к её поверхностям. Молекулы белков могут располагаться на внешней и внутренней поверхности мембраны, могут частично погружаться в слой липидов или пронизывать её насквозь. Большая часть погруженных белков мембран — ферменты. Это жидкостно-мозаичная модель строения плазматической мембраны. Молекулы белка и липидов подвижны, что обеспечивает динамичность мембраны. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов (гликокаликс), располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мембраны каждой клетки специфичен и является своеобразным указателем типа клеток.
Крупные молекулы биополимеров попадают внутрь клетки в результате эндоцитоза. Его разделяют на фагоцитоз и пиноцитоз. Фагоцитоз — захват и поглощение клеткой крупных частиц. Явление впервые было описано И.И. Мечниковым. Сначала вещества прилипают к плазматической мембране, к специфическим белкам-рецепторам, затем мембрана прогибается, образуя углубление.
Образуется пищеварительная вакуоль. В ней перевариваются поступившие в клетку вещества. У человека и животных к фагоцитозу способны лейкоциты. Лейкоциты поглощают бактерии и другие твердые частицы.
Пиноцитоз — процесс захвата и поглощения капель жидкости с растворенными в ней веществами. Вещества прилипают к белкам мембраны (рецепторам), и капля раствора окружается мембраной, формируя вакуоль. Пиноцитоз и фагоцитоз происходят с затратой энергии АТФ.
Биология
Клетка — живая система. Что такое плазматическая мембрана, каково её значение?
Любая клетка имеет плазматическую мембрану (от латинского «мембрана» — кожица, плёнка). Она защищает внутреннее содержимое клетки от воздействий внешней среды. Выросты и складки на поверхности мембраны способствуют прочному соединению клеток между собой. Мембрана пронизана тончайшими канальцами. По канальцам мембраны осуществляется перенос питательных веществ и продуктов жизнедеятельности клетки.
Ещё по теме
Половое размножение организмов. Как вы думаете, почему дети бывают похожи и на отца и на мать?
Дыхание растений. Каковы отличительные особенности процессов фотосинтеза и дыхания и какова взаимосвязь между ними?
Питание и пищеварение. Сравните организм-симбионт и организм-паразит. Чем они отличаются и что у них общего?
Роль человека в природе. Почему важно сохранять леса?
Условия произрастания и видоизменения корней. Какую роль играют корнеплоды в жизни двулетних растений?
Фотосинтез — способ питания растений. Какие условия необходимы для образования в клетках растений органических веществ?
Пресноводная экосистема — озеро. Сравните экосистемы озера и аквариума. В чем черты их сходства и отличия?
Царства живых организмов. Почему растения считаются живыми организмами?
Виды корней и типы корневых систем. Чем корни отличаются от ризоидов?
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
Основное свойство плазматической мембраны
Строение клеток живых организмов во многом зависит от того, какие функции они выполняют. Однако существует ряд общих для всех клеток принципов архитектуры. В частности, любая клетка имеет снаружи оболочку, которая называется цитоплазматической или плазматической мембраной. Существует и еще одно название — плазмолемма.
Строение
Плазматическая мембрана состоит из молекул трех основных видов — протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.
В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:
Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.
Функции
Несмотря на некоторые различия в строении, плазмолеммы всех клеток обладают набором общих функций. Кроме того, они могут обладать характеристиками, сугубо специфичными для данного вида клеток. Рассмотрим кратко общие основные функции всех клеточных мембран:
Избирательная проницаемость
Основным свойством плазматической мембраны является избирательная проницаемость. Через нее проходят ионы, аминокислоты, глицерол и жирные кислоты, глюкоза. При этом клеточная мембрана пропускает одни вещества и задерживает другие.
Существует несколько видов механизмов транспорта веществ через клеточную мембрану:
Диффузия и осмос не требуют энергетических затрат и осуществляются пассивно, остальные виды транспорта — это активные процессы, протекающие с потреблением энергии.
Такое свойство клеточной оболочки во время пассивного транспорта обусловлено наличием специальных интегральных белков. Такие белки-каналы пронизывают плазмолемму и образуют в ней проходы. Ионы кальция, калия и лора передвигаются по таким каналам относительно градиента концентрации.
Транспорт веществ
К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.
Описаны следующие механизмы переноса веществ через плазмолемму:
Рассмотрим эти механизмы более подробно.
Пассивный
К пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера. Скорость диффузии зависит от величины молекул и их растворимости в липидах. Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.
Осмосом называется диффузия через клеточную стенку молекул воды.
Полярные молекулы с большой массой транспортируются с помощью специальных белков — этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.
Активный
Перенос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии. Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос. В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.
В мембранной упаковке
Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков — везикул, которые образует мембрана.
Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.
Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида — пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью. Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.
В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.
Экзоцитоз
Экзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.
Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.
Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.