Что такое плазмолемма в биологии

Что такое плазмолемма в биологии

В организме клетки объединяются в функциональные системы — ткани. Известно около 150 разновидностей клеток. Форма, размеры, внутренняя структура и функции клеток весьма разнообразны. Размеры клеток человека колеблются от 5 до 100 мкм и более. По форме клетки могут быть округлыми, кубическими, призматическими, веретеновидными, плоскими, звездчатыми и т. п. Различают одноядерные и многоядерные клетки. Последние возникают в результате ацитокинетических митозов или путем слияния многих клеток (симпласты). При делении клеток могут временно сохраняться цитоплазматические мостики (участки относительно широких цитоплазматических соединений между соседними клетками) — так возникают синцитии.

Несмотря на большое разнообразие формы, размеров, способов взаимосвязи и функций тканевых клеток, большинству из них присущи важнейшие общебиологически и эволюционно обусловленные свойства: генетическая индивидуальность и способность передавать ее поколениям, реактивность и раздражимость, обмен веществ, и, наконец, подвижность. Эти четыре свойства живого обеспечиваются следующими комплексами взаимосвязанных и взаимодействующих структур, или системами, клетки: покровной, или пограничной, системой (плазмолемма), системой восприятия, трансформации и передачи сигналов (рецепторно-трансдукторной), внутренней метаболической средой (органеллы, ядро, включения и др.) и опорно-двигательной системой.

Плазмолемма (клеточная мембрана) обеспечивает дискретность живого вещества за счет разграничения его с внешней средой (микроокружением), генетическую индивидуальность, присущую клеткам данной особи, а также транспорт веществ из клетки и в клетку. Данные функциональные свойства плазмолеммы связаны с ее молекулярной организацией.

Плазмолемма образована бимолекулярным слоем полярных липидов (преимущественно фосфолипидов — лецитина и цефалина) и встроенными в него молекулами глобулярных белков. Гидрофобные хвосты липидных молекул спрятаны от водных сред — гиалоплазмы и внешней среды — и направлены друг к другу (6), а гидрофилобращены в сторону содержащих воду фаз. В отдельных участках бислоя фосфолипидов присутствуют молекулы холестерина, придающие мембране жесткость. В этих участках мембрана, как правило, малоэластична, в связи с чем здесь не происходят процессы эндо- и экзоцитоза. Обращенные в межклеточную среду головки отдельных фосфолипидных молекул связаны с молекулами олигосахаров (2) — элементами гликокаликса. Липидные молекулы плазмолеммы обеспечивают ее основные физико-химические свойства, в первую очередь, текучесть мембраны, допускающую свободное перемещение составляющих ее молекул.

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологииМозаичная модель клеточной мембраны и поверхности мембраны по линии замораживания — скалывания (стрелка): 1 — интегральный белок; 2 — полисахариды гликокаликса; 3 — полуинтегральные белки; 4 — периферический белок; 5 — слой гидрофильных головок липидных молекул; 6 — гидрофобные концы бислоя липидных молекул; 7— эпитоп

Белковые компоненты плазмолеммы представлены собственно интегральными, или трансмембранными (1), полуинтегральными (3), и периферическими (4) белками. Интегральные белки полностью (трансмембранно) располагаются в билипидном слое, их молекулы в своем составе имеют алифатические (липофильные) аминокислоты, которые погружены в липидный слой, и наружные гидрофильные концы, с помощью которых белковые молекулы образуют связи с остатками Сахаров гликокаликса и периферическими белками. Полуинтегральные белки погружены в бимолекулярный слой липидов частично. Весь набор белковых молекул распределен в мембране мозаично и легко перемещается в ее плоскости с участием элементов цитоскелета, которые образуют связи с интегральными белками. Периферические белки располагаются вне липидного бислоя — в гиалоплазме и непрочно связаны с внутренней поверхностью плазмолеммы.

Белковые молекулы выполняют ряд специальных функций — рецепции, трансмембранных переносчиков, ферментативную.

Гликокаликс образован углеводными участками гликолипидов и гликопротеинов плазмолеммы. Он придает мембране дополнительную механическую прочность, обеспечивает адгезивные свойства (способность плазмолеммы взаимодействовать с мембранами других клеток и межклеточным веществом), участвует в распознавании родственных клеток, рецепции специфических сигналов. В электронном микроскопе гликокаликс имеет вид рыхлого слоя умеренной электронной плотности, покрывающего внешнюю поверхность клеточной мембраны.

Со стороны внутренней поверхности плазмолеммы располагается тонкий кортикальный слой гиалоплазмы (кортекс) с множеством микрофиламентов (преимущественно актиновых). Этот слой связан с периферическими белками плазмолеммы и цитоскелетом. Он также дает плазмолемме некоторый запас прочности и участвует в поддержании клеткой ее формы.

С молекулярной организацией плазмолеммы тесно связано такое важнейшее свойство живого как генетическая индивидуальность. Последняя обеспечивается следующими факторами и механизмами: 1) непрерывностью плазмолеммы и ее регенерацией, 2) наличием в составе плазмолеммы молекулы гистосовместимости (гликопротеина), которая определяет генетические отличия клеток одного организма от другого (за исключением клеток у монозиготных близнецов). Молекулу гистосовместимости 1-го класса, содержат все клетки особи. Данная молекула состоит из: 1) интегрального трансмембранного белка, часть которого находится в цитоплазме, другая — пронизывает плазмолемму и последняя — наиболее длинная часть молекулы находится в гликокаликсе; 2) периферического мембранного белка с малой молекулярной массой;

3) короткой молекулы белка, которая нековалентно связывается с петлями внеклеточной части интегрального трансмембранного белка. Именно последняя часть молекулы (обычно это пептид из 9 аминокислот) является фрагментом нормального белка клетки данной особи. Он и распознается как «свой» клетками иммунной системы человека. В случае мутации на месте белка гистосовместимости появляется белок с иной структурой молекулы (например, кодируемый вирусом,) и в ответ на это возникает иммунная реакция со стороны организма, направленная на уничтожение данной клетки. Так сохраняется генетическая индивидуальность клеток и, следовательно, организма.

Источник

Основное свойство плазматической мембраны

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологииСтроение клеток живых организмов во многом зависит от того, какие функции они выполняют. Однако существует ряд общих для всех клеток принципов архитектуры. В частности, любая клетка имеет снаружи оболочку, которая называется цитоплазматической или плазматической мембраной. Существует и еще одно название — плазмолемма.

Строение

Плазматическая мембрана состоит из молекул трех основных видов — протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.

В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:

Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.

Это интересно: сколько хромосом у нормального человека?

Функции

Несмотря на некоторые различия в строении, плазмолеммы всех клеток обладают набором общих функций. Кроме того, они могут обладать характеристиками, сугубо специфичными для данного вида клеток. Рассмотрим кратко общие основные функции всех клеточных мембран:

Избирательная проницаемость

Основным свойством плазматической мембраны является избирательная проницаемость. Через нее проходят ионы, аминокислоты, глицерол и жирные кислоты, глюкоза. При этом клеточная мембрана пропускает одни вещества и задерживает другие.

Существует несколько видов механизмов транспорта веществ через клеточную мембрану:

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологииДиффузия и осмос не требуют энергетических затрат и осуществляются пассивно, остальные виды транспорта — это активные процессы, протекающие с потреблением энергии.

Такое свойство клеточной оболочки во время пассивного транспорта обусловлено наличием специальных интегральных белков. Такие белки-каналы пронизывают плазмолемму и образуют в ней проходы. Ионы кальция, калия и лора передвигаются по таким каналам относительно градиента концентрации.

Транспорт веществ

К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.

Описаны следующие механизмы переноса веществ через плазмолемму:

Рассмотрим эти механизмы более подробно.

Пассивный

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологииК пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера. Скорость диффузии зависит от величины молекул и их растворимости в липидах. Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.

Осмосом называется диффузия через клеточную стенку молекул воды.

Полярные молекулы с большой массой транспортируются с помощью специальных белков — этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.

Активный

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологииПеренос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии. Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос. В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.

В мембранной упаковке

Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков — везикул, которые образует мембрана.

Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.

Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида — пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью. Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.

В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.

Экзоцитоз

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологииЭкзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.

Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.

Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.

Источник

Плазматическая мембрана

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Содержание

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Источник

Биология. 11 класс

§ 11. Поверхностный аппарат клетки

Обязательным компонентом поверхностного аппарата любой клетки является цитоплазматическая мембрана (плазмалемма). Она отделяет и защищает внутреннее содержимое клетки от внешней среды. Важнейшим свойством цитоплазматической мембраны является избирательная проницаемость. Различные вещества проходят через плазмалемму с разной скоростью, а для некоторых она практически непроницаема. Таким образом, цитоплазматическая мембрана обеспечивает обмен веществ между клеткой и внеклеточной средой и постоянство химического состава клетки.

Химический состав и строение плазмалеммы. Цитоплазматическая мембрана состоит преимущественно из липидов и белков. В состав плазмалеммы также входят углеводы, которые являются компонентами сложных липидов и белков — гликолипидов и гликопротеинов. Толщина цитоплазматической мембраны составляет около 7,5 нм.

Около половины массы плазмалеммы составляют липиды, представленные в основном фосфолипидами. Они формируют основу строения мембраны — липидный бислой (двойной слой), в котором гидрофобные хвосты молекул погружены внутрь, а гидрофильные головки располагаются снаружи (см. рис. 6.3). Кроме фосфолипидов, в состав двойного слоя входят и другие липиды например стероиды.

*С липидным бислоем связаны белки. Молекулы интегральных белков пронизывают двойной слой липидов насквозь. Полуинтегральными называют белки, погруженные лишь в один из двух липидных слоев (внешний либо внутренний). Периферические белки примыкают к поверхности бислоя с наружной или внутренней стороны (рис. 11.1).*

Мембранные липиды и белки связаны между собой не ковалентными связями, а за счет гидрофобных и электростатических взаимодействий. В связи с этим молекулы данных веществ могут двигаться вдоль плоскости мембраны. Таким образом, плазмалемма является динамичной структурой — молекулы белков перемещаются в подвижном, текучем липидном бислое, как в жидкости. *Данная модель организации мембраны получила название жидкостно-мозаичной. Она была предложена американскими биологами Дж. Сингером и Г. Николсоном в 1972 г.* Свойство текучести обусловливает пластичность плазмалеммы, благодаря чему она способна, например, быстро восстанавливать свою целостность после незначительных повреждений.

*Движение в плоскости плазмалеммы происходит достаточно легко. Однако переход белков с одной стороны мембраны на другую (так называемый флип-флоп переход) практически невозможен. Подобное перемещение липидов происходит, но очень редко, при участии специальных белков флиппаз. Поэтому состав наружного и внутреннего слоев плазмалеммы различается.*

В клетках эукариот, кроме плазмалеммы, имеются внутренние мембраны, ограничивающие ядро и мембранные органоиды. Для всех биологических мембран характерен общий план строения — их основу составляет липидный бислой, с которым связаны молекулы белков.

Источник

Строение и функции плазмолеммы (цитолеммы)

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии

Классификация включений

Строение немембранных органелл

Строение общих органелл

Классификация органелл

Состав гиалоплазмы

Строение межклеточных контактов

Строение плазмолеммы

Понятие цитология

ЛЕКЦИЯ 2. Цитология. Цитоплазма

1. Цитология наука о строении, развитии и жизнедеятельности клеток. Следовательно, цитология изучает закономерности структурно-функциональной организации первого (клеточного) уровня организации живой материи. Клетка является наименьшей единицей живой материи, обладающей самостоятельной жизнедеятельностью и способностью к самовоспроизведению. Субклеточные образования (ядро, митохондрии и другие органеллы) хотя и являются живыми структурами, но не обладают самостоятельной жизнедеятельностью.

Клетка элементарная единица живого, состоящая из цитоплазмы и ядра и являющаяся основой строения, развития и жизнедеятельности всех животных и растительных организмов.

Основные компоненты клетки:

По соотношению ядра и цитоплазмы (ядерно-цитоплазматическое отношение) клетки подразделяются на:

· клетки ядерного типа объем ядра преобладает над объемом цитоплазмы;

· клетки цитоплазматического типа цитоплазма преобладает над ядром.

По форме клетки бывают:

· круглыми (клетки крови);

· кубическими или цилиндрическими (клетки разных эпителиев);

· отростчатыми (нервные клетки) и другие.

Большинство клеток содержат одно ядро, однако могут быть в одной клетке 2, 3 и более ядер многоядерные клетки. В организме имеются структуры (симпласты, синтиций), содержащие несколько десятков или даже сотен ядер. Однако эти структуры образуются или в результате слияния отдельных клеток (симпласты), или в результате неполного деления клеток (синцитий). Морфология этих структур будет рассмотрена при изучении тканей.

Структурные компоненты цитоплазмы животной клетки:

· Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.

Плазмолемма оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.

Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5—10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков.

· рецепторная или антигенная;

· образование межклеточных контактов.

Основу строения плазмолеммы составляет двойной слой липидных молекулбилипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой.

Строение билипидной мембраны

Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.

На электроннограмме в плазмолемме четко определяются три слоя наружный и внутренний электронноплотные, промежуточный с низкой электронной плотностью.

Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По локализации в мембране белки подразделяются на:

· интегральные пронизывают всю толщу билипидного слоя;

· полуинтегральные включающиеся только в монослой липидов (наружный или внутренний);

· прилежащие к мембране, но не встроенные в нее.

По выполняемой функции белки плазмолеммы подразделяются на:

Что такое плазмолемма в биологии. Смотреть фото Что такое плазмолемма в биологии. Смотреть картинку Что такое плазмолемма в биологии. Картинка про Что такое плазмолемма в биологии. Фото Что такое плазмолемма в биологии

Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой — гликокаликс. В неделящейся клетке имеется подмембранный слой, образованный микротрубочками и микрофиламентами.

Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляют трансплантационные антигены или антигены гистосовместимости.

Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.

Различают следующие способы транспорта веществ:

· пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;

· активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);

· везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитозтранспорт веществ из клетки.

В свою очередь эндоцитоз подразделяется на:

· фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);

· пиноцитоз перенос воды и небольших молекул.

Процесс фагоцитоза подразделяется несколько фаз:

· адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;

· поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков — фагосомы и передвижения ее в гиалоплазму

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *