Что такое площадь соприкосновения
площадь соприкосновения
Смотреть что такое «площадь соприкосновения» в других словарях:
площадь соприкосновения — sąlyčio plotas statusas T sritis fizika atitikmenys: angl. contact area; contacting area vok. Berührungsfläche, f; Kontaktfläche, f rus. площадь контакта, f; площадь соприкосновения, f pranc. aire de contact, f … Fizikos terminų žodynas
площадь соприкосновения поверхностей — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN contacting area … Справочник технического переводчика
площадь контакта — sąlyčio plotas statusas T sritis fizika atitikmenys: angl. contact area; contacting area vok. Berührungsfläche, f; Kontaktfläche, f rus. площадь контакта, f; площадь соприкосновения, f pranc. aire de contact, f … Fizikos terminų žodynas
площадь пода — [hearth area] в мартеновской печи, поверхности жидкой ванны на уровне соприкосновения металла и шлака. Смотри также: Площадь площадь спекания … Энциклопедический словарь по металлургии
Выжива́ние в экстрема́льной ситуа́ции — Во время походов люди длительное время пребывают в среде, резко отличающейся от привычной, могут попасть в экстремальные ситуации, вызванные пониженной или высокой температурой, лавинами, паводками на реках, обильными осадками и т.д. В практике… … Медицинская энциклопедия
Сила трения скольжения — Сила трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия
Закон трения — Силы трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия
Барабанные палочки — используются для игры на ударных инструментах. Обычно изготавливаются из дерева (клён, орешник, дуб, граб, бук). Существуют также модели … Википедия
Громоотвод — (paratonnerre или parafoudre, Blitzableiter, Lightning Conductor), точнее, по назначению молниеотвод, служит для защиты зданий и судов от разрушительных действий молнии. Его действие основано на свойстве металлических остроконечий как бы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
пряжка — 3.6 пряжка: Часть пояса, предназначенная для его фиксации на теле человека. Источник: ГОСТ Р 12.4.184 95: Система стандартов безопасности труда. Пояса предохранительные. Общие те … Словарь-справочник терминов нормативно-технической документации
Химическая кинетика. Скорость химических реакций
Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.
Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.
Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.
Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:
υ = ΔC / Δt
Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:
υ = Δν / (S·Δt)
Факторы, влияющие на скорость химической реакции
1. Температура
Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.
Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.
Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).
Точное значение температурного коэффициента определяется для каждой реакции.
здесь v2 — скорость реакции при температуре T2,
v1 — скорость реакции при температуре T1,
γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.
В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.
2. Концентрация
На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.
Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:
здесь v — скорость химической реакции,
CA и CB — концентрации веществ А и В, соответственно, моль/л
k – коэффициент пропорциональности, константа скорости реакции.
закон действующих масс выглядит так:
Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.
В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.
В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).
3. Давление
pV = νRT
Например. Как изменится скорость реакции сплавления извести с оксидом кремния:
при повышении давления?
Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.
4. Катализатор
Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:
A + K = AK
AK + B = AB + K
Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.
По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.
Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.
Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.
Пример гетерогенного катализа – синтез аммиака:
В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.
Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.
В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.
Катализаторы не стоит путать с инициаторами процесса и ингибиторами.
Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.
5. Площадь соприкосновения реагирующих веществ
В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».
6. Природа реагирующих веществ
На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.
Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.
Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.
Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.
Более активные вещества мы можем встретить в быту и природе сравнительно редко.
При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.
При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.
При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.
Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.
Давление
Почему, шагая по глубокому снегу в зимней обуви, мы обязательно проваливаемся, а надев лыжи, можем совершенно спокойно перемещаться, как по ровной поверхности? Почему мы режем хлеб острым ножом, а не ложкой или вилкой? Почему, катаясь на велосипеде по бездорожью, мы можем застрять в песке, а с любой машиной на гусеничном ходу это никогда не случится?
Ответы на эти и другие вопросы ты получишь, ознакомившись с таким понятием, как давление.
Что такое давление?
Давление — это сила, которую прикладывают перпендикулярно какой-либо поверхности. Давление на поверхность оказывают как твердые тела, так и жидкости, газы.
От чего зависит давление?
Давление зависит от двух составляющих: прилагаемой силы и площади поверхности.
Давай рассмотрим следующий пример: один гимнаст удерживает другого обеими руками. При этом руки гимнаста, находящегося сверху, оказывают определенное давление на руки нижнего гимнаста, и давление распределяется равномерно на обе руки. Когда верхний гимнаст отпускает одну руку, площадь соприкосновения обоих гимнастов уменьшается, поэтому давление на руку нижнего гимнаста возрастает вдвое. То есть уменьшение площади способствует увеличению давления. Теперь ты знаешь, что для увеличения силы воздействия на поверхность нужно просто уменьшить площадь соприкосновения предметов.
В каких случаях уменьшают давление?
Иногда большая поверхность гораздо предпочтительнее, чем маленькая. Так, ходить по снегу в снегоступах гораздо проще, чем в обычных ботинках. Нога не проваливается в снег, так как наш вес равномерно перераспределяется по площади снегоступа (она гораздо больше, чем площадь подошвы обуви), при этом сила давления становится меньше, и соответственно уменьшается твое давление на поверхность снега.
Такой же принцип касается беговых и водных лыж. Как и снегоходы, лыжи позволяют удержаться на поверхности снега или воды.
Интересные факты
Давление и текучие вещества
С точки зрения физики, газы и жидкости относятся к текучим веществам, т.е. веществам, способным изменять форму в зависимости от сосуда, в котором они находятся. По сравнению с твердыми веществами жидкости и газы несколько иначе реагируют на давление. Например, если ты возьмешь в руки мяч, его внешний вид вообще не изменится от твоего прикосновения, однако если ты с силой сожмешь мяч, то он деформируется. Что касается текучих веществ, то они скорее разольются, чем деформируются.
Открытие Паскаля
Французский математик и физик Блез Паскаль, живший в XVII в., исследовал ряд важных свойств жидкостей и газов.
Он провел очень простой опыт: в закрытую бочку, наполненную водой, вставил длинную узкую трубку. Поднявшись на второй этаж, Паскаль через трубку влил в бочку всего лишь стакан воды. В это трудно поверить, но бочка развалилась на части! Почему это произошло? Вода в бочке заняла весь объем, и давление воды увеличилось настолько, что бочка лопнула. На основании этого опыта ученый пришел к выводу, что когда на поверхность жидкости или газа оказывается давление, это давление передается без изменения в любую точку жидкости или газа.
На основе изучения этого явления, открытого ученым, были созданы различные приборы и механизмы, в которых используется закон Паскаля.
Гидравлический пресс
Практически каждый день мы сталкиваемся с необходимостью перемещать какие-либо предметы. И нет никаких проблем, если вес этих предметов 3—5 или даже 10 кг! А вот что делать, если нужно поднять, например, машину на станции техобслуживания? Вот здесь и приходится прибегать к помощи специальных механизмов. Одним из них является гидравлический пресс. Гидравлический пресс позволяет получить большой выигрыш в силе даже в случае приложения незначительных усилий. Устройство представляет собой два сообщающихся цилиндра разного диаметра. Цилиндры заполняются маслом, водой или любой другой жидкостью. Сверху каждый цилиндр плотно закрыт поршнем.
Согласно закону Паскаля, давление распространяется одинаково по всем направлениям. Поэтому когда мы применяем силу, например, нажимаем на поршень малого цилиндра, то такое же давление передается на второй поршень, и машина поднимается.
Системы водоснабжения, газо- и нефтепроводы
Без применения закона Паскаля создание водопроводов, газо- и нефтепроводов не было бы возможным! Принцип работы этих сложных систем состоит в том, что давление, которое создается насосами для нагнетания воды, газа или нефти, без изменения передается по трубам от насоса до места назначения.
Гидравлический домкрат
Гидравлический домкрат — еще один пример применения закона Паскаля в современной технике. Гидравлические домкраты используются для подъема очень тяжелых грузов в различных машинах: бульдозерах, пожарных подъемниках и прочих устройствах для выполнения различных работ на высоте. Гидравлический домкрат тоже состоит из двух сообщающихся цилиндрических сосудов разного диаметра, двух клапанов и подъемной платформы. Сосуды снабжены поршнями и заполнены маслом. При действии силы в узком сосуде создается избыточное давление, которое передается во все точки без изменения. Именно поэтому в широком цилиндре также создается избыточное давление. Под действием силы платформа домкрата поднимается вместе с расположенным на ней грузом.
Системы торможения и открывания дверей
Системы торможения и открывания дверей в поездах также работают благодаря закону Паскаля.
площадь соприкосновения
Смотреть что такое «площадь соприкосновения» в других словарях:
площадь соприкосновения — sąlyčio plotas statusas T sritis fizika atitikmenys: angl. contact area; contacting area vok. Berührungsfläche, f; Kontaktfläche, f rus. площадь контакта, f; площадь соприкосновения, f pranc. aire de contact, f … Fizikos terminų žodynas
площадь соприкосновения поверхностей — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN contacting area … Справочник технического переводчика
площадь контакта — sąlyčio plotas statusas T sritis fizika atitikmenys: angl. contact area; contacting area vok. Berührungsfläche, f; Kontaktfläche, f rus. площадь контакта, f; площадь соприкосновения, f pranc. aire de contact, f … Fizikos terminų žodynas
площадь пода — [hearth area] в мартеновской печи, поверхности жидкой ванны на уровне соприкосновения металла и шлака. Смотри также: Площадь площадь спекания … Энциклопедический словарь по металлургии
Выжива́ние в экстрема́льной ситуа́ции — Во время походов люди длительное время пребывают в среде, резко отличающейся от привычной, могут попасть в экстремальные ситуации, вызванные пониженной или высокой температурой, лавинами, паводками на реках, обильными осадками и т.д. В практике… … Медицинская энциклопедия
Сила трения скольжения — Сила трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия
Закон трения — Силы трения скольжения силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение… … Википедия
Барабанные палочки — используются для игры на ударных инструментах. Обычно изготавливаются из дерева (клён, орешник, дуб, граб, бук). Существуют также модели … Википедия
Громоотвод — (paratonnerre или parafoudre, Blitzableiter, Lightning Conductor), точнее, по назначению молниеотвод, служит для защиты зданий и судов от разрушительных действий молнии. Его действие основано на свойстве металлических остроконечий как бы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
пряжка — 3.6 пряжка: Часть пояса, предназначенная для его фиксации на теле человека. Источник: ГОСТ Р 12.4.184 95: Система стандартов безопасности труда. Пояса предохранительные. Общие те … Словарь-справочник терминов нормативно-технической документации
Что такое площадь соприкосновения
Когда мы говорим «абсолютно гладкая поверхность» — это значит, что между ней и телом нет трения. Такая ситуация в реальной жизни практически невозможна. Избавиться от трения полностью невероятно трудно.
Чаще при слове «трение» нам приходит в голову его «тёмная» сторона — из-за трения скрипят и прекращают качаться качели, изнашиваются детали машин. Но представьте, что вы стоите на идеально гладкой поверхности, и вам надо идти или бежать. Вот тут трение бы, несомненно, пригодилось. Без него вы не сможете сделать ни шагу, ведь между ботинком и поверхностью нет сцепления, и вам не от чего оттолкнуться, чтобы двигаться вперёд.
Трение — это взаимодействие, которое возникает в плоскости контакта поверхностей соприкасающихся тел.
Сила трения — это величина, которая характеризует это взаимодействие по величине и направлению.
Основная особенность: сила трения приложена к обоим телам, поверхности которых соприкасаются, и направлена в сторону, противоположную мгновенной скорости движения тел друг относительно друга. Поэтому тела, свободно скользящие по какой-либо горизонтальной поверхности, в конце концов остановятся. Чтобы тело двигалось по горизонтальной поверхности без торможения, к нему надо прикладывать усилие, противоположное и хотя бы равное силе трения. В этом заключается суть силы трения.
Откуда берётся трение
Трение возникает по двум причинам:
Виды силы трения
В зависимости от вида трущихся поверхностей, различают сухое и вязкое трение. В свою очередь, оба подразделяются на другие виды силы трения.
Сила трения покоя
Рассмотрим силу трения покоя подробнее.
Обычная ситуация: на кухне имеется холодильник, его нужно переставить на другое место.
Когда никто не пытается двигать холодильник, стоящий на горизонтальном полу, трения между ним и полом нет. Но как только его начинают толкать, коварная сила трения покоя тут же возникает и полностью компенсирует усилие. Причина её возникновения — те самые неровности соприкасающихся поверхностей, которые деформируясь, препятствуют движению холодильника. Поднатужились, увеличили силу, приложенную к холодильнику, но он не поддался и остался на месте. Это означает, что сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе, ведь увеличиваются деформации неровностей.
Пока силы равны, холодильник остаётся на месте:
Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя
Сила трения скольжения
Что же делать с холодильником и можно ли победить силу трения покоя? Не будет же она расти до бесконечности?
Зовём на помощь друга, и вдвоём уже удаётся передвинуть холодильник. Получается, чтобы тело двигалось, нужно приложить силу, большую, чем самая большая сила трения покоя:
Теперь на движущийся холодильник действует сила трения скольжения. Она возникает при относительном движении контактирующих твёрдых тел.
Итак, сила трения покоя может меняться от нуля до некоторого максимального значения — Fтр. пок. макс И если приложенная сила больше, чем Fтр. пок. макс, то у холодильника появляется шанс сдвинуться с места.
Теперь, после начала движения, можно прекратить наращивать усилие и ещё одного друга можно не звать. Чтобы холодильник продолжал двигаться равномерно, достаточно прикладывать силу, равную силе трения скольжения:
Как рассчитать и измерить силу трения
Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?
Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче!
Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону.
Сила реакции опоры обозначается N. Можно сделать вывод
Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.
Коэффициент трения обозначается буквой μ (греческая буква «мю»). Коэффициент определяется отношением силы трения к силе нормального давления.
Он чаще всего попадает в интервал от нуля до единицы, не имеет размерности и определяется экспериментально.
Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.
Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.
Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта.
Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:
где μ — коэффициент трения, N — сила нормальной реакции опоры.
Для тела, движущегося по горизонтальной поверхности, сила реакции опоры по модулю равна весу тела:
Сила трения качения
Ещё древние строители заметили, что если тяжёлый предмет водрузить на колёсики, то сдвинуть с места и затем катить его будет гораздо легче, чем тянуть волоком. Вот бы пригодилась эта древняя мудрость, когда мы тянули холодильник! Однако всё равно нужно толкать или тянуть тело, чтобы оно не остановилось. Значит, на него действует сила трения качения. Это сила сопротивления движению при перекатывании одного тела по поверхности другого.
Причина трения качения — деформация катка и опорной поверхности. Сила трения качения может быть в сотни раз меньше силы трения скольжения при той же силе давления на поверхность. Примерами уменьшения силы трения за счёт подмены трения скольжения на трение качения служат такие приспособления, как подшипники, колёсики у чемоданов и сумок, ролики на прокатных станах.
Направление силы трения
Сила трения скольжения всегда направлена противоположно скорости относительного движения соприкасающихся тел. Важно помнить, что на каждое из соприкасающихся тел действует своя сила трения.
Бывают ситуации, когда сила трения не препятствует движению, а совсем наоборот.
Представьте, что на ленте транспортёра лежит чемодан. Лента трогается с места, и чемодан движется вместе с ней. Сила трения между лентой и чемоданом оказалась достаточной, чтобы преодолеть инерцию чемодана, и эти тела движутся как одно целое. На чемодан действует сила трения покоя, возникающая при взаимодействии соприкасающихся поверхностей, которая направлена по ходу движения ленты транспортёра.
Если бы лента была абсолютно гладкой, то чемодан начал бы скользить по ней, стремясь сохранить своё состояние покоя. Напомним, что это явление называется инерцией.
Сила трения покоя, помогающая нам ходить и бегать, также направлена не против движения, а вперёд по ходу перемещения. При повороте же автомобиля сила трения покоя и вовсе направлена к центру окружности.
Для того чтобы понять, как направлена сила трения покоя, нужно предположить, в каком направлении стало бы двигаться тело, будь поверхность идеально гладкой. Сила трения покоя в этом случае будет направлена как раз в противоположную сторону. Пример, лестница у стены.
Подведём итоги
У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.
Попробовать бесплатно
Интересное по рубрике
Найдите необходимую статью по тегам
Подпишитесь на нашу рассылку
Мы в инстаграм
Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством
Посмотреть
Рекомендуем прочитать
Реальный опыт семейного обучения
Звонок по России бесплатный
Посмотреть на карте
Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.