Что такое плотность жидкости в гидравлике
2. Основные свойства жидкости
2. Основные свойства жидкости
Плотность жидкости.
Если рассмотреть произвольный объем жидкости W, то он имеет массу M.
Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна
где M – масса жидкости.
Если требуется узнать r в каждой точке А объема W, то
где D – элементарность рассматриваемых характеристик в точке А.
Сжимаемость.
Характеризуется коэффициентом объемного сжатия.
Из формулы видно, что речь идет о способности жидкостей уменьшать объем при единичном изменении давления: из-за уменьшения присутствует знак минус.
Температурное расширение.
Суть явления втом, что слой с меньшей скоростью «тормозит» соседний. В итоге появляется особое состояние жидкости, из-за межмолекулярных связей у соседних слоев. Такое состояние называют вязкостью.
Отношение динамической вязкости к плотности жидкости называется кинематической вязкостью.
Поверхностное натяжение: из-за этого свойства жидкость стремится занимать наименьший объем, например, капли в шарообразных формах.
В заключение приведем краткий список свойств жидкостей, которые рассмотрены выше.
6. Температурное расширение.
7. Сопротивление растяжению.
8. Свойство растворять газы.
9. Поверхностное натяжение.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Повышенный расход охлаждающей жидкости
Повышенный расход охлаждающей жидкости Неисправности системы охлаждения Повреждение радиатора. Проверить герметичность радиатора. Мелкие дефекты радиатора устранить пайкой. При сильных повреждениях радиатор заменить.Повреждение шлангов или прокладок в соединениях.
3. Силы, действующие в жидкости
3. Силы, действующие в жидкости Жидкости делятся на покоящиеся и движущиеся.Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.Сами эти силы можно разделить на две группы.1. Силы массовые. По-другому эти силы называют силами, распределенными по
14. Методы определения движения жидкости
14. Методы определения движения жидкости Гидростатика изучает жидкость в ее равновесном состоянии.Кинематика жидкости изучает жидкость в движении, не рассматривая сил, порождавших или сопровождавших это движение.Гидродинамика также изучает движение жидкости, но в
15. Основные понятия, используемые в кинематике жидкости
15. Основные понятия, используемые в кинематике жидкости Сутью вышеупомянутого поля скоростей являются векторные линии, которые часто называют линиями тока.Линия тока – такая кривая линия, для любой точки которой в выбранный момент времени вектор местной скорости
19. Уравнение неразрывности жидкости
20. Характеристики потока жидкости
20. Характеристики потока жидкости В гидравлике потоком считают такое движение массы, когда эта масса ограничена:1) твердыми поверхностями;2) поверхностями, которые разделяют разные жидкости;3) свободными поверхностями.В зависимости от того, какого рода поверхностями
31. Уравнения движения вязкой жидкости
31. Уравнения движения вязкой жидкости Для получения уравнения движения вязкой жидкости рассмотрим такой же объем жидкости dV = dxdydz, который принадлежит вязкой жидкости (рис. 1).Грани этого объема обозначим как 1, 2, 3, 4, 5, 6. Рис. 1. Силы, действующие на элементарный объем
32. Деформация в движущейся вязкой жидкости
32. Деформация в движущейся вязкой жидкости В вязкой жидкости имеются силы трения, в силу этого при движении один слой тормозит другой. В итоге возникает сжатие, деформация жидкости. Из-за этого свойства жидкость и называют вязкой.Если вспомнить из механики закон Гука, то
27. Основные свойства газовых смесей
27. Основные свойства газовых смесей Множество нескольких различных газов, между которыми невозможно осуществить химическое взаимодействие, называют смесью идеальных газов. Давление рассчитывается по формуле:Pi = NikT/ V,где i= 1, 2, r, называется парциальным,r– число газов в
4.1. Основные механические свойства материалов
4.1. Основные механические свойства материалов Изготовление ювелирных изделий – процесс многоступенчатый и начинается всегда с литья, т. е. получения сплава в жидком состоянии, заливки его в форму, кристаллизации. В отдельных случаях сплав используют в виде
О добавлении охлаждающей жидкости
О добавлении охлаждающей жидкости Если при значительном охлаждении автомобиля (-30 °C) уровень ОЖ в расширительном бачке существенно понизится, то не торопитесь доливать. Включите УОПД, запустите мотор, прогрейте его, зарядите ТА. Если после этого уровень ОЖ будет
§ 5.ОСНОВНЫЕ свойства танков.
§ 5.ОСНОВНЫЕ свойства танков. Основным свойством танка является его способность двигаться по местности. Это достигается гусеничным ходом и определяет тактические свойства танка в отличие от свойств бронированного автомобиля, который может двигаться лишь по дорогам.
Охлаждающие жидкости и основные требования к ним
Охлаждающие жидкости и основные требования к ним Большой недостаток воды как охлаждающей жидкости в системах охлаждения автомобильных двигателей – высокая температура замерзания, что делает ее непригодной для применения в зимнее время. Еще один недостаток – наличие
6.1.3. Рабочие и специальные жидкости
6.1.3. Рабочие и специальные жидкости В зависимости от назначения и свойств жидкости делятся на охлаждающие, тормозные, амортизационные и пусковые.Гидравлические масла работают при больших перепадах температур (от —40 до +80 °C), давлениях 10–15 МПа, скоростях скольжения до
Плотность. Плотность – это масса жидкости, заключенная в единице объема. В Международной системе единиц (СИ) она измеряется в кг/м3. Для однородной жидкости
.
Если жидкость неоднородна в объеме V, то эта формула позволяет вычислить лишь среднее значение плотности, а истинная плотность в какой-либо точке может быть определена как
.
Значения плотностей жидкостей возрастают при повышении давления. Например, плотность воды при температуре 0°С изменяется с ростом давления (от 0,1 до 400 МПа) от 999 до 1146 кг/м3. С ростом температуры плотность жидкостей снижается. Исключением из этого правила является только вода в диапазоне температур от 0 до 4°С: ее плотность возрастает и достигает своего максимума (1000 кг/м3) при t = 3,98°С. При дальнейшем нагреве ее плотность снижается как и у других жидкостей. Именно по этой причине температура воды на дне глубоких водоемов зимой всегда 4°С. При остывании воды до 4°С циркуляция воды в водоеме прекращается, что препятствует промерзанию его до дна.
Значения плотностей некоторых широко распространенных жидкостей при нормальных условиях (t = 20°С, p = 0,1 МПа):
* ртуть – 13 546 кг/м3;
* нефть натуральная – 760 – 900 кг/м3;
* масла минеральные – 850 – 930 кг/м3;
* бензин – 712 – 780 кг/м3.
Удельный объем. Удельный объем – это объем жидкости единичной массы, то есть величина, обратная плотности:
.
Так уж сложилось исторически, что эта характеристика редко используется для капельных жидкостей, но очень широко применяется для газов.
Удельный вес. Удельный вес – это вес жидкости единичного объема:
.
Относительная плотность. Относительная плотность – это отношение плотности жидкости к плотности дистиллированной воды при 4°С:
.
Так как rводы+4 = 1000 кг/м3, то вычислять относительные плотности очень просто.
Все указанные характеристики жидкостей практически характеризуют одно и то же свойство.
Плотность жидкости можно вычислить по вышеприведенным формулам, а можно и измерить специальным прибором, называемым ареометром. Этот прибор похож на поплавок для рыбалки. Глубина его погружения зависит от плотности жидкости.
Сжимаемость. Сжимаемость – это свойство жидкости изменять свой объем под действием давления. Сжимаемость характеризуется двумя величинами: коэффициентом объемного сжатия bp и объемным модулем упругости K.
Коэффициент объемного сжатия – это относительное изменение объема жидкости, приходящееся на единицу давления
.
Знак “минус” в этом выражении введен для того, чтобы этот коэффициент имел положительные значения, так как производная всегда отрицательная.
Если принять, что , то можно приближенно рассчитать объем и плотность жидкости при изменении давления:
где V0, r0 – объем и плотность жидкости при давлении p0;
Dp = p – p0 – изменение давления.
Величина, обратная коэффициенту объемного сжатия, называется объемным модулем упругости
Объемный модуль упругости несколько возрастает при повышении давления и немного снижается при росте температуры. Оценим сжимаемость капельных жидкостей. При атмосферном давлении для минеральных масел K » 1320 – 1720 МПа. При повышении давления на 10 МПа (приблизительно 100 ат) изменение объема минерального масла составит примерно
то есть изменение объема жидкости при столь существенном изменении давления составило 0,67%. По этой причине в гидравлике очень часто жидкость считают несжимаемой.
Для воды коэффициент при увеличении температуры возрастает (при p = 0,1 МПа и изменении температуры от 0 до 100°С приблизительно от – 0,000025 до +0,000720). Рост давления при низких температурах приводит к увеличению
, а при температурах выше 50°С – к его снижению. Для большинства других капельных жидкостей с ростом давления
уменьшается.
В конечной форме при bT = const (при малом изменении температуры)
;
,
где DT = T – T0 – изменение температуры жидкости.
Изменение объема при нагревании жидкостей весьма ощутимо, поэтому его необходимо учитывать при проектировании гидравлических устройств, в которых жидкость существенно нагревается.
Капиллярность. На поверхности раздела жидкости и газа действуют силы поверхностного натяжения, которые стремятся придать объему жидкости сферическую форму, но сила тяжести не позволяет сделать это, если жидкость находится в значительном объеме. Это явление заметно только, когда жидкость рассматривается в объеме капли или находится в тонком капилляре или зазоре. Силы поверхностного натяжения создают в жидкости дополнительное давление
,
где s – коэффициент поверхностного натяжения жидкости ;
r1, r2 – радиусы кривизны.
В капиллярах и зазорах это давление вызывает подъем или опускание жидкости относительно нормального уровня. Это явление называется капиллярностью. Дополнительное давление направлено всегда к центру кривизны мениска. Если жидкость не смачивает поверхность капилляра, то мениск имеет выпуклую форму, и давление от сил поверхностного натяжения совпадает по направлению с атмосферным давлением – уровень жидкости в капилляре снижается. Если жидкость смачивает поверхность капилляра, то мениск имеет вогнутую форму, и дополнительное давление будет направлено вверх, навстречу атмосферному давлению. Как следствие этого – подъем жидкости по капилляру. Высота подъема (опускания) жидкости в стеклянной трубке вычисляется по формуле:
,
где d – диаметр капилляра ;
Например, для воды k = 30 мм2; для спирта k = 11,5 мм2; для ртути k = –10,1 мм2.
В жидкостных приборах для измерения давления применяют трубки диаметром 10 – 12 мм. В этом случае эффект капиллярности мало ощутим. В зазоре один из радиусов кривизны стремится к бесконечности, поэтому и дополнительное давление, и высота отклонения уровня получаются в 2 раза меньше, чем в капилляре.
Вязкость. Вязкость – это свойство жидкости сопротивляться сдвигу ее слоев. При течении жидкости вдоль твердой стенки слои жидкости, прилегающие к ней, тормозятся силами трения между слоями, то есть из-за вязкости (Рис. 1).
Согласно гипотезе Ньютона, подтвержденной экспериментально Н.П. Петровым, касательные напряжения при слоистом течении:
,
Рис. 1. Профиль скоростей при m – коэффициент динамической
Из закона вязкого трения Ньютона следует, что касательные напряжения возможны только в движущейся жидкости. Если имеется градиент скорости еще и в направлении, нормальном плоскости рисунка, то следует записывать в формуле частную производную .
Кроме Па×с используют такую единицу измерения, как Пуаз: 1П = 0,1 Па×с.
Кроме коэффициента динамической вязкости, в технике широко используют коэффициент кинематической вязкости:
.
В старой литературе можно встретить такие единицы измерения, как стоксы: 1 Ст = 1 см2/с = 10-4 м2/с.
Иногда в названиях m и n слово “коэффициент” для краткости опускают, хотя, в принципе, этого делать не следует.
С ростом температуры вязкость капельных жидкостей очень сильно падает (по экспоненте), а газов – растет по линейному закону. Например, при нагревании пресной воды от 0 до 100°С коэффициент кинематической вязкости падает от 1,79×10-6 до 0,29×10-6 м2/с, то есть 6 с лишним раз. В этом же диапазоне температур вязкость минеральных масел изменяется в десятки и сотни раз. При отрицательных температурах вязкость масел резко возрастает.
Измеряют вязкость специальными приборами, называемыми вискозиметрами. Принцип действия этих приборов состоит в сравнении времени истечения заданного количества испытуемой и эталонной жидкостей через капилляр.
Следует сказать, что существуют жидкости, которые не подчиняются закону вязкого трения Ньютона. В качестве примеров можно назвать глинистые, цементные, известковые и коллоидные растворы, нефтепродукты и смазочные масла при температурах, близких к температуре застывания, краски, клеи, смолы, различные белки, жиры, суспензии крахмала, желатина и т.п. Это так называемые неньютоновские или аномальные жидкости. Для неньютоновских жидкостей зависимость касательных напряжений от поперечного градиента скорости может иметь один из следующих видов:
;
.
Испаряемость. Испаряемость присуща всем жидкостям, но в различной степени, причем она сильно зависит от условий, в которых находится жидкость. Одной из характеристик испаряемости является температура кипения при нормальном атмосферном давлении. Но атмосферное давление – это лишь частный случай давления в гидросистеме, поэтому более полной характеристикой испаряемости является давление (упругость) насыщенных паров pн.п.. Чем выше pн.п, тем более летучая жидкость. С ростом температуры оно возрастает, но для разных жидкостей в различной степени. Поэтому даже сухой воздух в квартире зимой при контакте с предметом, занесенным с мороза, при остывании становится влажным, и из него конденсируются капельки воды. Это хорошо знают люди, носящие очки. Образование конденсата можно наблюдать на поверхности труб, по которым подается холодная вода, на оконных стеклах и т.п.
Для многокомпонентных жидкостей (смесей) давление насыщенных паров зависит еще и от соотношения объемов паровой и жидкой фаз. Для них давление насыщенных паров тем больше, чем большая доля объема занята жидкостью. В справочниках для них приводятся значения pн.п. при соотношении объемов паровой и жидкой фаз 4:1.
Растворимость газов в жидкостях. Растворимость газов в жидкостях характеризуется количеством растворенного газа в единице объема жидкости. Эта величина увеличивается с ростом давления и различна для различных жидкостей.
Относительный объем растворенного газа можно подсчитать по закону Генри:
где Vг – объем растворенного газа, приведенный к нормальным условиям (p0,T0);
k – коэффициент растворимости;
p – давление жидкости.
Например, при t = 20° C имеет следующие значения:
– минеральные масла » 0,08;
При увеличении плотности и вязкости минерального масла растворимость газов немного снижается. С увеличением температуры коэффициент растворимости почти не меняется, но учитывать это малое влияние надо, когда жидкость работает в широком температурном диапазоне: насыщенная газом жидкость при одной температуре может начать выделять растворенный газ при другой температуре, что приведет к образованию пены, которая нарушает сплошность среды и может вызвать отказ привода.
В обычном состоянии минеральное масло насыщается воздухом в течение нескольких часов, но если масло взбалтывается в баке, образуется пена. Площадь соприкосновения жидкости и воздуха возрастает во много раз. Это может вызвать насыщение жидкости газом в течение нескольких минут.
При уменьшении давления газы из насыщенной жидкости начинают выделяться, причем делают это значительно быстрее, чем растворяются в ней. Выделиться газ может в считанные секунды или даже доли секунды.
Поможем написать любую работу на аналогичную тему
Основы гидравлики
Что такое жидкость?
Поскольку гидравлика изучает законы равновесия и движения жидкости, необходимо определиться – что же такое жидкость и какими свойствами она обладает.
Согласно наиболее широко принятому определению, жидкостью называют агрегатное состояние вещества, сочетающее в себе признаки как твердого, так и газообразного состояния, т. е. являющееся некоторой переходной формой от твердого состояния вещества к газообразному. При этом жидкость обладает определенным рядом свойств, не присущих другим агрегатным состояниям.
Это сплошная среда, способная легко изменять свою форму под действием даже небольших силовых факторов.
Физические свойства жидкостей
Жидкости характеризуются следующими основными физическими свойствами: плотностью, удельным весом, удельным объемом, сжимаемостью, вязкостью.
Плотностью (или удельной массой) ρ (кг/м 3 ) любого вещества называют массу этого вещества, заключенную в единице объема. Это определение в полной мере относится и к жидкостям:
Удельным весом γ (Н/м 3 ) называют вес единицы объема жидкости:
Удельным объемом v (м 3 /кг) жидкости называют объем, занимаемый единицей массы жидкости:
Температурный коэффициент объемного расширения показывает, на какую часть от первоначального состояния изменяется первоначальный объем жидкости при изменении температуры на 1˚K.
Очевидно, что плотность жидкости тоже зависит от ее температуры:
Пример решения задачи :
Решение: по приведенной выше формуле получаем:
Сжимаемость (объемная сжимаемость, объемная упругость) – это способность жидкости изменять объем при сжатии, т. е. действием на нее давления. Объемная сжимаемость показывает, на какую величину изменится первоначальный объем жидкости при изменении оказываемого на нее давления на 1 Па.
Величину, обратную объемной сжимаемости, называют модулем объемного сжатия (Па) :
Объемная сжимаемость не является постоянной характеристикой, она зависит от температуры жидкости и оказываемого на нее давления. Однако при давлениях, наиболее часто применяемых на практике в механизмах и устройствах, объемная сжимаемость жидкостей очень мала, и в обычных гидравлических расчетах ей пренебрегают, учитывая лишь в особых случаях, например, при расчетах некоторых гидроприводов, гидроавтоматики и явлениях гидроудара.
С упругими свойствами капельных жидкостей связаны, также, представления о сопротивлении жидкостей растяжению, т. е. деформации, обратной сжатию. Теоретически в капельных жидкостях могут возникать значительные напряжения растяжения, но в реальных жидкостях при наличии в них даже весьма незначительных примесей (твёрдые частицы, газы) уменьшает величину сопротивления жидкости растяжению практически до нуля.
По этой причине можно считать, что в капельных жидкостях напряжения растяжению невозможны.
Вязкостью называют свойство жидкости оказывать сопротивление относительному движению (сдвигу) слоев жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, которые не проявляются в покоящейся жидкости.
Силы трения возникают из-за сцепления между молекулами и всегда действуют по касательной к плоскости относительного перемещения слоев жидкости. По этой причине в подвижных жидкостях возникают касательные напряжения τ (Па) :
Динамическая вязкость характеризует касательное напряжение, создаваемое силами внутреннего трения между слоями жидкости, отстоящими по нормали на расстояние 1 м при относительной скорости 1 м/с.
Динамическая вязкость показывает, какую работу на единицу объемного расхода жидкости надо совершить для преодоления сил внутреннего трения.
Единицей динамической вязкости является Па×с:
Вязкость капельных жидкостей зависит от многих факторов: температуры, внешнего давления, количества растворенного в жидкости газа. Вязкость многих масел уменьшается при многократном дросселировании через тонкие отверстия и щели различных элементов гидросистем.
Поверхностное натяжение жидкости
Когда мы говорим о жидкости как о сплошной среде, это вовсе не означает, что эта среда бесконечна и безгранична. Жидкое тело всегда имеет границы, это либо твёрдые стенки каналов, либо границы раздела с газообразной средой, либо это граница раздела между различными несмешивающимися жидкостями. Такие границы можно с полным правом называть естественными границами.
В некоторых случаях границы могут выделяться условно внутри самой движущейся жидкости.
На естественных границах в пограничном слое жидкости между молекулами самой жидкости и молекулами окружающей жидкость среды существуют силы притяжения, которые, в общем случае, могут оказаться не равными.
Жидкость в трубке малого диаметра (капилляре) будет подниматься, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачивающей.
Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увеличении температуры внутренняя энергия молекул возрастает, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.