Что такое подмножество правильных дробей
Множества
Множество — это совокупность любых объектов. Множества обозначают большими буквами латинского алфавита — от A до Z.
Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:
N — множество натуральных чисел,
Z — множество целых чисел.
Множества делятся на конечные и бесконечные. Конечное множество — множество, содержащее определённое (конечное) количество элементов. Бесконечное множество — множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.
Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись
означает, что множество L состоит из четырёх чётных чисел.
Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми.
Подмножество
Подмножество — это множество, все элементы которого, являются частью другого множества.
Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера. Круги Эйлера — это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.
Рассмотрим два множества:
Каждый элемент множества L принадлежит и множеству M, значит, множество L является подмножеством множества M. Такое соотношение множеств обозначают знаком ⊂ :
Рассмотрим два множества:
Так как оба множества состоят из одних и тех же элементов, то L = M.
Пересечение и объединение множеств
Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах.
При объединении равных множеств объединение будет равно любому из данных множеств:
Калькулятор определения подмножества из множества
Подмножество множества A — это такой набор B, все члены которого принадлежат A. Существует знакомое всем с детства множество натуральных чисел N, а наборы четных E и нечетных O элементов являются подмножествами N.
Теория множеств
Проблема отображения бесконечности действительных чисел волновала математиков с самой древности. Натуральные числа люди использовали при счете, рациональные, то есть дроби – при операциях с частями целого, а действительные числа нашли свое применение в измерениях. Первым действительным и иррациональным числом, о котором узнали древние математики, было число, отображающее длину диагонали квадрата. Затем появилось Пи (отношение диаметра круга к его окружности), позднее и другие числа.
При измерении длины стороны фигуры или ее диагонали мы можем постоянно повышать точность измерений и получать все новые и новые числа. Например, диагональ единичного квадрата равна корню из двух. Мы можем выразить ее длину как 1,4 или 1,41 или 1,4142 или 1,41421356237. И это все разные действительные числа. Можно ли создать список всех действительных чисел от 0 до 1? Нет, так как каждый раз будет находиться еще одно число, отличное от всех, представленных в этом списке.
Именно с этой проблемой работал Георг Кантор, который создал наивную теорию множеств. Наивной его теория стала в результате образования нескольких логических парадоксов, которые были успешно решены при трансформации канторовской теории в аксиоматическую теорию множеств.
Подмножество
Давайте начнем с самого простого – множество натуральных чисел. Это бесконечная последовательность целых положительных чисел, которые мы используем при счете предметов. В отличие от измерений, мы не можем повышать точность счета. Если мы видим 5 яблок, то точнее мы выразить их количество никак не сможем. Кроме того, мы без проблем можем перечислить все натуральные числа в диапазоне от 1 до 10. Все натуральные числа могут быть как четными, так и нечетными, следовательно, натуральное множество содержит в себе четное и нечетное подмножества.
Целые числа – это продолжение натуральной последовательности в отрицательную область. К целым относится ноль, все натуральные числа, а также противоположные натуральным, то есть со знаком минус. Очевидно, что натуральное множество является подмножеством целых чисел.
Рациональное множество – это набор всех дробных чисел, которые возможно представить в виде обыкновенной дроби. В виде дроби мы можем выразить 0,25 – 1/4, 0,5 – 1/2, 1 – 1/1. В качестве дроби легко записать любое целое или натуральное число, например: 5/5 или 50/50. Таким образом, рациональное множество содержит два подмножества – наборы целых и натуральных чисел.
Действительное множество – это все числа на числовой оси. К ним относятся натуральные, целые, рациональные и иррациональные числа, которые формируют соответствующие подмножества во множестве действительных чисел. Множество действительных чисел – это самое мощное множество, которое стремится в бесконечность. Кроме того, пустое множество, которое не содержит ни одного элемента, является подмножеством любого выбранного набора чисел. Но и это еще не все. Каждое множество является подмножеством самого себя.
Мы перечислили глобальные примеры подмножеств, однако на практике нам может потребовать определить является ли один набор чисел подмножеством другого набора? К примеру, если у нас есть пара значений <3, 11>, то является ли она подмножеством набора <1, 3, 5, 7, 11, 13>? Очевидно, что ответ положительный, так как и 3, и 11 встречаются во множестве <1, 3, 5, 7, 11, 13>. Однако это верно только для множеств с неразличимыми элементами, то есть для обычного набора чисел. Если же важен порядковый номер элементов множества, то результат противоположный и <3, 11>не является подмножеством <1, 3, 5, 7, 11, 13>.
Наш калькулятор определения подмножеств позволяет выяснить, является набор чисел B подмножеством набора A. Программа использует алгоритм для надежно различимых элементов множества, для которых важен порядок расположения членов.
Пример определения подмножества
Выше мы выяснили, что четное множество – это подмножество натурального ряда. Для неразличимых элементов объект B = <2, 4, 6>является подмножеством набора A = <1, 2, 3, 4, 5, 6>. Однако представим, что это база данных, и n-ному элементу множества соответствует свое значение. Выходит, что первый член объекта B имеет значение 2, а первый элемент набора A равен 1. Второй элемент множества B равен 4, а второй элемент объекта A = 2. По такой логике это совершенно разные объекты, следовательно, множество B не является подмножеством набора A.
Заключение
Множество – это набор математических объектов, каждый из которых обладает определенным свойством. Каждое множество имеет минимум два подмножества: пустое и свое собственное. Для поиска других подмножеств используйте наш калькулятор, который позволяет определить принадлежность одного набора чисел к другому.
6.1.6. Множество и его элементы
I. Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).
Для записи множества используют фигурные скобки: « <»- множество открывается; «>» — множество закрывается. А само множество называют заглавными латинскими буквами: А, В, С и так далее.
Примеры.
1. Записать множество А, состоящее из всех гласных букв в слове «математика».
Решение. А=<а, е, и>. Вы видите: несмотря на то,что в слове «математика» имеется три буквы «а» — в записи множества повторений не допускается, и буква «а» записывается только один раз. Множество А состоит из трех элементов.
2. Записать множество всех правильных дробей со знаменателем 5.
Решение. Вспоминаем: правильной называют обыкновенную дробь, у которой числитель меньше знаменателя. Обозначим через В искомое множество. Тогда:
Множество В состоит из четырех элементов.
II. Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø.
III. Множество В называют подмножеством множества А, если все элементы множества В являются элементами множества А.
3. Какое из двух данных множеств В и С является подмножеством множества К,
Решение. Все элементы множества С являются также элементами множества К, поэтому, множество С является подмножеством множества К. Записывают:
IV. Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В.
4. Показать пересечение двух множеств М и F с помощью кругов Эйлера.
Решение.
V. Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В.
5. Показать с помощью кругов Эйлера объединение множеств Т и Р.
Что такое множество в математике и как оно обозначается
Множество – это количество предметов или чисел, обладающих общими свойствами.
Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.
В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.
Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.
Границы совокупности обозначаются фигурными скобками < >.
А = <а, в, с, у>– А состоит из четырех элементов.
Записать совокупность Z согласных букв в слове «калькулятор»:
Z = <к, л, т, р>, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.
Принадлежность элементов множеству обозначается знаком – Є.
Пример: N = , а Є N – элемент «а» принадлежит N.
Выделяют три вида множеств:
пустые (обозначаются Ø) – не имеющие элементов.
Пример: А = <а, в, с, у>и В = <а, в, с, е, к>– все элементы А являются элементами совокупности В, следовательно А ⊆ В.
Если множества состоят из одинаковых элементов, их называют равными.
Пример: А = <23, 29, 48>и В = <23, 29, 48>, тогда А = В.
В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.
Множество натуральных чисел
Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.
Множество целых чисел
Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:
Множество рациональных чисел
Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:
Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:
Следовательно, N и Z являются подмножествами Q.
Операции над множествами
Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.
Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.
Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.
Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.
В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.
Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:
Объединение
Пересечение
Дополнение
С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами.
Свойства операций над множествами
Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:
Коммутативность – переместительные законы:
умножения S ∩ D = D ∩ S;
сложения S ∪ D = D ∪ S.
Ассоциативность – сочетательные законы:
умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);
сложения (S ∪ F) ∪ G = S ∪ (F ∪ G).
Дистрибутивность – законы распределения:
умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);
умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);
сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F).
если S ⊆ Fи F ⊆ J, то S ⊆ J;
если S ⊆ F и F ⊆ S, то S = F.
Идемпотентность объединения и пересечения:
О других свойствах операций можно узнать из картинки:
Счетные и несчетные множества
Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов.
Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.
Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.
Счётные и несчётные множества — понятие, свойства и примеры
Множество — это совокупность или набор элементов. Количество этих элементов называется мощностью этой совокупности. Мощность пустого набора компонентов равна нулю. С размером конечных совокупностей тоже всё просто. У них можно пересчитать количество компонентов. А вот возможность посчитать компоненты бесконечности различает счётные и несчётные множества.
Разнообразие бесконечностей
Бесконечные множества содержат неограниченную последовательность элементов, объединенных общим признаком. Самые часто используемые из них в математике:
Все они бесконечны, вовсе не означает, что они равномощны.
Сравнение и отображение
Числа в математике можно сравнивать друг с другом и выяснять, какое из них больше. С множествами можно производить аналогичные действия. Это будет называться их отображение друг в друга. Оно может быть дизъюнктивно, конъюнктивно и биективно. Это аналог числовых понятий «больше», «меньше» и «равно». Для того чтобы разобраться, как происходит это сравнение, нужно понятие подмножества.
Подмножеством некоторого набора компонентов называется любая часть компонентов этого набора. То есть, совокупность состоящее из чисел 1 и 3 является подмножеством множества чисел 1, 3 и 5. А они оба, в свою очередь, являются подмножествами совокупности нечётных чисел и т. д.
Если каждому компоненту множества A можно сопоставить какой-то элемент подмножества совокупности В, то отображение А в В конъюнктивно или А меньше, чем В. Если при этом нельзя найти в наборе А подмножество, которое можно сопоставить с совокупностью В, то отображение В в А дизъюнктивно. Если же каждому компоненту из комплекса А можно сопоставить элемент из совокупности В и каждому компоненту из набора В можно сопоставить элемент из совокупности А, то эти множества отображаются друг в друге биективно. В таком случае говорят, что они эквивалентны.
Для сравнения совокупностей можно использовать их мощность. Если мощность А меньше мощности В, то и множество А меньше, чем В. Если мощности равны, то сами наборы элементов эквивалентны.
Сопоставление наборов элементов
Казалось бы, используя свойства сравнения наборов элементов, можно найти соотношение мощностей бесконечных совокупностей. Ведь очевидно, что множество N является подмножеством совокупности Z, они оба являются подмножеством Q, а множества Q и I вместе составляют R. И отсюда, по определению, следует, что мощности соотносятся так: |N| |I|, и загадкой остается только соотношение совокупностей Q и I. Но всё не так просто.
Выяснение размера бесконечного комплекса компонентов — такая же задача, как определение размера конечной совокупности — пересчёт компонентов. Возможность посчитать и пронумеровать элементы бесконечной совокупности называется счётностью. Совокупность натуральных чисел — счётная. Элементам в этом случае легко присвоить порядковые номера. И все множества, которые эквивалентны N, тоже будут счётными. Его размер |N| = a.
Но если взять R, то его элементы пронумеровать не получится. Ведь между любыми двумя точками, а прямой всегда можно поставить ещё одну. То есть, совокупность R «бесконечна вглубь»: каждый промежуток между бесконечным количеством точек содержит в себе бесконечное количество точек. Значит, свойство R — несчётность. Такие «бесконечные вглубь» множества называют континуальными. И их мощность обозначается как |R| = c.
Ещё одно важное свойство бесконечных множеств заключается в том, что если из бесконечной совокупности удалить (или добавить к ней) подмножество меньшей мощности, то размер исходной совокупности сохранится. Если из N убрать все числа от 1 до 10, то его мощность не уменьшится на 10, а останется прежней. Множество останется бесконечным и счётным: a — 10 = a.
Поскольку N отображается в R конъюнктивно (N является подмножеством R, но не имеет подмножества эквивалентного R), то |R|=c > a=|N|. А так как R представляет собой объединение совокупностей Q и I, то размер |I| = |R| — |Q| = c — a = c. Значит, I тоже континуально.
Бесконечная мощность счётных и несчётных множеств может быть описана тремя формулами. Это два равенства и одно неравенство:
Совокупность всех точек интервала или отрезка на прямой тоже будет континуальна, так как на неё можно спроецировать всю совокупность точек действительной прямой R.
Соотношение мощностей
Континуальное множество больше счётного. Но какова их разница? Чтобы это вычислить, потребуется понятие булеан.
Что такое булеан
Есть некий набор компонентов V. Булеаном V будет называться комплекс всех его подмножеств. Как будут соотноситься размер булеана и самого V? Если V состоит из одного элемента, то его булеан будет состоять из двух элементов: пустого набора компонентов и самого V. Если V состоит из двух элементов, то булеан содержит 4 элемента: пустое множество, V и каждый из двух элементов. Если V содержит 3 элемента, то булеан содержит 8: пустое, само V, каждый из трёх его элементов в отдельности и каждую пару элементов (которых тоже три).
То есть мощность булеана — это 2 в степени размера самого V. Булеан так и записывается 2^|V|. Размер булеана всегда будет больше, чем мощность самой совокупности.
Результат сопоставления
Размер булеана любой счётной совокупности будет 2^a. Если рассматривать N, то его булеан будет состоять из пустоты, бесконечного числа элементов N, бесконечного числа пар элементов, бессчётного числа сочетаний элементов по 3, 4, 5 и так до бесконечности. Какому известному множеству можно сопоставить этот булеан?
Так как это N — натуральные числа, то каждый элемент булеана — это последовательность чисел. Если представить каждую такую последовательность в виде знаков после запятой в десятичной дроби, то получатся координаты точек в интервале от 0 до 1, который эквивалентен R. Так как булеан N содержит бесконечное количество комбинации бесконечных десятичных дробей, то он покрывает все точки в этом интервале. Это нестрогое доказательство уравнения c = 2^a.
Обозначения мощностей а и c происходят от слов account и continum, но именно такая последовательность букв порождает вопрос: а есть ли бесконечное множество мощностью b, которое меньше c, но больше a. Если и есть, то пока они неизвестны. А вот комплекс больший по мощности, чем c, есть. Это булеан континуального множества с мощностью 2^c. А у этого булеана тоже есть булеан с ещё большей мощностью.
Бесконечные множества бывают счётными и несчётными. Счётными называют те, элементы в которых можно пересчитать, то есть эквивалентные совокупности натуральных чисел. К ним относятся само множество натуральных, а также целых и рациональных чисел. Среди несчётных выделяют континуальные множества, эквивалентные совокупности всех точек на прямой. К ним относятся действительные и иррациональные числа. Континуальность является булеаном счётного набора.