Что такое подпространство линейного пространства

Подпространство линейного пространства

Определение и размерность подпространства

Определение 6.1. Подпространством L n-мерного пространства R называется множество векторов, образующих линейное пространство по отношению к действиям, которые определены в R.

Другими словами, L называется подпространством пространства R, если из x, y∈L следует, что x+y∈L и если x∈L, то λ x∈L, где λ— любое вещественное число.

Простейшим примером подпространства является нулевое подпространство, т.е. подмножество пространства R, состоящее из единственного нулевого элемента. Подпространством может служить и все пространство R. Эти подпространства называются тривиальными или несобственными.

Подпространство n-мерного пространства конечномерно и его размерность не превосходит n: dim L≤ dim R.

Сумма и пересечение подпространств

Cуммой L+M называется множество векторов x+y, где x∈L и y∈M. Очевидно, что любая линейная комбинация векторов из L+M принадлежит L+M, следовательно L+M является подпространством пространства R (может совпадать с пространством R).

Пересечением LM подпространств L и M называется множество векторов, принадлежащих одновременно подпространствам L и M (может состоять только из нулевого вектора).

Теорема 6.1. Сумма размерностей произвольных подпространств L и M конечномерного линейного пространства R равна размерности суммы этих подпространств и размерности пересечения этих подпространств:

dim L+dim M=dim(L+M)+dim(L∩M).

Доказательство. Обозначим F=L+M и G=L∩M. Пусть G g-мерное подпространство. Выберем в нем базис Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства. Так как GL и GM, следовательно базис G можно дополнить до базиса L и до базиса M. Пусть Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствабазис подпространства L и пусть Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствабазис подпространства M. Покажем, что векторы

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

составляют базис F=L+M. Для того, чтобы векторы (6.1) составляли базис пространства F они должны быть линейно независимы и любой вектор пространства F можно представить линейной комбинацией векторов (6.1).

Докажем линейную независимость векторов (6.1). Пусть нулевой вектор пространства F представляется линейной комбинацией векторов (6.1) с некоторыми коэффициентами:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Левая часть (6.3) является вектором подпространства L, а правая часть является вектором подпространства M. Следовательно вектор

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

принадлежит подпространству G=L∩M. С другой стороны вектор v можно представить линейной комбинацией базисных векторов подпространства G:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Из уравнений (6.4) и (6.5) имеем:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Но векторы Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваявляются базисом подпространства M, следовательно они линейно независимы и Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства. Тогда (6.2) примет вид:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

В силу линейной независимости базиса подпространства L имеем:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Так как все коэффициенты в уравнении (6.2) оказались нулевыми, то векторы

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Изучая базисы подпространств L и M и базис подпространства F=L+M (6.10), имеем: dim L=g+l, dim M=g+m, dim (L+M)=g+l+m. Следовательно:

dim L+dim M−dim(L∩M)=dim(L+M). ■

Прямая сумма подпространств

Определение 6.2. Пространство F представляет собой прямую сумму подпространств L и M, если каждый вектор x пространства F может быть единственным способом представлен в виде суммы x=y+z, где y∈ L и z∈M.

Прямая сумма обозначается LM. Говорят, что если F=LM, то F разлагается в прямую сумму своих подпространств L и M.

Теорема 6.2. Для того, чтобы n-мерное пространство R представляло собой прямую сумму подпространств L и M, достаточно, чтобы пересечение L и M содержало только нулевой элемент и чтобы размерность R была равна сумме размерностей подпространств L и M.

Доказательство. Выберем некоторый базис Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствав подпространстве L и некоторый базис Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствав подпространстве M. Докажем, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

является базисом пространства R. По условию теоремы размерность пространства R n равна сумме подпространств L и M (n=l+m). Достаточно доказать линейную независимость элементов (6.11). Пусть нулевой вектор пространства R представляется линейной комбинацией векторов (6.11) с некоторыми коэффициентами:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Но векторы Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваи Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваявляются базисами подпространств L и M соответственно. Следовательно они линейно независимы. Тогда

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Установили, что (6.12) справедливо лишь при условии (6.15), а это доказывает линейную независимость векторов (6.11). Следовательно они образуют базис в R.

Пусть x∈R. Разложим его по базису (6.11):

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваЧто такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Из (6.17) и (6.18) следует, что любой вектор из R можно представить суммой векторов x1L и x2M. Остается доказать что это представление является единственным. Пусть кроме представления (6.17) есть и следующее представление:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Вычитая (6.19) из (6.17), получим

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Так как Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства, Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваи LM= 0, то Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваи Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства. Следовательно Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваи Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства. ■

Источник

Линейные и евклидовы пространства с примерами решения и образцами выполнения

Евклидово пространство — это вещественное линейное пространство, в котором зафиксирована симметричная положительно определенная билинейная форма. Значение билинейной формы на паре элементов называется скалярным произведением этих векторов.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Линейные и евклидовы пространства

Определение линейного пространства

Определение:

Множество V элементов х, у, z,… называется линейным пространством (действительным или комплексным), если по некоторому правилу

I. любым двум элементам х и у из V поставлен в соответствие элемент из V, обозначаемый х + у и называемый суммой элементов х и у;

II. любому элементу х из V и каждому числу а (вещественному или комплексному) поставлен в соответствие элемент из V, обозначаемый ах и называемый произведением элемента х на число а, и эти правила сложения и умножения на число удовлетворяют следующим аксиомам:

Элемент θ называется нулевым элементом, а элемент (-х) — противоположным элементу х.
Элементы х, у, z,… линейного пространства часто называют векторами. Поэтому линейное пространство называют также векторным пространством.

Примеры линейных пространств

Этим же свойством обладают: совокупность V1 векторов на прямой и совокупность V2 векторов на плоскости.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

2, Совокупность упорядоченных наборов (Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства) из n действительных чисел.

Операции — сложение и умножение на действительное число — вводятся так:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

б) умножение на число —

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

3. Совокупность всевозможных матриц Rmxn размера m х n с введенными правилами сложения матриц,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

и умножения матрицы на число,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

В частности, совокупность n-строк, R1xn и совокупность столбцов высоты m, Rmx1, являются линейными пространствами.

4. Множество С(-1, 1) вещественных функций, непрерывных на интервале (-1, I), с естественными операциями сложения функций и умножения функции на число.

Во всех приведенных примерах требования 1-8 проверяются непосредственно.

Простейшие свойства линейных пространств

2. Для любого элемента х противоположный ему элемент (—х) определен однозначно.

Пусть x и х_ — элементы, противоположные элементу х. Покажем, что они равны.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Аналогично убеждаемся в том, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Нетрудно убедится также в справедливости следующих свойств:

Линейные подпространства

Непустое подмножество W линейного пространства V называется линейным подпространством пространства V, если для любых элементов х и у из W и любого числа а выполняются следующие условия:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Иногда говорят: «множество W замкнуто относительно указанных операций».

Примеры линейных подпространств

1.Множество векторов на плоскости V2 является линейным подпространством линейного пространства V3.

2. Совокупность решений однородной системы m линейных уравнений с n неизвестными

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

образует линейное подпространство линейного пространства Rnx1. В самом деле, сумма решений однородной системы () является решением этой же системы и произведение решения системы (*) на число также является ее решением.

3. Совокупность всех вещественнозначных функций, непрерывных на интервале (-1, 1) и обращающихся в нуль при t = 0, образует линейное подпространство линейного пространства С(— 1,1).

Сумма f(t) + g(t) функций f(t) и g(t), обращающихся в нуль при t = 0, t(0) = f(0) = 0, и произведение af(t) функции f(t), обращающейся в нуль при t = 0, f(0) = 0, на число а равны нулю при t = 0.

Свойства линейного подпространства

Сумма и пересечение линейных подпространств

Пусть V — линейное пространство, W1 w W2 — его линейные подпространства. Суммой W1 + W2 линейных подпространств W1 и W2 называется совокупность всевозможных элементов х пространства V, которые можно представить в следующем виде

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

где x1 лежит в W1, а х2 — в W2. Коротко это можно записать так:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Сумма линейных подпространств W1 и W2 нaзывается прямой, если для каждого элемента х этой суммы разложение (1) единственно (рис. 3).

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Обозначение: W1⊕W2

Пересечением W1 ∩ W2 линейных подпространств W1 и W2 линейного пространства V называется совокупность элементов, которые принадлежат одновременно и линейному подпространству W1, и линейному подпространству W2.

Свойства пересечения и суммы линейных подпространств

Возьмем в W1 + W2 два произвольных элемента х и у. По определению суммы подпространств найдутся элементы х1, у1, из W1 и х2, у2, из W2 такие, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Это позволяет записать сумму х + у в следующем виде

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Так как Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствато сумма х + у лежит в W1 + W2.

Аналогично доказывается включение ах ∈ W1 + W2.

2. Пересечение W1 ∩ W2 является линейным подпространством пространства V.

3. Если нулевой элемент является единственным общим вектором подпространств W1 й W2 линейного пространства V, то их сумма является прямой — W1 ⊕ W2.

Линейная оболочка

Линейной оболочкой L(X) подмножества X линейного пространства V называется совокупность всевозможных линейных комбинаций элементов из X,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Последнее читается так: «линейная оболочка L(X) состоит из всевозможных элементов у, представимых в виде линейных комбинаций элементов множества X».

Основные свойства линейной оболочки

Сумма линейных комбинаций элементов множества X и произведение линейной комбинации элементов на любое число снова являются линейными комбинациями элементов множества X.

3. L(X) — наименьшее линейное подпространство, содержащее множество X.

Пусть W — линейное подпространство, содержащее заданное множество X. Тогда произвольная линейная комбинация Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваэлементов множества X — элемент линейной оболочки L(X) — содержится и в подпространстве W.

Пример:

Рассмотрим в линейном пространстве R3 две тройки ξ = (1,1,0) и η = (1,0, I) (рис.4). Множество решений уравнения

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Пример:

Рассмотрим в линейном пространстве С(- ∞, ∞) вещественнозначных функций, непрерывных на всей числовой оси, набор X одночленов 1, х,…, хn:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Линейная оболочка L(X) представляет собой совокупность многочленов с вещественными коэффициентами, степени которых не превосходят n.

Обозначение: Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Линейная зависимость

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Если равенство (1) выполняется только при а1 = … = аq = 0, то система элементов x1,…, хq называется линейно независимой.

Справедливы следующие утверждения.

Теорема:

Система элементов x1,…, хq (q2) линейно зависима в том и только в том случае, если хотя бы один из ее элементов можно представить в виде линейной комбинации остальных.

Предположим сначала, что система элементов x1,…, xq линейно зависима. Будем Считать для определенности, что в равенстве (1) отличен от нуля коэффициент аq. Перенося все слагаемые, кроме последнего, в правую часть, после деления на аq ≠ 0 получим, что элемент хq является линейной комбинацией элементов х1 …, хq:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Обратно, если один из элементов равен линейной комбинации остальных,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

то, перенося его в левую часть, получим линейную комбинацию

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

в которой есть отличные от нуля коэффициенты (-1 ≠ 0). Значит, система элементов x1,…., хq линейно зависима.

Теорема:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Из линейной независимости элементов x1…, xq вытекает, что a1 — β1 = … = аq — βq = 0 и, значит, Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Теорема:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

равны нулю не все коэффициенты.

Пример. Векторы из V2 линейно зависимы тогда и только тогда, когда они компланарны (рис.5).

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Базис. Размерность

Упорядоченная система элементов e1,…, еn линейного пространства V называется базисом этого линейного пространства, если элементы e1,…, еn линейно независимы и каждый элемент из V можно представить в виде их линейной комбинации. Упорядоченность означает здесь, что каждому элементу приписан определенный (порядковый) номер. Из одной системы п элементов можно построить n! упорядоченных систем.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Пример:

Пусть a, b, с — тройка некомпланарных векторов из Vз (рис.6). Тогда упорядоченные тройки а, b, с; b, с, а; с, а, b; b, а, с; а, с, b и с, b, а — различные базисы V3.

Пусть с = (e1 … еn) — базис пространства V.

Тогда для любого элемента х из V найдется набор чисел Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстватакой, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

В силу теоремы 2 числа Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствакоординаты элемента х в базисе с — определены однозначно.

Посмотрим, что происходит с координатами элементов при простейших действиях с ними.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

и для любого числа а

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Таким образом, при сложении элементов их соответствующие координаты складываются, а при умножении элемента на число все его координаты умножаются на это число.

Координаты элемента часто удобно записывать в виде столбца. Например,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

— координатный столбец элемента Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространствав базисе e.

Разложим произвольную систему элементов x1,…, хq по базису e,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

ли рассмотрим координатные столбцы элементов ч1,…, хq в этом базисе:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Теорема:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

причем хотя бы один из коэффициентов λk отличен от нуля. Запишем это подробнее

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Отсюда в силу единственности разложения элемента по базису вытекает, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Таким образом, линейная комбинация координатных столбцов элементов x1,…, xq равна нулевому столбцу (с теми же коэффициентами λ1,…, λg). Это и означает, что система координатных столбцов линейно зависима.

Если же выполняется равенство (2), то, проводя рассуждения в обратном порядке, получаем формулу (1).

Тем самым, обращение в нуль некоторой нетривиальной (хотя бы один из коэффициентов отличен от нуля) линейной комбинации элементов линейного пространства равносильно тому, что нетривиальная линейная комбинация их координатных столбцов (с теми же коэффициентами) равна нулевому столбцу.

Теорема:

Пусть базис с линейного пространства V состоит из п элементов. Тогда всякая система из то элементов, где т > п, линейно зависима.

4 В силу теоремы 3 достаточно рассмотреть случай m = п + 1.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

и запишем координаты элементов х1 …, xn+1 в виде матрицы, отводя j-й столбец координатам элемента xj, j = 1,…, п + 1. Получим матрицу из п строк и п + 1 столбцов —

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Ввиду того, что ранг матрицы К не превосходит числа п ее строк, столбцы матрицы К (их п + 1) линейно зависимы. А так как это координатные столбцы элементов x1…..хп+1, то согласно теореме 4 система элементов x1…..хп+1 также линейно зависима.

Следствие:

Все базисы линейного пространства V состоят из одинакового числа элементов.
Пусть базис e состоит из п элементов, а базис e’ из п‘ элементов. В силу только что доказанной теоремы из линейной независимости системы е’1,…, е’n заключаем, что п’п. Меняя базисы e и e’ местами, в силу этой же теоремы получаем, что пп’.

Тем самым, п = п’.
Размерностью линейного пространства V называется число элементов базиса этого пространства.

Пример:

Базис координатного пространства R» образуют элементы

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Система элементов e1,e2, …,еп линейно независима: из равенства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

и значит, a1 = … = an = 0.

Кроме того, любой элемент Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваиз R» можно записать в виде линейной комбинации элементов e1…..еп: ‘

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Тем самым, размерность пространства R» равна п.

Пример:

Однородная линейная система

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

имеющая ненулевые решения, обладает фундаментальной системой решений (ФСР). ФСР является базисом линейного пространства решений однородной системы. Размерность этого линейного пространства равна числу элементов ФСР, т.е. п — r, где r — ранг матрицы коэффициентов однородной системы, an — число неизвестных.

Пример:

Размерность линейного пространства Мп многочленов степени не выше п равна п + I.

Так как всякий многочлен P(t) степени не выше п имеет вид

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

то достаточно показать линейную независимость элементов

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

где t произвольно. Полагая t = 0, получаем, что ао = 0.

Продифференцируем равенство (3) по t:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Вновь положив t = 0, получим, что a1 = 0.

Линейное пространство, размерность которого равна п, называется п-мерным.

Обозначение: dim V = п.

Соглашение. Далее в этой главе всюду считается, если не оговорено противное, что размерность линейного пространства V равна п.

Ясно, что если W — подпространство n-мерного линейного пространства V, то dim W ≤ п.

Покажем, что в п-мерном линейном пространстве V есть линейные подпространства любой размерности kп.

Пусть e = (е1 … еn) — базис пространства V. Легко убедиться в том, что линейная оболочка

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

имеет размерность k.

По определению dim < θ >= 0.

Теорема:

так как в нетривиальной линейной комбинации

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

коэффициент μ ≠ 0 вследствие линейной независимости системы а1…., аk.

Если бы разложение вида (4) можно было бы написать для любого элемента b пространства V, то исходная система a1…, аk была бы базисом согласно определению. Но в силу условия k Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

строками которой являются координаты векторов а1, а2, а3, а4, равен четырем. Это означает, что строки матрицы А, а, значит, и векторы а1, а2, а3, а4 линейно независимы.

Подобный подход используется и в общем случае: чтобы дополнить систему k линейно независимых элементов

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

элементарными преобразованиями строк приводится к трапециевидной форме, а затем дополняется п — k строками вида

(0 … 1 … 0)

так, чтобы ранг получаемой матрицы был равен п. Справедливо следующее утверждение.

Теорема:

Пусть W1 и W2 — линейные подпространства линейного пространства V. Тогда

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Замена базиса

Пусть e = (e1 … еn) и e’ = (е’1, … е’n) — базисы линейного пространства V. Разложим элементы базиса e’ по базису с. Имеем

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Эти соотношения удобно записать в матричной форме
(2)

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

называется матрицей перехода от базиса e к базису e’.

Свойства матрицы перехода

Доказательство этого свойства проводится от противного.

Из равенства detS = 0 вытекает линейная зависимость столбцов матрицы S. Эти столбцы являются координатными столбцами элементов е’1,…, е’n в базисе e. Поэтому (и вследствие теоремы 4) элементы е’1…..с’n должны быть линейно зависимыми.

Последнее противоречит тому, что e’ — базис. Значит, допущение, что det S = 0, неверно.

2. Если и Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства— координаты элемента х в базисах e и e’ соответственно, то:
(3)

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

e’j их выражениями (1), получаем, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Отсюда в силу единственности разложения элемента по базису имеем

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Переходя к матричной записи найденных равенств, убеждаемся в справедливости свойства 2.

3. S -1 — матрица перехода от базиса e’ к базису e.

Свойство 3 доказывается умножением обеих частей матричного равенства (2) на матрицу S -1 справа.

Евклидовы пространства

Вещественное линейное пространство V называется (вещественным) евклидовым пространством, если любым двум элементам х и у из V ставится в соответствие число, обозначаемое через (х,у), такое, что для любых элементов х, y,z и произвольного вещественного числа а выполняются следующие условия:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

4. (х, х) ≥ 0; причем равенство нулю возможно в том и только в том случае, если х = θ.

Число (х, у) называется скалярным произведением элементов х и у. Примеры евклидовых пространств.

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

2. Скалярное произведение произвольных элементов Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространстваиз координатного пространства R» можно определить формулой

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

3, Линейное подпространство евклидова пространства само является евклидовым пространством.

Пользуясь определением евклидова пространства, нетрудно доказать следующие свойства:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Теорема:

Неравенство Коши—Буняковского. Для любых двух элементов х и у евклидова пространства V справедливо неравенство

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Обратимся к случаю (х, х) ≠ 0. Тогда (х, х) > 0. По определению скалярного произведения неравенство

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

справедливо для любых элементов х и у из пространства V и любого вещественного числа t. Запишем неравенство (1) подробнее:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Левую часть последнего неравенства можно рассматривать как квадратный трехчлен относительно t. Из того, что знак этого квадратного трехчлена не изменяется при любых t, заключаем, что его дискриминант неположителен,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Перенося вычитаемое в правую часть, получаем требуемое неравенство.

Замечание:

Часто доказанное неравенство записывают в равносильной форме,

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Следует подчеркнуть, что слева в этом неравенстве стоит абсолютная величина (модуль) скалярного произведения, а в правой части — нормы векторов х и у.

Определение:

Длиной (нормой) элемента х называется число |х|, вычисляемое по правилу

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Ясно, что |х| ≥ 0 для любого х, причем равенство |х| = 0 возможно лишь в случае, если х = θ.

Рассмотрим цепочку равенств:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Заменяя второе слагаемое на 2|(х, у)| ≥ 2(х, у) и применяя неравенство Коши—Буняковского |(х,у)| ≤ |х| • |у|, получаем, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

После извлечения квадратного корня приходим к неравенству треугольника:
|х + у| ≤ |х| + |у|
(рис.7).

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Углом между ненулевыми элементами х и у евклидова пространства называется число φ, подчиненное следующим двум условиям:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Определение угла корректно, так как согласно теореме 8 имеем

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

для любых ненулевых элементов х и у.

Элементы х и у называются ортогональными, если (х, у) = 0. Для ортогональных элементов из соотношения (2) вытекает равенство

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

являющееся обобщением известной теоремы Пифагора’, квадрат длины суммы ортогональных элементов равен сумме квадратов их длин (рис. 8).

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Система элементов f1…..f k называется ортогональной, если (fi, fj) =0′ при i ≠ j, и ортонормированной, если

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Определение:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

называют символом Кронекера.

Теорема:

Ортонормированная система элементов линейно независима.

Умножая обе части равенства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

И так как (fj, fj) = 1,то aj = 0, j = 1,…, k.

Метод ортогонализации

Для того, чтобы элемент

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

был ортогонален элементу g1, необходимо выполнение следующего равенства:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

ортогонален элементу g1 (рис. 9 а).

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Пользуясь построенными элементами g1, g2 и заданным элементом fз, построим элемент

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

ортогональный как элементу g1, так и элементу g2. Для этого коэффициенты β1 и β2 должны удовлетворять следующим условиям:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Таким образом, элемент
, (f3,g|) (f3,g2)

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

ортогонален элементам g1 и g2 (рис. 9 6).

Аналогичными рассуждениями можно показать, что элемент

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

ортогонален элементам Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Делением каждого элемента gi (i = 1…..k) на его длину |g Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Базис e = (e1 … еn) евклидова пространства называется ортонормированным, или ортобазисом, если

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Суммируя вышеизложенное, получаем следующий результат.

Теорема:

В любом евклидовом пространстве существует о ртонормированный базис.
Пример:

Методом ортогонализации построить ортоиормированный базис евклидова пространства Е по его базису

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Полагаем b1 = a1 и b2 = а2 — ab1. Для того, чтобы вектор

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

был ортогонален вектору b1, необходимо выполнение неравенства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Для того, чтобы вектор

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

был ортогонален векторам b1 и b2, необходимо выполнение равенств

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Система векторов b1, b2, b3 ортогональна. Поделив каждый вектор на его длину, получим

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

— ортонормированный базис пространства Е.

При помощи ортонормированного базиса скалярное произведение элементов вычисляется особенно просто. Пусть e = (e1 … еn) — ортонормированный базис пространства Е. Вычислим скалярное произведение элементов х и у, предварительно разложив их по базису e

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Ортогональное дополнение

Пусть W — линейное подпространство евклидова пространства V. Совокупность W⊥ элементов у пространства V, обладающих свойством

(y. х) = 0,

где х — произвольный элемент из W, называется ортогональным дополнением подпространства W. Другими словами, ортогональное дополнение W⊥ состоит из всех элементов у, ортогональных всем элементам подпространства W.

Свойства ортогонального дополнения

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

для любого элемента х из W. Складывая эти равенства и пользуясь свойствами скалярного произведения, получаем,что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

для любого элемента х из W. Это означает, что

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Свойство 2 означает, что любой элемент х пространства V можно представить, причем единственным образом, в виде суммы элементов из W и W⊥ :

x = y+z. ‘ (*)

Элемент у ∈ W называется ортогональной проекцией элемента х на линейное подпространство W, а элемент z ∈ W⊥его ортогональной составляющей (рис. 11).

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Покажем, как по заданным элементу х и линейному подпространству W найти его ортогональную проекцию у и ортогональную составляющую г.

Можно считать, что в линейном подпространстве W задан ортонормированный базис e1…..еk. Запишем искомый элемент у в виде линейной комбинации

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Подставляя это выражение в формулу (*):

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

и умножая обе части полученного равенства последовательно на элементы e1,…, еk, в предположении z ⊥ W приходим к соотношениям

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

обладают требуемыми свойствами. *

Пример:

Найти ортогональную проекцию вектора х = (4, 2, 3, 5) на линейное подпространство W ⊂ R4, заданное системой уравнений

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Векторы a1 = (1,0,0,-1) и а2 = (0,1,-1,0) образуют фундаментальную систему решений и, следовательно, базис подпространства W. Кроме того, векторы a1 и а2 ортогональны. Для того, чтобы построить ортонормированный базис подпространства W, достаточно разделить эти векторы на иx длины. В результате получим

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

является ортогональной проекцией вектора х = (4,2, 3, 5), на подпространство W, а вектор

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

— его ортогональной составляющей.

Унитарные пространства

Унитарным пространством называется линейное комплексное пространство U, в котором каждой упорядоченной паре элементов х и у из U ставится в соответствие число — скалярное произведение (х, у) так, что для любых элементов х, у и z из U и любого комплексного числа а выполняются следующие соотношения:

Пример:

В координатном пространстве Сn, элементами которого являются всевозможные упорядоченные наборы п комплексных чисел, скалярное произведение можно ввести так

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Что такое подпространство линейного пространства. Смотреть фото Что такое подпространство линейного пространства. Смотреть картинку Что такое подпространство линейного пространства. Картинка про Что такое подпространство линейного пространства. Фото Что такое подпространство линейного пространства

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *