Что такое поглощенная доза ионизирующего излучения

Дозиметрия ионизирующих излучений

Что такое поглощенная доза ионизирующего излучения. Смотреть фото Что такое поглощенная доза ионизирующего излучения. Смотреть картинку Что такое поглощенная доза ионизирующего излучения. Картинка про Что такое поглощенная доза ионизирующего излучения. Фото Что такое поглощенная доза ионизирующего излучения

Содержание

В любом медицинском учреждении, где проводятся рентгенодиагностика и лучевая терапия, обязательны к неукоснительному соблюдению все нормативы радиационной безопасности. В их числе осуществление во время облучения корректного учёта поглощаемой пациентами и медперсоналом энергии излучения.

Дозиметрия ионизирующих излучений предполагает проведение регулярных замеров мощности дозы радиационного фона используемых в учреждении рентген-аппаратов, а также: стен и перекрытий здания, воздуха в помещении и за его пределами, почвы и воды в ближайших окрестностях.

Основные понятия клинической дозиметрии

Для точного определения количественных показателей ионизирующего излучения в научный обиход было введено такое понятие, как «доза». Оно подразумевает соотношение объёма или массы облучаемого вещества и энергии излучения.

Количественный процесс распада атомов в течение одной временной единицы определяется активностью радиоактивного вещества. При обозначении уровня активности в интернациональной системе используется общепринятая единица – Беккерель. Его характеристика – 1 распад в течение 1-й секунды. Внесистемный аналог Беккереля – Кюри. Предполагает 3,7.1010 распадов за идентичную единицу времени.

Классификация доз излучения

Существует несколько разновидностей доз излучения. Для каждой из них характерны особые условия замера и свои сферы применения. Основные разновидности:

В современной медицине при проведении дозиметрического замера мощности ионизирующего излучения принято использовать системные единицы измерения. Но поскольку внесистемные единицы измерения активно применялись на протяжении достаточно долгого времени, с их использованием было выпущено большое количество тематической литературы и дозиметрических приборов. Поэтому актуальным остаётся навык соотношения обеих типов единиц.

Способы дозиметрии ионизирующих излучений

Ионизирующее излучение невозможно определить по запаху, на вкус или благодаря иным человеческим рецепторам. Для фиксации наличия излучения, а также определения его качественных и количественных характеристик, необходимо обеспечить плотное взаимодействия ИИ с облучаемым веществом. Фиксация полученных эффектов достигается с помощью дозиметра.

Дозиметры позволяют определить мощность дозы ионизирующего излучения, а также инициализировать химические, фотографические, сцинтилляционные, ионизационные и другие эффекты, возникающие вследствие взаимодействия ионизирующего излучения с облучаемым веществом. Они бывают трёх типов:

Применяемые в международной практике способы дозиметрии ионизирующих излучений бывают следующих типов:

Цель проведения регулярных дозиметрических измерений

Плановые дозиметрические мероприятия проводятся для предотвращения возможности получения сотрудниками медицинского учреждения критической дозы облучения. В первую очередь регулярный мониторинг поглощенной дозы облучения распространяется на медперсонал группы А, представители которой осуществляют ежедневный контакт с источником радиационного излучения.

Также осуществление дозиметрического контроля за радиационным фоном в основных рабочих помещениях медицинского учреждения и смежных с ним территориях позволяет защитить пациентов клиники и обитающих в её окрестностях жителей от необоснованного радиационного облучения. При выявлении повышенных рисков возникновения внештатных ситуаций – дает возможность принять превентивные меры по их устранению.

Источник

ДОЗЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

ДОЗЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ — физические величины, принятые в дозиметрии ионизирующих излучений для количественной характеристики поля излучения и воздействия излучения на облучаемый объект.

Производные единицы поглощенной дозы — килорад (крад), милли-рад (мрад), микрорад (мкрад) и т. д.

Увеличение поглощенной дозы излучения, отнесенное к единице времени, называется мощностью поглощенной дозы (P). P = dD/dt, где dD — приращение поглощенной дозы за интервал времени dt. Единицей мощности поглощенной дозы является любое частное от деления рада (грея) или его производной единицы на единицу времени (рад/час, рад/мин, рад/сек, мрад/час, мкрад/сек, Гй/с и т. д.).

Физ. мерой воздействия излучения на все облучаемое тело или на определенную его часть является интегральная поглощенная доза Dинт. Она равна поглощенной энергии излучения в массе тела (или его части). Интегральная доза излучения измеряется в единицах г-рад, кг-рад и т. п.

Поскольку поглощенная доза излучения неоднозначно определяет воздействие фотонов и частиц различных видов и энергии на живой организм, для сопоставлений при хрон, облучении введена величина эквивалентная доза излучения (Dэкв), единицей измерения к-рой является бэр (бэр). За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, к-рая при хрон, облучении вызывает такой же биол, эффект, что и 1 рад рентгеновского или гамма-излучения (см. Относительная биологическая эффективность излучений, Фактор качества).

Наряду с поглощенной дозой излучения, являющейся универсальной величиной, широко пользуются экспозиционной дозой (D0) излучения, применимой только для воздуха и для фотонного (рентгеновского и гамма-) излучения с энергией до 3 МэВ.

Экспозиционная доза основана на ионизирующем действии излучения.

Для фотонного излучения не всегда наблюдается однозначная связь между поглощенной (т. е. переданной электронам в результате элементарных актов взаимодействия) энергией фотонов в данном объеме и ионизацией, произведенной этими вторичными электронами, т. к. часть вторичных электронов, пробеги которых больше линейных размеров этого объема или которые образованы у его границ, произведет ионизацию вне этого объема. Кроме того, в объеме могут произвести ионизацию вторичные электроны, образованные фотонами, поглощенными вне этого объема.

Исходя из особенностей взаимодействия фотонного излучения с веществом, экспозиционную дозу определяют как отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха с массой dm, полностью остановились в воздухе, к массе воздуха dm в указанном объеме: D0 — dQ/ dm.

Однозначная связь между экспозиционной и поглощенной дозами может быть установлена, когда поглощенная доза измеряется в воздушном объеме, окруженном слоем воздуха или воздухоэквивалентного вещества, толщина к-рого больше или равна пробегу вторичных электронов, т. е. когда соблюдается условие электронного равновесия.

В этом случае при экспозиционной дозе 1 P поглощенная доза в воздухе равна 88 эрг/г. Это энергетический эквивалент рентгена.

Между экспозиционной дозой D0 и измеренной в условиях электронного равновесия поглощенной дозой D в какой-либо другой среде существует следующее соотношение D = kD0, где k имеет размерность рад/Р.

Поглощенная доза в воде и мышечной ткани отличается на 4—10% от поглощенной дозы в воздухе вследствие того, что эффективный атомный номер Zэфф воды и мышечной ткани близок, но не равен Zэфф воздуха. Вследствие этого в интервале энергии фотонного излучения 150 кэВ —3 МэВ k = 0,93 рад/P для воды и мышечной ткани и 0,97 рад/Р для жировой клетчатки, т. е. при экспозиционной дозе в 1 Р, поглощенная доза в воде и мышечной ткани в условиях электронного равновесия будет равна 93 рад. Для костной ткани, ZЭфф к-рой больше, чем у воздуха, а следовательно, и более существенно фотоэлектрическое поглощение в области малых энергий, значение k будет изменяться от 4,74 до 0,88 рад/P с увеличением энергии от 10 до 200 кэВ; начиная с 200 кэВ значение k остается примерно постоянным и равным 0,88 рад/Р.

При гамма-терапии, а также при ряде биол, экспериментов важно знать распределение дозного поля (см.) в облучаемом объекте, на основании чего можно судить о поглощенной дозе излучения в различных точках. Определение дозы в какой-либо точке внутри облучаемого объекта можно производить при наличии внутри него воздушной полости, что позволяет измерить в ней ионизацию. Такие измерения проводят обычно на моделях (фантомах). Фантомы изготовляются из тканеэквивалентных веществ, т. е. из веществ, у которых ослабление и рассеяние излучения происходят так же, как и в мышечной ткани (см. Фантомы дозиметрические). Такими веществами являются вода, парафин, картон, плексиглас. Помещая ионизационную камеру с тканеэквивалентными стенками в различных точках фантома, определяют распределение дозного поля, по к-рому можно судить о распределении поглощенной дозы.

Доза, создаваемая в глубине облучаемого объекта, называется глубинной дозой (Dгл). Она складывается из дозы, создаваемой прямым излучением источника и рассеянным излучением. Доза, создаваемая рассеянным излучением, зависит от энергии излучения, геометрии облучения и размера объекта.

Поверхностная доза (Dп) — доза, создаваемая на поверхности облучаемого объекта. Она больше, чем доза, измеренная в воздухе в той же точке в отсутствие объекта, что обусловлено обратным рассеянием. Напр., для излучения с энергией 200 кэВ обратное рассеяние может достигать 20—25% от дозы первичного излучения в этой же точке, для гамма-излучения 60 Со оно равно 1 — 3% в зависимости от размеров поля облучения.

Отношение глубинной дозы к дозе в воздухе в месте расположения поверхности облученного объекта D’ называется относительной глубинной дозой (Dгл/D’). Эта величина, выраженная в процентах, называется процентной глубинной дозой (Dгл/D’×100). Иногда относительной глубинной дозой называют отношение глубинной дозы к поверхностной (Dгл/Dп).

Дозы ионизирующих излучений в медицине и биологии. В естественных условиях организм животных и человека подвергается постоянному воздействию космических лучей и излучения естественных радиоактивных элементов, присутствующих в воздухе, почве и в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах — до 1000 мбэр в год.

В современных условиях в процессе жизнедеятельности человек сталкивается с превышениями этого среднего уровня радиации. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы (ПДД) на все тело (см. Предельно допустимые дозы, излучения), которые при длительном воздействии не вызывают у человека нарушения общего состояния, а также изменения функций кроветворения и воспроизводства. Для ионизирующего излучения установлена ПДД 5 бэр в год. Расчет дозовых нагрузок производится с учетом коэффициента качества разных видов ионизирующего излучения.

Для оценки отдаленных проявлений действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций у человека, не превышает 100 бэр на поколение; имеются, однако, указания и на еще меньшие значения этой дозы (3—12 бэр).

Генетически значимые дозы для населения находятся в пределах 7 — 55 мбэр/год.

Использование излучения в мед. практике приводит к увеличению дозовых нагрузок на население. Рентгенол. обследование сопровождается лучевым воздействием на те или иные поверхности тела в дозах 0,04 Р — 7,0 P при производстве снимков и до 50 P при просвечиваниях (табл. 1—4). Эти значения дозы имеют тенденцию к снижению.

Дозовые нагрузки при радиоизотопной диагностике в зависимости от используемого радиоактивного нуклида при однократном применении колеблются от 0,01 до 600 бэр/мкКи на все тело и от 0,003 до 6000 бэр/мКи на отдельные органы и ткани (см. Критический орган).

Медперсонал рентгеновских кабинетов, врачи-радиологи и медперсонал радиоманипуляционных кабинетов при выполнении различных работ подвергаются лучевому воздействию на отдельные области тела в дозах 0,03—0,18 бэр/сут (табл. 5).

При лучевой терапии злокачественных опухолей в зависимости от характера патол, процесса проводятся локальные облучения в дозах в среднем до 8000 бэр за 3—4 недели.

В радиобиологии различают следующие дозовые величины, характеризующие гибель животных в течение фиксированного времени (30— 60 дней): минимальная летальная доза (DLM), доза половинной (50%) выживаемости или смертности (DL50) в течение определенного срока, минимальная абсолютно летальная доза (МАЛД)— минимальная доза, вызывающая гибель всех животных.

Значения этих доз колеблются в зависимости от вида и линии животных. Так, напр., DL50 при однократном равномерном воздействии гамма-излучением лежат в пределах от 250 рад (2,5 Гй) для собак до 900 рад (9 Гй) для отдельных линий мышей. Для человека при тотальном облучении гамма-излучением МАЛД принимается равной 600 рад (6 Гй), a DL50 —400 рад (4 Гй).

Источник

Мощность дозы рентгеновского излучения

Что такое поглощенная доза ионизирующего излучения. Смотреть фото Что такое поглощенная доза ионизирующего излучения. Смотреть картинку Что такое поглощенная доза ионизирующего излучения. Картинка про Что такое поглощенная доза ионизирующего излучения. Фото Что такое поглощенная доза ионизирующего излучения

Содержание

В чём измеряется мощность дозы рентгеновского излучения и как происходит радионуклидное накопление в человеческом организме?
Какой объем накопленного ионизирующего облучения критичен для здоровья?

Системные и внесистемные единицы измерения

В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.

В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.

За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.

Области применения Рентгена и Зиверта

Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.

Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.

Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.

Тысячные и миллионные доли Зиверта/Рентгена

Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.

Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.

Допустимый объём накопленного в организме облучения

Доза облучения при воздействии на человеческий организм имеет накопительное свойство. Учеными определен критический порог накопленных на протяжении жизни Зивертов в организме, превышение которого чревато негативными последствиями. Безопасный объем накопленного облучения находится в диапазоне от 100 до 700 миллизивертов.

Для коренных жителей высокогорных районов данные показатели могут быть немного выше.

Основные источники накопления в организме радионуклидных соединений

Ионизирующее излучение происходит вследствие инерционного высвобождения магнитных волн при активном взаимодействии атомов. Источники ионизирующего излучения делятся на природные и искусственные.

Природные ионизирующие излучения

К числу природных источников излучения в первую очередь относится естественный радиационный фон. В различных районах планеты фиксируется разный уровень радиации. На его размер оказывают прямое влияние следующие факторы:

Оптимальным для жизни считается радиационный фон 0,2 микрозиверта в час (или 20 микрорентген в час). Верхний порог допустимого уровня: 0,5 микрозивертов в час (50 микрорентген в час).

В зоне радиационного фона до 10 мкЗв/ч (1 мР/ч) возможно безопасное нахождение на протяжении 2-3 часов. Более продолжительное пребывание способно повлечь критические последствия.

Источники накопления дозы естественного излучения в организме

Среднестатистическая накапливаемая в человеческом организме доза естественного излучения составляет примерно 2–3 мЗв в год. Она складывается из следующих показателей:

Одним из источников природного ионизирующего излучения является сам человеческий организм, производящий собственные отложения радионуклидных соединений. Среднестатистический уровень одного только скелета колеблется от 0,1 до 0,5 мЗв.

Искусственные ионизирующие излучения

К источникам искусственного ионизирующего облучения в первую очередь относятся медицинские аппараты, применяемые во время проведения рентгеновской диагностики или терапии. В разных видах рентгеновского обследования различная величина эквивалентной поглощенной дозы. Также на мощность дозы облучения влияет срок выпуска и эксплуатационная нагрузка используемого рентген аппарата.

Рентгеновская аппаратура последнего поколения подвергает человеческий организм облучению в несколько десятков раз ниже, чем предшествовавшие модели. Современные цифровые аппараты практически безопасны.

Размер доз облучения при рентгенодиагностике

Мощность дозы рентгеновского излучения в современных аппаратах по сравнению с их предыдущими модификациями:

При рентгеноскопической диагностике происходит визуальное обследование органов с оперативным выводом необходимой информации на монитор компьютера. В отличие от фотографического метода, данный тип диагностики подвергает пациента меньшей дозе облучения за равную единицу времени. Но в некоторых случаях обследование может проводиться более длительное время.
При диагностике продолжительностью до 15-ти минут средняя мощность полученной дозы колеблется от 2 до 3,5 мЗв.

Во время проведения диагностики желудочно-кишечного тракта человек получает дозу облучения до 6-ти миллизивертов. При компьютерной томографии – от 2-х до 6-ти миллизивертов (мощность получаемой дозы напрямую зависит от диагностируемых органов).

При проведении сравнительного анализа получаемой человеком дозы ионизирующего облучения от аппаратов рентгенодиагностики и повседневном пребывании в привычной окружающей среде учёными были получены следующие данные:

Согласно законодательству Российской Федерации по радиационной безопасности допустимой нормой рентгеновского облучения (средняя годовая эффективная доза) является обобщенная доза в 70 мЗв, полученная в течение 70-ти лет жизни.

Источник

Допустимый радиационный фон для человека

Радиационное излучение постоянно воздействует на людей – на улице в городе, на работе, в квартире и любом другом помещении. Естественный радиационный фон, который создается солнцем и космическими лучами, безопасен для человеческого здоровья. Но есть ли нормальный уровень радиации для человека в быту, с которым он может жить, не подвергая свой организм фатальным изменениям?

Что такое поглощенная доза ионизирующего излучения. Смотреть фото Что такое поглощенная доза ионизирующего излучения. Смотреть картинку Что такое поглощенная доза ионизирующего излучения. Картинка про Что такое поглощенная доза ионизирующего излучения. Фото Что такое поглощенная доза ионизирующего излучения

Виды радиационного фона

Ионизирующее излучение (ИИ), взаимодействуя с веществом, становится причиной ионизации атомов и молекул (атом возбуждается и открывается от отдельных электронов из атомных оболочек). Основные виды радиации:

Единицы измерения радиации

Допустимый радиационный фон для человека и нормы радиации измеряются с помощью доз излучения. Это величины, которые применяются, чтобы оценить уровень воздействия ионизирующего излучения на различные вещества, организмы, ткани. Единица измерения зависит от типа дозы:

Существует ли вообще безопасная доза?

Норма радиации – размытое понятие. В 1950 г. скандинавский ученый Рольф Зиверт установил, что у облучения нет порогового уровня – определенного значения, при котором у человека гарантированно не будет наблюдаться заметных или незаметных повреждений.

Любая существующая норма радиации способна теоретически вызывать изменения в организме людей соматические и генетические изменения. Многие из которых не проявляются сразу, а остаются скрытыми в течение длительного временного промежутка. Поэтому сложно говорить о нормах радиации – существуют только допустимые ее пределы.

Допустимые дозы радиации

Российские и международные стандарты предусматривают определенные нормы радиации. Считается, что при воздействии на организм человека они не смогут нанести вреда. Норма радиации в микрорентген в час – 50 (0,5 микрозиверт в час).

При этом также отмечается, что не более 0,2 мкЗв в час (20 микрорентген в час) – это максимально безопасный уровень облучения человеческого организма при условии, что радиационный фон входит в диапазон нормальных показателей, поэтому норму радиации даже в этом случае можно назвать условной. При воздействии в течение нескольких часов считается безопасным излучение на уровне не более 10 микрозиверт в час (1 миллирентген). Кратковременно допускается облучение в несколько миллизивертов в час (например, во время рентгена или флюорографии).

Поглощенная доза

Под понятием «поглощенная доза» определяется величина энергии радиации, которая была передана веществу. Выражена в качестве отношения энергии излучения, которая поглощена в данном объеме, к массе вещества в этом объеме.

Является основной дозиметрической величиной. Согласно международной системе единиц, ее измерение происходит в джоулях на кг (Дж/кг). Называется – «грей» (Гр, Gy). Не способна отразить биологический эффект облучения.

Оценка действия радиации на неживые объекты

Для определения нормы радиации при ее воздействии на неживые объекты используются показатели поглощенной дозы (количество поглощенной энергии веществом). При этом более информативной величиной считается экспозиционная доза, с помощью которой возможно определение степени воздействия на вещество разных типов радиации. Сложно говорить о нормах радиации на неживые объекты.

Оценка действия радиации на живые организмы

Если биологические ткани облучать различными типами радиации, обладающими одной и той же энергией, то последствия для организма будут отличаться. Иными словами, если при поглощении одной нормы радиации последствия будут серьезно разниться при альфа-излучении и гамма-излучении. Поэтому, чтобы оценить воздействие ионизирующего излучения на живые организмы, не хватает понятий экспозиционной и поглощенной дозы, также используется эквивалентная.

Это доза радиации, которая была поглощена живым организмом, помноженная на коэффициент k, который учитывает уровень опасности разных типов радиации. Измерение происходит с использованием Зиверт (Зв).

Нормы радиации согласно СанПин

В соответствии с СанПиНом 2.6.1.2523-09, эффективная доза облучения естественными источниками излучения любых работников, в т. ч. медперсонала, не должна составлять более 5 мЗв в год в производственных условиях (любые типы профессий и производств).

Если говорить о конкретных нормах радиации, то усредненные показатели радиационных факторов в течение 12 месяцев, которые соответствуют при монофактором воздействии дозе в 5 мЗв при длительности рабочего процесса 2000 часов/год, примерной скорости дыхания 1,2 кубометра/час, условии радиоактивного равновесия радионуклидов ториевого и уранового рядов в пыли, составляют:

Данные нормы радиации весьма условны, потому что многое будет зависеть от конкретных производственных условий, специфики сферы деятельности и других факторов.

Смертельная доза

В любых нормах радиации обычно всегда прописывается доза, которая быстро приводит к летальному исходу. Опасность ее получения чаще всего наблюдается при возникновении техногенных аварий, несоблюдении условий хранения радиоактивных отходов (вне зависимости от того, какой тип облучения воздействует на человека).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *