Что такое полка момента
Зачем вообще нужна полка крутящего момента?
В прошлом посте мы выяснили, что для эффективного разгона нужно держать обороты вокруг максимальной мощности, что зачастую приводит к тому, что двигатель вообще не эксплуатируется на полке крутящего момента. Этот пост призван ответить, чем она так хороша и зачем вообще нужна.
Во-первых, даже если мы хотим разгоняться эффективно, то всё равно, как минимум один раз, на первой передаче, нам всё равно придётся пробежаться по всем диапазону оборотов, прежде чем мы переключимся на вторую. Так что даже в этом случае полка момента не останется незадействованной.
Третья же причина не эксплуатационная, а сугубо инженерная. Дело в том, что металлы, из которых в основном и изготавливается трансмиссия, имеют такое неприятное свойство, как усталость. Давайте поясню на картинке:
Допустим, у нас есть некий предельный момент (Мпред), который может выдержать конструкция. Любое воздействие статического момента (то есть не меняющегося во времени) меньше этого (Мстат) для конструкции не страшно до тех пор, пока этот момент не начнёт изменяться (колебаться) – и вот тогда наше изделие рано или поздно сломается, несмотря на то, что момент сам по себе был небольшой (Мколеб).
Таким образом, действие постояного момента на трансмиссию – это благо, которое продлевает её ресурс. Двигатель и так передаёт энергию порциями (с одного цилиндра на два оборота коленвала – одна порция, по времени совпадающая с временем горения смеси), кстати, для смягчения этих колебаний от двигателя ставят демпфер в сцеплении, так что колебаний в трансмиссии более, чем достаточно. Поэтому возможность поработать на постоянном моменте благостно сказывается на ресурсе трансмиссии.
Теперь о том, почему бы эту полку не продлить до максимальных оборотов, иначе говоря, о том, зачем же нужен ниспадающий хвостик кривой крутящего момента. Представьте, что вы едете вот на таком режиме на установившейся скорости, например, на высшей передаче:
Установившаяся скорость означает, что тяга, развиваемая двигателем, полностью компенсирует внешние сопротивления. А теперь представьте, что эти сопротивления вдруг увеличились (подул встречный ветер, вы поехали в горку или асфальт стал более шершавым). Ваша скорость начнёт падать, а с ней и обороты двигателя. Что будет происходить с крутящим моментом и тягой на колёсах? Они начнут расти, компенсируя возросшее внешнее сопротивление. Так что ниспадающая на высоких оборотах характеристика крутящего момента позволяет нам компенсировать незначительные увеличения внешних сопротивлений незначительным уменьшением скорости, без переключения передач (а ведь переключение передач – это усталость водителя, износ синхронизаторов и сцепления, да и просто потеря времени!).
Так что такая характеристика двигателя здорово облегчает нам жизнь.
Надеюсь, что основные вопросы по внешней скоростной характеристике двигателя я снял, если остались неясности, обязательно спрашивайте в комментариях, а в следующем посте я собираюсь уже наконец доложить по теме, анонсированной здесь.
О полке крутящего момента и переключении передач на конкретном примере
После рассуждений о переключении передач для обеспечения наилучшего разгона осталась некоторая недосказанность, которую лучше всего пояснить примером. Но сначала – немного теории.
Итак, у нас есть двигатель, который создаёт какой-то крутящий момент (на разных оборотах он разный). За двигателем, как правило, стоит коробка передач, которая преобразует момент, увеличивая его в u раз, где u – передаточное число выбранной передачи. После коробки передач момент ещё увеличивается на передаточное число главной передачи (оно, как правило, на автомобиле неизменно) и делится на радиус колеса, чтобы в итоге получить тяговую силу, которую автомобиль и расходует на преодоление внешних сопротивлений и разгон.
Соответственно, переходя на следующую передачу, мы уменьшаем передаточное число и передаваемый к колёсам момент в q раз, где q – знаменатель ряда передаточных чисел, т.е. отношение передаточных чисел двух соседних передач. На этом всё и построено: необходимо ехать на текущей передаче до тех пор, пока её повышенное передаточное число позволяет нам передавать к колёсам больший момент, а как только передаваемый момент на этой передаче сравнится с моментом на следующей передаче, стоит переключаться.
А теперь на примере конкретного автомобиля – Skoda Octavia 1,4 TSI с двигателем, имеющим вот такую характеристику:
Прочие интересные и необходимые данные:
Найдём наилучший момент для переключения с третьей на четвертую передачу. Знаменатель q составит 1,28/0,97=1,32 (для тех, кто пропустил теорию: во столько раз упадут обороты двигателя после переключения).
1. Машина жмёт уже 78 км/ч, на одометре 4000 об/мин, двигатель развивает 200 Н*м, которые превращаются в 3847Н тяги на колёсах, но полка крутящего момента только что подошла к концу. Переключаемся? Конечно, нет. После переключения мы окажемся в точке с оборотами 4000/1,32=3030 об/мин, где двигатель будет развивать всё те же 200 Н*м, но из-за уменьшившегося в 1,32 раза передаточного числа тяга на колёсах составит всего 2913Н. Проигрыш очевиден, продолжаем гнать на третьей передаче.
2. Машина жмёт уже 88 км/ч, на одометре 4500 об/мин, двигатель развивает 190 Н*м, которые превращаются в 3655Н тяги на колёсах, но крутящий момент продолжает уменьшаться, хотя мощность ещё растёт. Переключаемся? Конечно, нет. После переключения мы окажемся в точке с оборотами 4500/1,32=3410 об/мин, где двигатель будет развивать уже 200 Н*м, но из-за уменьшившегося в 1,32 раза передаточного числа тяга на колёсах составит всего 2913Н. Проигрыш очевиден, продолжаем гнать на третьей передаче.
3. Машина жмёт уже 98 км/ч, на одометре 5000 об/мин, двигатель развивает 177 Н*м, которые превращаются в 3405Н тяги на колёсах, но крутящий момент продолжает уменьшаться, хотя мощность только что достигла своего пика. Переключаемся? Конечно, нет. После переключения мы окажемся в точке с оборотами 5000/1,32=3790 об/мин, где двигатель будет развивать уже 200 Н*м, но из-за уменьшившегося в 1,32 раза передаточного числа тяга на колёсах составит всего 2913Н. Проигрыш очевиден, хотя и стремительно уменьшается, продолжаем гнать на третьей передаче.
4. Машина жмёт уже 108 км/ч, на одометре 5500 об/мин, двигатель развивает 150 Н*м, которые превращаются в 2885Н тяги на колёсах, но крутящий момент продолжает уменьшаться, да и мощность уже падает. Переключаемся? Нет, но момент уже близок. После переключения мы окажемся в точке с оборотами 5500/1,32=4170 об/мин, где двигатель будет развивать уже 197 Н*м, но из-за уменьшившегося в 1,32 раза передаточного числа тяга на колёсах составит всего 2869Н. Проигрыш в тяге уже почти нивелирован скисающим двигателем, пока продолжаем гнать на третьей передаче, но будьте начеку.
5. Вот он, момент истины: машина жмёт 110 км/ч, на одометре 5600 об/мин, двигатель развивает 146 Н*м, которые превращаются в 2808Н тяги на колёсах, но крутящий момент продолжает уменьшаться, да и мощность уже падает. Переключаемся? В самый раз! После переключения мы окажемся в точке с оборотами 5600/1,32=4240 об/мин, где двигатель будет развивать уже 192 Н*м, но из-за уменьшившегося в 1,32 раза передаточного числа тяга на колёсах составит те же самые 2810Н. Обратите внимание, что переключение было произведено как раз в соответствии с рекомендациями предыдущего поста: мощность двигателя на 5600 об/мин и на 4240 об/мин одинакова!
6. А теперь посмотрим на тех упрямцев, что не переключились вместе со мной и продолжают крутить двигатель дальше: Машина жмёт уже 118 км/ч, на одометре 6000 об/мин, двигатель развивает 133 Н*м, которые превращаются в 2558Н тяги на колёсах, подскисший двигатель готов упереться в отсечку. Что же, кроме как переключаться, делать нечего. После переключения мы окажемся в точке с оборотами 6000/1,32=4550 об/мин, где двигатель будет развивать уже 186 Н*м, но из-за уменьшившегося в 1,32 раза передаточного числа тяга на колёсах составит 2709Н. Давно пора было переключиться, чтобы реализовывать большую тягу!
И, напоследок, график тяга–скорость для третьей и четвертой передач:
Очевидно, что для наилучшего разгона нужно реализовывать максимальную тягу, как это и показано на графике. Надеюсь, этим постом я снял если не все, то большинство вопросов, касающихся правильного момента переключения передач.
Что такое крутящий момент двигателя автомобиля
В списке ключевых характеристик любого бензинового или дизельного ДВС обязательно указывается мощность и крутящий момент двигателя. Что касается самого транспортного средства, отдельный акцент делается на разгонной динамике автомобиля 0-100 км/ч. независимо от типа силового агрегата под капотом (бензин, дизель, гибридный двигатель и т.д.). Традиционно сложилось, что максимум внимания покупателей изначально обращен на мощность двигателя, выраженную в лошадиных силах (л.с.). Прочно укоренилось мнение, что чем больше л.с. выдает двигатель, тем быстрее, динамичнее и, зачастую, престижнее окажется автомобиль в конечном итоге. Параллельно с этим показатель крутящего момента, который выражается в ньютон-метрах (Н∙м), маркетологи сознательно отодвигают на второй план.
Такой подход хорошо иллюстрирует распространенное выражение среди продавцов автомобилей в США. Как они говорят, продавать машины помогают «лошади», то есть мощность, при этом двигает автомобиль вперед крутящий момент. Далее мы подробно рассмотрим, что такое крутящий момент двигателя внутреннего сгорания, а также взглянем на зависимость характеристик мощности двигателя, крутящего момента и разгонной динамики.
Мощность и крутящий момент ДВС
Для большинства рядовых автолюбителей понятие о показателе максимальной мощности и крутящего момента сводится к тому, что чем больше мощность, тем больше окажется и крутящего момента, а также более мощный двигатель всегда лучше. При этом чёткое понимание указанных характеристик мотора у многих отсутствует.
Смятение в этот лагерь также внесло растущее число «дизелистов», среди которых намного больше внимания уделяется именно кутящему моменту, а не мощности дизельного мотора. Также следует упомянуть и о турбомоторах, которые могут разгонять автомобиль намного быстрее, хотя мощность самого ДВС с наддувом заметно уступает атмосферным аналогам с намного более внушительным количеством «лошадей» под капотом. Получается, мощнее, но не всегда динамичнее и быстрее? Давайте разбираться, почему так происходит и чем «моментная» характеристика отличается от «мощностной».
Как мощность двигателя и крутящий момент влияют на разгон автомобиля
Как уже было сказано, в технических характеристиках указывается максимальная мощность двигателя и крутящий момент. Итак, крутящий момент представляет собой силу вращения коленвала ДВС. Измеряется крутящий момент в ньютон-метрах. Также моментная характеристика может быть выражена в килограмм-силах на метр. Крутящий момент возникает тогда, когда свободно вращающийся коленвал начинают тормозить.
Так происходит по причине того, что на разных оборотах в камере сгорания происходят разные процессы, что отражается на эффективности наполнения цилиндров, качестве сгорания топливно-воздушной смеси, вентиляции цилиндров и т.д. Другими словами, количество воздуха на впуске, угол опережения зажигания, объем отработавших газов и ряд других параметров меняется в зависимости от числа оборотов коленвала. По этой причине каждому водителю бензиновой машины с малообъемным атмосферным мотором хорошо знакома ситуация, когда на «низах» при езде на высокой передаче двигатель не тянет, то есть крутящий момент очень мал.
Нажатие на педаль газа и поднятие оборотов до средних значений приводит к тому, что эффективность наполнения воздухом на впуске растет, топливно-воздушная смесь сгорает более полноценно, цилиндры лучше вентилируются. Результатом становится то, что крутящий момент растет. Добавим, что турбомоторы в среднем диапазоне оборотов полностью преодолевают эффект турбоямы, после чего у двигателя возникает желаемый подхват. Дело в том, что поток отработавших газов после раскручивания двигателя начинает эффективно вращать крыльчатку турбокомпрессора для подачи большего количества воздуха в цилиндры.
Дальнейший рост оборотов вызывает то, что в двигателе существенно растут механические потери. К таким потерям следует отнести трение поршневых колец о стенки цилиндров, а также различные инерционные потери в других узлах и механизмах двигателя. В результате КПД мотора падает, энергия начинает расходоваться на преодоление таких потерь в условии езды на приближенных к максимальным оборотах. Закономерно, что крутящий момент начинает уменьшаться с учетом растущих нагрузок. Турбомоторы также теряют отдачу, так как сам турбонагнетатель не обеспечивает должную производительность на максимальных оборотах.
Если сказать иначе, мощность двигателя означает количество работы, которую агрегат способен выполнить за определенный промежуток времени. Мощность ДВС измеряется в киловаттах (кВт) и напрямую зависит от показателя крутящего момента на конкретных оборотах. Не вдаваясь в подробности, мощность является расчетной величиной и не измеряется отдельно от кутящего момента. Что касается максимальной мощности, такая мощность представляет собой условную точку начала уменьшения крутящего момента, но произведение мощности и оборотов еще не стремится к увеличению. С учетом данной информации становится понятно, что такое полка крутящего момента, которая часто отображается на графиках. Под такой полкой следует понимать диапазон оборотов, на которых постоянно доступен максимум крутящего момента.
Что касается самой максимальной мощности, от данного показателя зависит, прежде всего, та максимальная скорость, с которой способен двигаться автомобиль. Максимальная скорость становится доступной в том случае, когда расходуемая мощность равна мощности ДВС. При этом для определения «максималки» конструкторами учитывается ряд потерь на инерцию и трение, сопротивление потокам воздуха и качению колес. Если проще, от запаса мощности зависит способность мотора преодолевать растущие потери и сопротивление, что и позволяет агрегату разогнать автомобиль только до определенного предела и далее поддерживать набранную скорость.
Крутящий момент дизельного двигателя
Особенностью дизельных двигателей сравнительно с бензиновыми аналогами является более высокий крутящий момент и меньшая мощность. Дело в том, что дизельные моторы имеют суженный диапазон оборотов. Это связано с конструктивными отличиями таких моторов (ход поршня), а также более высокой степенью сжатия и спецификой процесса сгорания дизтоплива.
Другими словами, дизель изначально не приспособлен для работы на высоких оборотах. Следовательно, агрегат не так хорошо раскручивается. Параллельно с этим температура выхлопа у дизельного двигателя ниже по сравнению с бензиновым, а также на «низах» моторы на солярке не так склонны к детонации. В результате конструкторы смогли установить сложные и максимально эффективные системы турбонаддува именно на дизель.
Добавим, что потенциал дизеля позволяет сделать его даже мощнее бензиновых собратьев, но это приведет к существенному удорожанию и утяжелению всей конструкции двигателя. Также понадобится доработка системы питания дизельного мотора и установка более выносливой КПП, которая будет способна выдерживать просто огромный крутящий момент. Не следует забывать и об экологических нормах, для соответствия которым мощные дизели потребуют серьезной модернизации. Получается, поднимать мощность дизеля сегодня попросту нецелесообразно.
Подведем итоги
Если вы столкнулись с возможностью выбрать автомобиль с незначительно отличающимися по характеристикам двигателями, тогда оптимально выбирать агрегат с большим крутящим моментом. Данное правило особенно актуально для машин с МКПП. Например, производитель может выпускать одну и ту же модель, которая получает ДВС с рабочим объемом 1.8 литра (140 л.с.) и 2.0 (155 л.с.). Также следует учитывать и упомянутую выше полку крутящего момента, то есть зависимость мощности и крутящего момента от оборотов двигателя.
Лучшим вариантом двигателя будет тот, когда мотор выходит на пик момента не на определенных оборотах, а в максимально широком диапазоне. Например, простой атмосферный двигатель может иметь пик крутящего момента на 3500 об/мин, в то время как его продвинутый высокотехнологичный аналог с турбиной выходит на пик момента уже при 1500 об/мин, сохраняя «ровную» полку до 4500 об/мин. Это значит, что в первом случае для уверенного разгона мотор нужно крутить, удерживать ДВС на оборотах максимального момента, а также чаще переключать передачи вниз при возникновении нагрузок. Во втором случае максимум крутящего момента будет доступен водителю в широком диапазоне оборотов, что позволяет эффективно ускоряться и справляться с меняющимися нагрузками без частого переключения передачи на пониженную. Другими словами, доступность высокого крутящего момента в расширенном диапазоне фактически означает, что и мощности почти всегда достаточно.
Различные силовые установки тестируются на эластичность путем анализа тяги и разгона с 60 до 100 км/ч при движении на четвёртой передаче или ускорения с 80 до 120 км/ч на включенной пятой передаче. По этой причине малообъемный высокофорсированный двигатель, который имеет отличный подхват на низких оборотах и широкую полку момента, покажет себя отличным вариантом для города. Именно в городском цикле, то есть в условиях умеренных скоростей и режимов ускорение-замедление, потенциала такого ДВС более чем достаточно. При этом следует учитывать, что на более высокой скорости в режиме трассы подобный агрегат может не обеспечить уверенного обгона, уступив в этом плане простому атмосферному двигателю с большим крутящим моментом и мощностью.
Что такое крутящий момент двигателя? Рассказываем, объясняем и показываем
Крутящий момент двигателя — это тяговая характеристика двигателя, которая в отличие от мощности дает весьма отдаленное представление об истинных возможностях автомобиля. Для более полного раскрытия этого понятия необходимо прежде всего уяснить, что момент двигателя и момент на колесах автомобиля — это две большие разницы. Крутящий момент двигателя, будучи величиной равной силе на плечо (Н*м) — сила давления сгоревших в двигателе газов через поршень и шатун на плечо кривошипа коленвала, показывает лишь потенциал мотора, а сам автомобиль, в конечном итоге, движет крутящий момент на колесах.
Для оценки реальных тягово-динамических возможностей автомобиля на основе крутящего момента двигателя необходимо провести довольно утомительный расчет крутящего момента на колесах автомобиля. Для данного расчета также понадобятся, указанные в технических характеристиках, величины оборотов двигателя, передаточных чисел КПП и главной передачи, диаметра колес и т.д. Тогда как указанная величина мощности двигателя, не требуя дополнительных данных и расчетов, наглядно демонстрирует тягово-динамические возможности автомобиля, то есть крутящий момент на колесах.
Момент вращения
Если выражаться языком физики, то понятие о вращающем моменте легко уяснить, зная принцип получения преимущества от использования рычага. Вычисляемые путем сложения приложенных на рычаг усилий (вес груза) к длине плеча (рычага) «ньютон-метры», показывают потенциальное количество выполняемой работы. В случае с ДВС вес груза – это усилие с которым поршень после сгорания топливно-воздушной смеси совершает возвратно-поступательное движение. Длина плеча будет не чем иным, как ходом поршня (расстояние от ВМТ до НМТ). Вращающее усилие создается только во время рабочего такта.
От чего зависит полка крутящего момента
Согласно расчетной формуле Мкр = F х L, где F – это сила, а L – длина плеча, момент вращения будет зависеть от КПД сгорания топливно-воздушной смеси (F) и величины хода поршней (L).
Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.






Что такое крутящий момент
Крутящий момент представляет собой качественный показатель, выражающий силу вращения коленвала, и рассчитывается произведением силы, давящей на поршень, на плечо (расстояние между центром вращения оси коленчатого вала до места крепления поршня к шатуну). Измеряется в количестве ньютонов на метр (Нм).
Рекомендуем: Течь масла из-под сальника коленвала: причины и устранение проблемы
Сила крутящего момента зависит от давления на поршень при сгорании газов, рабочего объема камеры сгорания и двигателя в целом, степени сжатия горючей смеси в камере сгорания.
Традиционно более высокий крутящий момент у дизелей, это объясняется степенью сжатия, превосходящей бензиновые двигатели практически вдвое.
Сильный крутящий момент дает автомобилю повышенную динамику набора скорости даже при низких оборотах, и заметно повышает тяговые свойства двигателя. Максимальных значений данная характеристика достигает при определенной частоте вращения коленвала, причем у дизелей этот показатель ниже, чем у бензиновых.



Мощность
Количество полезной работы, преобразованное возвратно-поступательными движениями КШМ, обозначается ньютон-метрами (крутящий момент). Тогда что такое мощность двигателя? Мощностью именуется количество произведенной работы за единицу времени. Иными словами, количество единиц крутящего момента, которое мотор способен выдать за определенный промежуток времени. Мощность двигателя измеряется в киловаттах (кВт).
Формула для расчета мощности в киловаттах:
P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу.
Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов.
На что влияет крутящий момент двигателя
Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.
Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.
Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.
Рекомендуем: Как завести долго стоявшую дизельную машину
Соотношение крутящего момента к мощности
Для получения наглядного представления о взаимодействии двух величин рассмотрим основные характеристики мотора на графике. Он демонстрирует выдаваемую двигателем мощность и крутящий момент двигателя в зависимости от оборотов коленчатого вала.
График отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности. Двигатель достигает пика крутящего момента уже на 3 тыс. об/мин. Максимум мощности доступно на 5500 об/мин. В обоих случаях обороты продолжают расти, но отдача падает. Для обозначенного двигателя обороты от 2500 до 5 тыс. наиболее оптимальные.
В этом режиме работы близкая к максимальному значению «полка» момента позволит полноценно реализовать потенциал мотора на протяжении всего отрезка.
Приведенный график является примером гражданской настройки современных бензиновых моторов. Преимущества очевидны:
Настройка подобного типа позволяет добиться «эластичности» двигателя. Такая работа обеспечивается не только программно (настройка ЭБУ), но и применением различных вспомогательных технологий (изменяемые фазы газораспределения).
Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике. Крутящий момент и количество лошадиных сил таких моделей значительно превышают своих атмосферных собратьев.


Какому двигателю отдать предпочтение
Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.
Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.
Бензиновый двигатель
Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.
Дизельный двигатель
В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.
Электродвигатель
Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.
Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.
ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.
Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.



Что такое лошадиные силы
Наблюдательный читатель, скорей всего, отметит подозрительным тот факт, что до сих пор не прозвучало, всеми так любимое «лошадиные силы». Суть в том, что «скакуны» – это лишь дань моде тех времен, когда механизмам приходилось доказывать свое преимущество над живой рабочей силой. Поэтому превосходство (способность выполнить определенное количество работы) удобно было выражать в пересчете на потенциал одной лошади. Фактически 1 л.с – это усилие, которого достаточно для поднятия груза массою 75 кг на 1 м за 1 с.
Для того чтобы получить «лошадиные силы» достаточно умножить значение мощности в киловаттах на коэффициент 1,36.
Покупатели не потеряют ровным счетом ничего, если производители откажутся использовать «л.с» в качестве показателя мощностных характеристики автомобилей. Обозначить крутящий момент и мощность в кВт вполне достаточно. Но традиция настолько глубоко запечатлелась в сознании, что тратить усилия на ее разрушения попросту нецелесообразно.
Зависимости вращающего момента и мощности ДВС от частоты оборотов
В большинстве случаев зависимости величины крутящего момента и мощности двигателя от количества оборотов имеют такой вид, как на графике 1:
Из графика зависимости видно, что при малых оборотах крутящий момент небольшой, по мере их увеличения он достигает максимума 178 ньютон на метр при величине оборотов около 4500 в минуту, затем начинает падать. Вместе с тем мощность, пропорциональная произведению количества оборотов на крутящий момент до 5500 оборотов в минуту продолжает увеличиваться вплоть до 124 лошадиных сил, как на примере, затем после значительного уменьшения крутящего момента, также падает.
Физически это объяснить нетрудно. На малых оборотах в область сгорания в единицу времени поступает незначительное количество топливно-воздушной смеси, соответственно, сила, воздействующая на поршни, обеспечивающие крутящий момент, небольшие. При увеличении оборотов сгорание больше, крутящий момент увеличивается. Его уменьшение при дальнейшем увеличении оборотов связано с:
Современные двигатели с турбонаддувом обеспечивают поступление топливно-воздушной смеси в полном объеме и на малых оборотах, кроме этого имеют отлаженную систему электронного регулирования. За счет этого характеристика крутящего момента на различных оборотах более равномерная, как показано на графике 2:
Из графика видно, что высокий крутящий момент обеспечивается на низких оборотах вплоть до 2000 об./минуту и не сильно уменьшается до 5500 об./минуту.
Высокооборотные двигатели позволяют увеличить мощность за счет увеличения количества оборотов до 7.000 – 8.000 в минуту и более, как показано на графике 3:
Как видно из графиков, мощность двигателя является зависимой от крутящего момента и количества оборотов двигателя величиной. Приобретая автомобиль, желательно ознакомиться с динамическими характеристиками двигателя, зависимостью крутящего момента от величины оборотов.
Если вы желаете комфортно передвигаться в городском ритме движения, совершая уверенные обгоны и перестроения, лучше приобрести автомобиль с низкооборотным двигателем либо турбонаддувом. В том случае, если вы любитель погонять с ветерком на автобане, подходит вариант высокооборотного движка.
Видео — взаимосвязь мощности и вращающего момента ДВС:












