Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ ЭнциклопСдия НСфти ΠΈ Π“Π°Π·Π°

Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² извСстна Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŽ ΠΈΠ· срСднСй ΡˆΠΊΠΎΠ»Ρ‹. [4]

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° называСтся сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π΅Π³ΠΎ Π³Ρ€Π°Π½Π΅ΠΉ. [5]

Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΎΠΉ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ»ΠΎΡΠΊΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΠΈ совмСщСнии с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ всСх Π΅Π³ΠΎ Π³Ρ€Π°Π½Π΅ΠΉ. Π Π°Π·Π²Π΅Ρ€Ρ‚Ρ‹Π²Π°Π½ΠΈΠ΅ Π³Ρ€Π°Π½Π½Ρ‹Ρ… повСрхностСй Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ для-провСдСния раскроя листового ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΈΠ»ΠΈ опрСдСлСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ, ΠΏΠΎΠΊΡ€Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… покрытиях, выполняСмых ΠΊΠ°ΠΊ с Π΄Π΅ΠΊΠΎΡ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ цСлями, Ρ‚Π°ΠΊ ΠΈ с Ρ†Π΅Π»ΡŒΡŽ придания повСрхности ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… свойств, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ элСктропроводности, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… химичСских ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ повСрхностСй. [6]

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° называСтся сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π΅Π³ΠΎ Π³Ρ€Π°Π½Π΅ΠΉ. [7]

Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΎΠΉ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° называСтся плоская Ρ„ΠΈΠ³ΡƒΡ€Π°, получСнная ΠΏΡ€ΠΈ совмСщСнии всСх Π΅Π³ΠΎ Π³Ρ€Π°Π½Π΅ΠΉ с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. [9]

Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² извСстна Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŽ ΠΈΠ· срСднСй ΡˆΠΊΠΎΠ»Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π½Π° этом вопросС ΠΌΡ‹ останавливаСмся ΠΊΡ€Π°Ρ‚ΠΊΠΎ, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΏΠ»Π°Π½Π΅ повторСния извСстных Ρ€Π°Π½Π΅Π΅ свСдСний. [10]

Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΎΠΉ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ»ΠΎΡΠΊΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ совмСщСния с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ° всСх Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. [12]

Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΎΠΉ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ»ΠΎΡΠΊΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΠΈ совмСщСнии с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ всСх Π΅Π³ΠΎ Π³Ρ€Π°Π½Π΅ΠΉ. Π Π°Π·Π²Π΅Ρ€Ρ‚Ρ‹Π²Π°Π½ΠΈΠ΅ Π³Ρ€Π°Π½Π½Ρ‹Ρ… повСрхностСй Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ для провСдСния раскроя листового ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΈΠ»ΠΈ опрСдСлСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ, ΠΏΠΎΠΊΡ€Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ. [13]

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ повСрхности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° называСтся сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². [14]

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ? ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

1) каТдая сторона ΠΎΠ΄Π½ΠΎΠ³ΠΎ являСтся ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ стороной Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ (Π½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎΠ³ΠΎ), Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ смСТным с ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ (ΠΏΠΎ этой сторонС);

ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ, Ссли ΠΎΠ½ Π»Π΅ΠΆΠΈΡ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ плоскости любой Π΅Π³ΠΎ Π³Ρ€Π°Π½ΠΈ.

Из этого опрСдСлСния слСдуСт, Ρ‡Ρ‚ΠΎ всС Π³Ρ€Π°Π½ΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ плоскими ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° состоит ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»Π΅ΠΆΠ°Ρ‚ Π² Ρ€Π°Π·Π½Ρ‹Ρ… плоскостях. ΠŸΡ€ΠΈ этом Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ стороны ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π³Ρ€Π°Π½Π΅ΠΉ, плоскими ΡƒΠ³Π»Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – ΡƒΠ³Π»Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² – Π³Ρ€Π°Π½Π΅ΠΉ.

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, всС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠ°Ρ‚ Π² Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях, называСтся ΠΏΡ€ΠΈΠ·ΠΌΠ°Ρ‚ΠΎΠΈΠ΄ΠΎΠΌ. ΠŸΡ€ΠΈΠ·ΠΌΠ°, ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° ΠΈ усСчСнная ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° – частныС случаи ΠΏΡ€ΠΈΠ·ΠΌΠ°Ρ‚ΠΎΠΈΠ΄Π°. ВсС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€ΠΈΠ·ΠΌΠ°Ρ‚ΠΎΠΈΠ΄Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ ΠΈΠ»ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ – это Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΈΠ»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½ΠΎΠ΅

Π’ СстСствСнной срСдС ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ кристаллов (ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ²). Π€ΠΎΡ€ΠΌΡƒ тСтраэдра ΠΏΠ΅Ρ€Π΅Π΄Π°Π΅Ρ‚ ΡΡƒΡ€ΡŒΠΌΡΠ½ΠΈΡΡ‚Ρ‹ΠΉ сСрнокислый Π½Π°Ρ‚Ρ€ΠΈΠΉ.

БущСствуСт концСпция, Ρ‡Ρ‚ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΎΡ‚Π΄Π°Π΅Ρ‚ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ, Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚. Π’ Ρ‚ΠΎΠΌ случаС, Ссли Π² ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½ большС Ρ‡Π΅ΠΌ плоскостСй, Ρ‚ΠΎ ΠΎΠ½ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚.

Π—Π½Π°ΠΊΠΎΠΌΡ‹Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ с дСтства ΠΊΠΎΡ€ΠΎΠ±ΠΎΡ‡ΠΊΠΈ для Π‘ΠΈΠ³-Мака ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΎΡˆΠΊΠΈ, стаканчик для Кока-ΠšΠΎΠ»Ρ‹ Ρ‚Π°ΠΊ ΠΆΠ΅ Π΄Π΅Π»Π°ΡŽΡ‚ ΠΈΠ· Π±ΡƒΠΌΠ°ΠΆΠ½Ρ‹Ρ… Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΎΠΊ.

Π‘Π»Π°Π΄ΠΊΠΎΠ΅ΠΆΠΊΠ°ΠΌ Π²Ρ…ΠΎΠ΄ строго воспрСщаСтся!

Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ калСндаря Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ событиС для чСловСчСства. Π’ΠΎ, Ρ‡Ρ‚ΠΎ Π³ΠΎΠ΄ состоит ΠΈΠ· 12Ρ‚ΠΈ мСсяцСв Π½ΠΈ для ΠΊΠΎΠ³ΠΎ Π½Π΅ сСкрСт. Π‘ Ρ‚Π΅Ρ… ΠΏΠΎΡ€ люди самыми Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ способами Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΡƒΡŽΡ‚.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 10 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

ГСомСтрия, 10 класс

Π£Ρ€ΠΎΠΊ β„– 13. ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ вопросов, рассматриваСмых Π² Ρ‚Π΅ΠΌΠ΅:

ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ – гСомСтричСскоС Ρ‚Π΅Π»ΠΎ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ числом плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π“Ρ€Π°Π½ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ.

Π Π΅Π±Ρ€Π° ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – стороны Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

Π’Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – ΠΊΠΎΠ½Ρ†Ρ‹ Ρ€Π΅Π±Π΅Ρ€ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° (Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°).

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ.

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ – ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, располоТСнный ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ плоскости Π΅Π³ΠΎ любой Π³Ρ€Π°Π½ΠΈ.

НСвыпуклый ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ – ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ найдСтся ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ ΠΎΠ΄Π½Π° Π³Ρ€Π°Π½ΡŒ такая, Ρ‡Ρ‚ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, провСдСнная Ρ‡Π΅Ρ€Π΅Π· эту Π³Ρ€Π°Π½ΡŒ, Π΄Π΅Π»ΠΈΡ‚ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ Π½Π° Π΄Π²Π΅ ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ частСй.

Атанасян Π›. Π‘., Π’. Π€. Π‘ΡƒΡ‚ΡƒΠ·ΠΎΠ², Π‘. Π‘. ΠšΠ°Π΄ΠΎΠΌΡ†Π΅Π² ΠΈ Π΄Ρ€. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: Π°Π»Π³Π΅Π±Ρ€Π° ΠΈ Π½Π°Ρ‡Π°Π»Π° матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°, гСомСтрия. ГСомСтрия. 10–11 классы: ΡƒΡ‡Π΅Π±. Для ΠΎΠ±Ρ‰Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚. ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ: Π±Π°Π·ΠΎΠ²Ρ‹ΠΉ ΠΈ ΡƒΠ³Π»ΡƒΠ±Π». уровния. – М.: ΠŸΡ€ΠΎΡΠ²Π΅Ρ‰Π΅Π½ΠΈΠ΅, 2014. – 255 с. (стр. 58, стр. 60 – 61)

Π”ΠΎΠ»Π±ΠΈΠ»ΠΈΠ½ Н. П. Π–Π΅ΠΌΡ‡ΡƒΠΆΠΈΠ½Ρ‹ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² М. : – МЦНМО, 2000. – 40 с.: ΠΈΠ». (стр. 27 – 31)

ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ элСктронныС рСсурсы:

Π”ΠΎΠ»Π±ΠΈΠ»ΠΈΠ½ Н. П. Π’Ρ€ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°Ρ…. Π–ΡƒΡ€Π½Π°Π» ΠšΠ²Π°Π½Ρ‚.

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния

К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ понятия ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° сущСствуСт Π΄Π²Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ аналогию с понятиСм ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Напомним, Ρ‡Ρ‚ΠΎ Π² ΠΏΠ»Π°Π½ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠΎΠ΄ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ ΠΌΡ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Π»ΠΈ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΡƒΡŽ линию Π±Π΅Π· самопСрСсСчСний, ΡΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½ΡƒΡŽ ΠΈΠ· ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² (рис. 1Π°). Π’Π°ΠΊΠΆΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ‡Π°ΡΡ‚ΡŒ плоскости, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΡƒΡŽ этой Π»ΠΈΠ½ΠΈΠ΅ΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π΅Π΅ саму (рис. 1Π±). ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ‚Π΅Π» Π² пространствС ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ Ρ‚ΠΎΠ»ΠΊΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ понятия ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π’Π°ΠΊ, любой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π² пространствС Π΅ΡΡ‚ΡŒ плоская ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ.

Π‘)Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Рисунок 1 – Ρ€Π°Π·Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Вторая Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²ΠΊΠ° понятия опрСдСляСт ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ ΠΊΠ°ΠΊ гСомСтричСскоС Ρ‚Π΅Π»ΠΎ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ числом плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π’ дальнСйшСм, ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²ΠΊΡƒ понятия ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

Π£ΠΆΠ΅ извСстныС Π²Π°ΠΌ тСтраэдр ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌΠΈ. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ гСомСтричСскими Ρ‚Π΅Π»Π°ΠΌΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ числом плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². Π•Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° β€” октаэдр (рис. 2)

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Рисунок 2 – ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ октаэдра

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΅Π³ΠΎ гранями. Π’Π°ΠΊ, Ρƒ тСтраэдра ΠΈ октаэдра гранями ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Π£ тСтраэдра 4 Π³Ρ€Π°Π½ΠΈ, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΈ Π΅Π³ΠΎ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΡ‚ Π³Ρ€Π΅Ρ‡. τΡτρά-Ρδρον β€” Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…Π³Ρ€Π°Π½Π½ΠΈΠΊ. Π£ октаэдра 8 Π³Ρ€Π°Π½Π΅ΠΉ, Π° ΠΎΡ‚ грСчСского οκτάΡδρον ΠΎΡ‚ ΞΏΞΊΟ„ΟŽ «восСмь» + έδρα «основаниС».

Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ Π³Ρ€Π°Π½Π΅ΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ, Π° ΠΊΠΎΠ½Ρ†Ρ‹ Ρ€Π΅Π±Π΅Ρ€ β€” Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ, называСтся диагональю ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ, Ссли ΠΎΠ½ располоТСн ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ плоскости ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΅Π³ΠΎ Π³Ρ€Π°Π½ΠΈ. Π’ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… случаях ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся Π½Π΅Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ (рис.3).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Рисунок 3 – Π’ΠΈΠ΄Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²

Π‘ΡƒΠΌΠΌΠ° плоских ΡƒΠ³Π»ΠΎΠ² ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Рисунок 4 – сумма плоских ΡƒΠ³Π»ΠΎΠ² ΠΏΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°. ΠŸΡƒΡΡ‚ΡŒ Π’ β€” число Π²Π΅Ρ€ΡˆΠΈΠ½ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, Π  β€” число Π΅Π³ΠΎ Ρ€Π΅Π±Π΅Ρ€, Π° Π“ β€” число Π΅Π³ΠΎ Π³Ρ€Π°Π½Π΅ΠΉ. Π’ΠΎΠ³Π΄Π° Π²Π΅Ρ€Π½ΠΎ равСнство Π’ – Π +Π“= 2.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π° ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ Π΅Π΅ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ количСство Ρ‚Π΅ΠΎΡ€Π΅ΠΌ. ΠΠ°Ρ…ΠΎΠ΄ΡΡΡŒ Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ постоянного внимания со стороны ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠ², Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° Π΄Π°Π»Π΅ΠΊΠΎ ΠΈΠ΄ΡƒΡ‰ΠΈΠ΅ обобщСния. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, эта Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎΡ‚ΠΊΡ€Ρ‹Π»Π° Π½ΠΎΠ²ΡƒΡŽ Π³Π»Π°Π²Ρƒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, которая называСтся Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ€Π°Π·Π±ΠΎΡ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля

Π—Π°Π΄Π°Π½ΠΈΠ΅ 1. КакиС ΠΈΠ· пСрСчислСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² НЕ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ элСмСнтами ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°? Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ Π½ΠΎΠΌΠ΅Ρ€Π° Π² порядкС возрастания.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ Π²Ρ‹Π΄Π΅Π»ΠΈΠ»ΠΈ: Ρ€Π΅Π±Ρ€Π°, Π³Ρ€Π°Π½ΠΈ, Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ. Π Π΅Π±Ρ€ΠΎ ΠΈ диагональ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Π“Ρ€Π°Π½ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° – ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΈΠ»ΠΈ ΠΈΠ½Π°Ρ‡Π΅ ограничСнная Ρ‡Π°ΡΡ‚ΡŒ плоскости. Π’Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, элСмСнтами ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Π»ΡƒΡ‡, ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, прямая.

Π—Π°Π΄Π°Π½ΠΈΠ΅ 2. Π‘ΠΎΠΏΠΎΡΡ‚Π°Π²ΡŒΡ‚Π΅ гСомСтричСским Ρ„ΠΈΠ³ΡƒΡ€Π°ΠΌ ΠΈΡ… Π²ΠΈΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π‘) пространствСнная Ρ„ΠΈΠ³ΡƒΡ€Π°

Вспомним, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами. НапримСр, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Π½Π΅ΠΉ ΠΈΠ»ΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΡ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ. Π’Π°ΠΊ, срСди всСх ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ плоской Ρ„ΠΈΠ³ΡƒΡ€ΠΎΠΉ являСтся Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ 1.

ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ – гСомСтричСскоС Ρ‚Π΅Π»ΠΎ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ числом плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². Волько Π½Π° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ 2 Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚: 1-А, 2-Π’, 3-Π‘

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

math4school.ru

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ понятия

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

НСкоторыС пространствСнныС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ Π² стСрСомСтрии, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π΅Π»Π°ΠΌΠΈ ΠΈΠ»ΠΈ гСомСтричСскими Ρ‚Π΅Π»Π°ΠΌΠΈ. Наглядно Ρ‚Π΅Π»ΠΎ Π½Π°Π΄ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ сСбС ΠΊΠ°ΠΊ Ρ‡Π°ΡΡ‚ΡŒ пространства, Π·Π°Π½ΡΡ‚ΡƒΡŽ физичСским Ρ‚Π΅Π»ΠΎΠΌ ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ.

ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠΌ называСтся гСомСтричСскоС Ρ‚Π΅Π»ΠΎ, ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ состоит ΠΈΠ· ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ называСтся ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Ссли ΠΎΠ½ располоТСн ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону плоскости, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΉ Ρ‡Π΅Ρ€Π΅Π· любой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΅Π³ΠΎ гранями; стороны ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² – Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ; Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ – Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°:

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π° для ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²:

Если V β€” число Π²Π΅Ρ€ΡˆΠΈΠ½ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, R β€” число Π΅Π³ΠΎ Ρ€Π΅Π±Π΅Ρ€ ΠΈ G β€” число Π³Ρ€Π°Π½Π΅ΠΉ, Ρ‚ΠΎ Π²Π΅Ρ€Π½ΠΎ равСнство:

ΠŸΡ€ΠΈΠ·ΠΌΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΡ€ΠΈΠ·ΠΌΠΎΠΉ называСтся ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, состоящий ΠΈΠ· Π΄Π²ΡƒΡ… плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»Π΅ΠΆΠ°Ρ‚ Π² Ρ€Π°Π·Π½Ρ‹Ρ… плоскостях ΠΈ ΡΠΎΠ²ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ пСрСносом, ΠΈ всСх ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΡ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ этих ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… шла Ρ€Π΅Ρ‡ΡŒ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ основаниями ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ ΠΈΡ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ – Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

Основания ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Ρ‹ ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях.

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ состоит ΠΈΠ· Π΄Π²ΡƒΡ… оснований ΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности.

Боковая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ любой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ состоит ΠΈΠ· ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠ², Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄Π²Π΅ стороны ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ сторонами оснований, Π° Π΄Π²Π΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ – сосСдними Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ.

Высотой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ называСтся любой ΠΈΠ· пСрпСндикуляров, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ основания ΠΊ плоскости Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ основания ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

A1О – высота ΠΏΡ€ΠΈΠ·ΠΌΡ‹;

Ξ± – ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° ΠΊ основанию ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΡ€ΠΈΠ·ΠΌΠ° называСтся прямой, Ссли Π΅Ρ‘ Ρ€Ρ‘Π±Ρ€Π° пСрпСндикулярны плоскостям оснований. Π’ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС ΠΏΡ€ΠΈΠ·ΠΌΠ° называСтся Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ.

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.

Π‘ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ являСтся Π΅Ρ‘ высотой.

Боковая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° основания Π½Π° высоту ΠΏΡ€ΠΈΠ·ΠΌΡ‹:

ΠŸΡ€ΡΠΌΠ°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Ссли Π΅Ρ‘ основания ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

БСчСния ΠΏΡ€ΠΈΠ·ΠΌΡ‹ плоскостями, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌ Ρ€Ρ‘Π±Ρ€Π°ΠΌ,ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌΠΈ. Π’ частности, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ сСчСния. Π­Ρ‚ΠΎ сСчСния плоскостями, проходящими, Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π΅Π±Ρ€Π°, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ:

Π’Π’1D1 D – диагональноС сСчСниС.

Если Π² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΠ΅ провСсти сСчСниС, пСрпСндикулярноС Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌ Ρ€Ρ‘Π±Ρ€Π°ΠΌ ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰Π΅Π΅ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π°, ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ этого сСчСния ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ SβŠ₯, Π° ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ – Π βŠ₯, Ρ‚ΠΎΠ³Π΄Π°:

Π’ любой ΠΏΡ€ΠΈΠ·ΠΌΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности считаСтся ΠΊΠ°ΠΊ сумма ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΈ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ основания:

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΡ€ΠΈΠ·ΠΌΠ°, Π² основании ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅ΠΆΠΈΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ, называСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ΠΎΠΌ.

Π£ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° всС Π³Ρ€Π°Π½ΠΈ – ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.

Π“Ρ€Π°Π½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΠΎΠ±Ρ‰ΠΈΡ… Π²Π΅Ρ€ΡˆΠΈΠ½, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΌΠΈ.

Π£ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π³Ρ€Π°Π½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΈ Ρ€Π°Π²Π½Ρ‹.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΡŽ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, ΠΊΠ°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π²ΠΎΠΎΠ±Ρ‰Π΅, называСтся ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ Π΅Π³ΠΎ Π³Ρ€Π°Π½ΠΈ.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСчСния дСлятся ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.

Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° являСтся Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ симмСтрии.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ΠΎΠΌ называСтся Ρ‚Π°ΠΊΠΎΠΉ прямой ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, Π² основании ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

ВсС Π³Ρ€Π°Π½ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ.

Π”Π»ΠΈΠ½Ρ‹ Ρ€Ρ‘Π±Π΅Ρ€ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, выходящих ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΅Π³ΠΎ измСрСниями ΠΈΠ»ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ.

Π£ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° Ρ‚Ρ€ΠΈ измСрСния.

Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ любой Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Ρ‚Ρ€Ρ‘Ρ… Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ:

Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π΅ Π²Π΅Ρ€Π½ΠΎ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π΅, ΠΊΠ°ΠΊ ΠΈ Π²ΠΎ всяком ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π΅, Π΅ΡΡ‚ΡŒ Ρ†Π΅Π½Ρ‚Ρ€ симмСтрии – Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΅Π³ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ. Π£ Π½Π΅Π³ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Ρ€ΠΈ плоскости симмСтрии, проходящиС Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ симмСтрии ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ ΠΏΠ°Ρ€Π°ΠΌ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π³Ρ€Π°Π½Π΅ΠΉ. На ΠΏΠ΅Ρ€Π²ΠΎΠΌ рисункС, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΌ Π²Ρ‹ΡˆΠ΅, ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΎΠ΄Π½Π° ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… плоскостСй. Она ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· сСрСдины Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π±Π΅Ρ€ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°.

Если Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° всС Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Ρ€Π°Π·Π½Ρ‹Π΅, Ρ‚ΠΎ Ρƒ Π½Π΅Π³ΠΎ Π½Π΅Ρ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… плоскостСй симмСтрии, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚Ρ€Ρ‘Ρ… Π½Π°Π·Π²Π°Π½Π½Ρ‹Ρ….

Если ΠΆΠ΅ Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° Π΄Π²Π° Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½ являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΠΎΠΉ, Ρ‚ΠΎ Ρƒ Π½Π΅Π³ΠΎ Π΅ΡΡ‚ΡŒ Π΅Ρ‰Π΅ Π΄Π²Π΅ плоскости симмСтрии. Π­Ρ‚ΠΎ плоскости Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… сСчСний, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ рисункС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всС Ρ‚Ρ€ΠΈ измСрСния Ρ€Π°Π²Π½Ρ‹, называСтся ΠΊΡƒΠ±ΠΎΠΌ.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΊΡƒΠ±Π° Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ… Ρ€Π°Π· большС Π΅Π³ΠΎ стороны:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Π΅Ρ‚Ρ‹Ρ€Π΅ сСчСния ΠΊΡƒΠ±Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ (ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рисункС) – эти сСчСния проходят Ρ‡Π΅Ρ€Π΅Π· Ρ†Π΅Π½Ρ‚Ρ€ ΠΊΡƒΠ±Π° пСрпСндикулярно Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘ΠΌ Π΅Π³ΠΎ диагоналям.

Π£ ΠΊΡƒΠ±Π° Π΄Π΅Π²ΡΡ‚ΡŒ плоскостСй симмСтрии:

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, SABCDE ) называСтся ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ состоит ΠΈΠ· плоского ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABCDE ) – основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚ΠΎΡ‡ΠΊΠΈ ( S ), Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² плоскости основания,– Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ всСх ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΡ… Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ основания.

ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ состоит ΠΈΠ· основания (ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABCDE ) ΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ. КаТдая боковая Π³Ρ€Π°Π½ΡŒ – Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Одной ΠΈΠ· Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½ являСтся Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ стороной – сторона основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹:

Π‘ΠΎΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ называСтся сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ.

Высотой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ( SО ) называСтся пСрпСндикуляр, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΉ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΊ плоскости основания.

Ξ± – ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° SA ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΊ плоскости Π΅Ρ‘ основания;

Ξ² – ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ( SED ) ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΊ плоскости Π΅Ρ‘ основания.

ОснованиС высоты ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ окруТности, описанной ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° выполняСтся ΠΎΠ΄Π½ΠΎ ΠΈΠ· условий:

ОснованиС высоты ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ окруТности, вписанной Π² основаниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° выполняСтся ΠΎΠ΄Π½ΠΎ ΠΈΠ· условий:

ΠžΠ±ΡŠΡ‘ΠΌ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅Ρ‚ΠΈ произвСдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ основания Π½Π° высоту ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹:

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности любой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° суммС ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΈ основания:

БСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ плоскостями, проходящими Ρ‡Π΅Ρ€Π΅Π· Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Π’ частности, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ сСчСния. Π­Ρ‚ΠΎ сСчСния плоскостями, проходящими Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π° нСсосСдних Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, которая пСрСсСкаСт ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π΅Ρ‘ основанию, Π΄Π΅Π»ΠΈΡ‚ Π΅Ρ‘ Π½Π° Π΄Π²Π΅ части:

ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ ( AΠ’Π‘A1Π’1Π‘1 ).

Основания усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ – Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Высота усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ( ОО1 ) – это расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ плоскостями Π΅Ρ‘ оснований.

Если S1 ΠΈ S2 – ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ оснований усСчённой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ h – Π΅Ρ‘ высота, Ρ‚ΠΎ для ΠΎΠ±ΡŠΡ‘ΠΌΠ° усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π²Π΅Ρ€Π½ΠΎ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, SABCD ) называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Ссли Π΅Π΅ основаниСм являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ( ABCD – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ), Π° основаниС высоты совпадаСт с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ этого ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ( О – Ρ†Π΅Π½Ρ‚Ρ€ описанной ΠΈ вписанной окруТностСй основания).

Осью ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ называСтся прямая, содСрТащая Π΅Π΅ высоту.

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ – Ρ€Π°Π²Π½Ρ‹Π΅ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.

Высота Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ( SL ), провСдСнная ΠΈΠ· Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΊ сторонС основания, называСтся Π°ΠΏΠΎΡ„Π΅ΠΌΠΎΠΉ.

Боковая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»ΡƒΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° основания Π½Π° Π°ΠΏΠΎΡ„Π΅ΠΌΡƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

УсСчСнная ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, АВБDA1Π’1Π‘1D1 ), которая получаСтся ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚Π°ΠΊΠΆΠ΅ называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ВСтраэдр ΠšΡƒΠ± ΠžΠΊΡ‚Π°ΡΠ΄Ρ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ многогранникаДодСкаэдр Π˜ΠΊΠΎΡΠ°ΡΠ΄Ρ€

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ, Ссли Π΅Π³ΠΎ Π³Ρ€Π°Π½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ с ΠΎΠ΄Π½ΠΈΠΌ ΠΈ Ρ‚Π΅ΠΌ ΠΆΠ΅ числом сторон ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° сходится ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ число Ρ€Π΅Π±Π΅Ρ€.

БущСствуСт ΠΏΡΡ‚ΡŒ Ρ‚ΠΈΠΏΠΎΠ² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²: ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ тСтраэдр, ΠΊΡƒΠ±, октаэдр, додСкаэдр, икосаэдр.

Π£ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ тСтраэдра Π³Ρ€Π°Π½ΠΈ – ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ; Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ сходится ΠΏΠΎ Ρ‚Ρ€ΠΈ Ρ€Π΅Π±Ρ€Π°. ВСтраэдр прСдставляСт собой Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ всС Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹.

Π£ ΠΊΡƒΠ±Π° (ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ гСксаэдр) всС Π³Ρ€Π°Π½ΠΈ – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹; Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ сходится ΠΏΠΎ Ρ‚Ρ€ΠΈ Ρ€Π΅Π±Ρ€Π°. ΠšΡƒΠ± прСдставляСт собой ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ с Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ.

Π£ октаэдра Π³Ρ€Π°Π½ΠΈ – ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, Π½ΠΎ Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ тСтраэдра Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ сходится ΠΏΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π΅Π±Ρ€Π°.

Π£ додСкаэдра Π³Ρ€Π°Π½ΠΈ – ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ сходится ΠΏΠΎ Ρ‚Ρ€ΠΈ Ρ€Π΅Π±Ρ€Π°.

Π£ икосаэдра Π³Ρ€Π°Π½ΠΈ – ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, Π½ΠΎ Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ тСтраэдра ΠΈ октаэдра Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ сходится ΠΏΠΎ ΠΏΡΡ‚ΡŒ Ρ€Π΅Π±Π΅Ρ€.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ понятия

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Ρ‚Π°ΠΊΠΎΠ΅ понятиС, ΠΊΠ°ΠΊ гСомСтричСскоС Ρ‚Π΅Π»ΠΎ, созданноС ΠΈΠ· плоских ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². Π˜Ρ… число ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅. ΠžΡ‚ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ… Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ зависят свойства ΠΈΡ‚ΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Π˜Ρ… дСлят Π½Π° 2 Ρ‚ΠΈΠΏΠ°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΌ пространствС, ΠΎΠ½ΠΈ относятся ΠΊ стСрСомСтрии. А ΠΈΡ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΉ плоскости, Ρ‡Ρ‚ΠΎ относится ΠΊ ΠΏΠ»Π°Π½ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ основныС свойства ΠΈ понятия Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π² сСбя ΠΎΠ±Π΅ эти Π½Π°ΡƒΠΊΠΈ.

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ β€” Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π³Ρ€Π°Π½ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ с Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ ΠΈ сторонами. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ½ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠŸΠ»Π°Ρ‚ΠΎΠ½ΠΎΠ²Ρ‹ΠΌΠΈ Ρ‚Π΅Π»Π°ΠΌΠΈ. ВсСго сущСствуСт 5 ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅Π», ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ характСристики ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… прСдставлСны Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈΡΡŒ Π΄Ρ€Π΅Π²Π½ΠΈΠΌΠΈ Π³Ρ€Π΅ΠΊΠ°ΠΌΠΈ. Однако ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π² ΠΎΡ€Π½Π°ΠΌΠ΅Π½Ρ‚Π΅ ΠΈ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ появились Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π½ΡŒΡˆΠ΅. НапримСр, Π°Ρ€Ρ…Π΅ΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ Π±Ρ‹Π»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ Π²Ρ‹Ρ€Π΅Π·Π°Π½Π½Ρ‹Π΅ ΠΊΠ°ΠΌΠ΅Π½Π½Ρ‹Π΅ ΡˆΠ°Ρ€Ρ‹ Π² Π¨ΠΎΡ‚Π»Π°Π½Π΄ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π°Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΠΎΠ·Π΄Π½ΠΈΠΌ Π½Π΅ΠΎΠ»ΠΈΡ‚ΠΎΠΌ (соотвСтствСнно, Π·Π° 1000 Π»Π΅Ρ‚ Π΄ΠΎ ΠΆΠΈΠ·Π½ΠΈ ΠΈ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠŸΠ»Π°Ρ‚ΠΎΠ½Π°).

ΠŸΡ€ΠΈΠ·ΠΌΠ° ΠΈ Π΅Π΅ особСнности

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ГСомСтричСскоС Ρ‚Π΅Π»ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ прямым, Ссли ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ Π»Π΅ΠΆΠΈΡ‚ пСрпСндикулярно основанию. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ½ΠΈ становятся высотами. Когда Π³Ρ€Π°Π½ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹, ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ считаСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ, ΠΈ Π΅Π³ΠΎ диагональноС сСчСниС ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ.

Π₯арактСристики ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ β€” ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, основаниСм ΠΈ гранями ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ являСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ. Π€ΠΈΠ³ΡƒΡ€Π° характСризуСтся ΠΊΠ°ΠΊ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ характСристики:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Когда всС Π³Ρ€Π°Π½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ, Ρ„ΠΈΠ³ΡƒΡ€Π° характСризуСтся, ΠΊΠ°ΠΊ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ. Π”Π»ΠΈΠ½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° считаСтся Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ. Π£ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π΅ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ измСрСния. ΠŸΡ€ΠΈ этом справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° dΒ² = aΒ² + bΒ² + cΒ². ΠŸΡ€ΠΈ расчСтах Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²ΡƒΡŽΡ‚ΡΡ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ. Для объСма : V = abc, для ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°: S=2Β·(ab+ bc +ac).

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° ΠΈ Π΅Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° прСдставляСт собой ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

Если ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ раздСляСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Π½ΠΈΠΆΠ½Π΅ΠΉ, ΠΎΠ½Π° Π΄Π΅Π»ΠΈΡ‚ Π΅Π΅ Π½Π° Π΄Π²Π΅ части. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ вСрхняя ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Ρ€Π°Π²Π½Π° Π³Π»Π°Π²Π½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Π΅. Когда основаниСм являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, гСомСтричСскоС Ρ‚Π΅Π»ΠΎ называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ. Гранями Π΅Π΅ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *