Что такое позиционная и непозиционная система счисления

Позиционные и непозиционные системы счисления

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления

Системы счисления принято делить на два класса: непозиционные и позиционные.

В непозиционных СС от положения (позиции) цифры в записи не зависит величина, которую она обозначает. Характерным примером такой системы счисления является римская СС.

Например, в римской СС число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа – большая, то их значения вычитаются.

Например:

VI = 5 + 1 = 6, а IV = 5 – 1 = 4.

MCMXCVIII = 1000 + (-100 + 1000) + (-10 + 100) + 5 + 1 + 1 + 1 = 1998.

Такие системы счисления используются редко, т.к. не приспособлены для вычислений.

На практике наибольшее распространение получили позиционные системы счисления.

Позиционная система счисления – система счисления, в которой значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр. В каждой позиционной системе счисления имеется основание. Любое число записывается в виде последовательности из цифр основания. Количество цифр основания равно самому основанию. Основание показывает, во сколько раз вес каждой цифры меньше веса цифры, стоящей в старшем соседнем разряде.

Некоторые позиционные системы счисления

ОснованиеСистема счисленияЗнаки
Двоичная0,1
Троичная0,1,2
Четвертичная0,1,2,3
Пятиричная0,1,2,3,4
Восьмиричная0,1,2,3,4,5,6,7
Десятиричная0,1,2,3,4,5,6,7,8,9
Двенадцатиричная0,1,2,3,4,5,6,7,8,9,А,В
Шестнадцатиричная0,1,2,3,4,5,6,7,8,9,А,В,D,E,F

Числа, которыми мы привыкли пользоваться, называются десятичными и арифметика, которой мы пользуемся, также называется десятичной. Называются они так потому, что каждое число можно составить из набора цифр содержащего 10 символов (цифр) –0123456789.

Возьмём, к примеру, число 246. Его запись означает, что в числе две сотни, четыре десятка и шесть единиц. Следовательно, можно записать следующее равенство:

246 = 200 + 40 + 6 = 2 * 10 2 + 4 * 10 1 + 6 * 10 0

В нашем числе три цифры. Старшая цифра «2» имеет номер 3. Так вот она умножается на 10 во второй степени. Следующая цифра «4» имеет порядковый номер 2 и умножается на 10 в первой степени. Уже видно, что цифры умножаются на десять в степени на единицу меньше порядкового номера цифры.

При этом пользуются следующим алгоритмом:

1) цифра в каждой позиции умножается на основание в степени на 1 меньшую, чем номер позиции;

2) полученные таким образом значения складываются.

12310 = 1 * 10 2 + 2 * 10 1 + 3 * 10 0 ;

В других системам счисления такой перевод будет выглядеть следующим образом:

1238 = 1х8 2 + 2 х 8 1 + 3 х 8 0 = 8310;

1012 = 1 х 2 2 + 0 х 2 1 + 1 х 2 0 = 510;

1Е316 = 1 х 16 2 + 14 х 16 1 + 3 х 16 0 = 48310.

Здесь индекс числа служит указанием на основание системы счисления. Назовем основанием системы счисления число, равное мощности множества (т.е. количеству элементов множества) различных символов, допустимых в каждой позиции числа.

Десятичная система счисления является однородной. Это означает, что одних и тех же символов достаточно для изображения любого числа. Но в повседневной жизни мы пользуемся и неоднородными системами счисления, и системами счисления с другим основанием. Пример тому – неметрические системы единиц (1 пуд=40 фунтов), система счета времени (1 минута = 60 секунд).

В дальнейшем мы будем рассматривать однородные позиционные системы счисления.

Обозначим через p основание системы счисления. Тогда веса позиций числа могут быть представлены следующим образом:

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления

Таким образом, любое число X в позиционной системе счисления с основанием p можно представить в следующей развернутой форме записи:

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления,

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления,

p – основание системы счисления;

m – количество позиций или разрядов, отведенное для изображения целой части числа;

s – количество разрядов, отведенное для изображения дробной части числа;

n = m + s – общее количество разрядов в числе,

ai – любой допустимый символ в разряде (т.е. должен принадлежать множеству <0,1, p-1>).

Что такое позиционная и непозиционная система счисления. Смотреть фото Что такое позиционная и непозиционная система счисления. Смотреть картинку Что такое позиционная и непозиционная система счисления. Картинка про Что такое позиционная и непозиционная система счисления. Фото Что такое позиционная и непозиционная система счисления

Заметим, что число, равное основанию системы счисления, в самой системе счисления записывается в виде:

В компьютерных науках наибольшее распространение получила не десятичная, а системы счисления с основанием, кратным 2 – двоичная, восьмеричная, шестнадцатеричная.

В двоичной системе счисления допустимыми символами являются только 0 и 1, а само число может быть представлено в виде последовательности нулей и единиц.

110100102 = 1 * 2 7 + 1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 = 16210

В восьмеричной системе счисления допустимыми символами являются 0,1,…7.

2428 = 2 * 8 2 + 4 * 8 1 + 2 * 8 0 = 16210

В шестнадцатеричной системе допустимыми символами являются 0, 1, 9, A, B, C, D, E, F.

A216 = 10 * 16 1 + 2 * 16 0 = 16210

Источник

Определение позиционной и непозиционной системы счисления

Системы счисления

Система счисления — метод записи чисел с помощью письменных знаков.

Системы делятся на позиционные, непозиционные и смешанные. Смысл их в том, чтобы дать каждому числу уникальное представление. В разных системах одно и то же число может быть записано по-разному. Символы, используемые для записи чисел, называют цифрами, даже когда система использует в дополнение к арабским цифрам или вместо них буквы латинского алфавита.

Что такое позиционная система

Позиционная система счисления — система счисления, в которой значение каждого числового знака в записи числа зависит от его позиции.

В позиционной системе количественный эквивалент каждой цифры зависит от места ее записи в коде числа. Любое целое число x в d-ичной позиционной системе счисления является конечной линейной комбинацией степеней числа d:

k — показатель разряда.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В общем случае представить произвольное число x в системе счисления с заданным основанием d означает расписать его по формуле:

Таким образом, в любой позиционной системе число может быть представлено в виде многочлена.

Что такое непозиционная система

Непозиционная система — это такая система счисления, в которой положения цифры в записи числа не зависит величина, которую она обозначает.

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от ее места в коде числа.

Еще до нашей эры разные народы независимо друг от друга отказывались от унарной системы счисления, в которой количество предметов обозначали таким же количеством одинаковых значков, и переходили к более удобным системам. Например, у египтян система счисления была десятичной, но запись числа составлялась только из иероглифов 1, 10, 100, 1000. Их нужно было складывать, поэтому не имело значения, в каком порядке они записаны.

Отличие между системами

Чтобы пользоваться позиционной системой счисления, достаточно знать, как в ней изображаются цифры и что они обозначают, а также ее основание — количество уникальных цифр. Порядок записи во всех позиционных системах одинаков.

В непозиционных системах количество цифр-символов может достигать десятков и даже сотен, так как для записи больших чисел постоянно приходится вводить новые символы. Для чтения числа нужно знать правила его записи. Часто приходится выполнять арифметические операции, например, вычитание и сложение.

Достоинства позиционной системы

Простое выполнение подсчета

У всех позиционных систем одни и те же алгоритмы выполнения арифметических действий. Также в позиционных системах удобно работать с дробями и отрицательными числами, которые зачастую просто невозможно представить в непозиционных системах.

Главные свойства позиционных систем:

Малое количество символов в записи

Позиционные системы используют только десять арабских цифр. Системы с основанием больше десяти добавляют к цифрам 26 латинских букв. В некоторых системах используют круглые и квадратные скобки.

Чем больше основание системы счисления, тем меньшее количество цифр понадобится для записи числа. Числа, состоящие из трех разрядов в десятичной системе, могут иметь всего два разряда в шестнадцатеричной.

Основание позиционной системы

Обычно за основание принимают целое натуральное число. Но существуют также системы с дробным или отрицательным основанием. Последние называют нега-позиционными.

Основание позиционной системы счисления — это количество уникальных символов, изображающих ее цифры.

Таким образом, чтобы найти эту главную характеристику любой позиционной системы, достаточно подсчитать количество цифр в ней.

Классификация позиционных систем

Двоичные

Двоичная система — система счисления, в которой в качестве базовых чисел выбираются степени числа два.

Чтобы не путать их с числами, записанными в десятичной системе счисления, справа внизу указывают основание системы счисления. Обычно число при этом заключают в скобки.

Двоичную систему использовали задолго до возникновения информационных технологий. Во втором тысячелетии до нашей эры народы Южной Америки кодировали двоичной системой свои записи, в том числе и не числовые. Узелок и ровный участок нити чередовались друг с другом.

В современной двоичной системе, на основе которой был создан телеграф, а позже — реле и переключатели, единица обозначает наличие сигнала, ноль — его отсутствие. Цифровые электронные схемы работают по тому же принципу. Также на нем основаны сигнальные системы, использующиеся до сих пор, например, азбука Морзе.

Восьмеричные

Когда-то два индейских племени решили, что им удобно при счете смотреть на восемь промежутков между пальцами, а не на сами пальцы. Восьмеричная система счисления отразилась в их языках, в которых только восемь слов, обозначающих цифры.
В двадцатом веке, когда для написания программ требовалось зашифровывать все больше информации в двоичной системе и упростить вычисления для людей, придумали альтернативную систему, которая позволила сократить количество цифр в коде. Число восемь — это два в кубе, поэтому перевести записи из двоичной системы в восьмеричную и обратно проще, чем в десятичную.

Десятичные

Элементы числовой базы, или ключевые числа, в десятичной системе счисления представляют собой степени десяти: 10 = 10^1, 100 = 10^2, 1000 = 10^3.
В системе всего десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число 10 — основание системы счисления. Цифры от 0 до 9 представляют собой коэффициенты разложения числа по степеням десяти.

Родиной десятичной системы счисления считается Индия, хотя еще в вавилонской цивилизации с ее шестидесятеричной системой использовались закодированные десятичные цифры, а инки в своей узелковой письменности кодировали информацию десятью цветами. Но именно в Индии начали строго соблюдать порядок разрядов числа при записи и ставить ноль, чтобы избежать путаницы. Примерно в середине VIII века эту систему стали использовать другие страны. В Европе она распространилась к XVI веку и была названа «арабской».

Шестнадцатеричные

Шестнадцатеричные системы, как и восьмеричные, появились для упрощения взаимодействия с компьютером. Кроме арабских цифр, в них используются еще и латинские буквы от А до F. В разных языках программирования для записи чисел в шестнадцатеричной системе разные правила, называемые синтаксисом.

Пятеричная

Система, связанная с количеством пальцев на одной руке, использовалась в Китае и у некоторых племен Африки. В китайском языке у иероглифов, обозначающих цифры от шести до девяти, был один и тот же знак в начале — сокращенное обозначение цифры пять. Для записи чисел в этой системе используются цифры 0, 1, 2, 3, 4.

Двенадцатеричная

Если большим пальцем руки сосчитать число фаланг на других пальцах этой руки, получится двенадцать. Группы по двенадцать предметов называли во многих европейских языках словами, схожими с русским словом «дюжина»: duodezim на латыни, douzaine на французском, dozzina на итальянском, dozen на английском. Римляне пользовались двенадцатеричными дробями, \frac1 <12>они называли унцией.

В Европе счет дюжинами долгое время, вплоть до XVIII века, сохранялся наравне с десятеричной системой. Дюжина дюжин составляла гросс (от немецкого слова «большой»), дюжина гроссов — массу. Признаки влияния числа 12 заметны в англо-американской системе линейных мер, в которой 1 фут равен 12 дюймам, 1 дюйм — 12 линиям, 1 линия — 6 точкам.

Шестидесятеричная

Первой позиционной системой счисления считается шестидесятеричная система в Древнем Вавилоне. Ее основание до сих пор применяют для измерения времени. Система счисления времени — смешанная, но для перевода минут в секунды или часы потребуется именно шестидесятеричная система.

Для измерения углов и записи координат (широты, долготы) тоже используют эту систему, так как изначально астрономические координаты записывали в шестидесятеричных дробях. По аналогии с часом градус делят на шестьдесят минут, минуту — на шестьдесят секунд.

Двадцатеричная

Двадцатеричную систему называют вигезимальной. Эта система, как и десятеричная, связана с количеством пальцев, поэтому многие народы изобрели ее независимо друг от друга. Основание 20 сохранилось в лингвистической структуре их языков, именно на нем основана система счета в разговорной речи. Например, во французском языке «восемьдесят» состоит из слов «четыре» и «двадцать».

Римская система счисления

Описание

Римская система счисления относится к непозиционным. Она известна всему миру и широко применяется до сих пор. Это связано не с какими-то особыми достоинствами, а скорее с политическим и культурным влиянием Древнего Рима на европейскую цивилизацию.
Сейчас римская система используется в русском языке для обозначения:

В других странах свои особенности употребления римских цифр: в Европе ими часто записывают номер года, в Латвии — день недели.
Считается, что в основу римских цифр легли жесты:

100 и 1000 обозначаются буквами C и М — первыми буквами соответствующих латинских слов.

Основные характеристики

Для записи чисел используют семь букв латинского алфавита:

Сначала записываются тысячи, потом сотни, потом десятки и единицы. Ноль в системе отсутствует, но раньше вместо него использовали букву N. От позиционных систем римская отличается использованием принципов сложения и вычитания. Когда большая цифра стоит перед меньшей, они складываются. Когда меньшая стоит перед большей — вычитаются.

Источник

Что такое позиционная и непозиционная система счисления

В голосовании могут принять участие только участники методической группы (успешные участники мероприятий портала: конкурс им. А.С. Макаренко, Всероссийское тестирование педагогов).

Тема урока: Системы счисления. Позиционные и непозиционные системы счисления.

Тип урока: изучение нового материала.

Цели урока:

Требования к знаниям и умениям:

Обучющиеся должны знать:

Обучающиеся должны уметь:

Программное обеспечение: Программа Microsoft PowerPoint,

презентация «Системы счисления».

План урока

Содержание этапов урока

Виды и формы работы

Время

1. Орг. Момент

2. Изложение нового материала

Преподаватель излагает материал, параллельно демонстрируя презентацию «Системы счисления». Выполняются задания, предлагаемые в презентации.

Обучающийся знакомит с исторической справкой..

3. Закрепление пройденного материала.

Работа по карточкам.

4. Подведение итогов

5. Рефлексия урока

7. Домашнее задание

Ход урока

Здравствуйте, ребята! Покажите готовность к уроку. Староста, кто отсутствует?

Посмотрите на два числа и расскажите, чем они отличаются: 111 и I I I.

Предполагаемые ответы детей: одно число арабское, другое римское, одно число написано цифрами, другое буквами и т.п. Необходимо, чтобы обучающиеся сказали, что в первом числе значение числа зависит от места (позиции), на котором оно находится, а в другой нет. Можно помогать наводящими вопросами, например «И 1, и I обозначают одно и то же – единицу, но в первом случае это число «сто одиннадцать», а во втором «три». Почему?»

Итак, тема нашего урока «Системы счисления. Позиционные и непозиционные системы счисления».

Люди всегда считали и записывали числа. Для записи информации о количестве объектов используются числа. Мы привыкли с ними работать. А с чего же всё начиналось, как люди с древнейших времён считали? Историческую справку нам представит обучающийся нашей группы.

Вопрос: Что такое цифры? (Ученики пытаются ответить на этот вопрос). Цифры – это символы, участвующие в записи числа и составляющие некоторый алфавит.

Вопрос: Что же такое число?

Первоначально число было привязано к тем предметам, которые пересчитывались. Но с появлением письменности число отделилось от предметов пересчета и появилось понятие натурального числа. Дробные числа появились в связи с тем, что человеку потребовалось что-то измерять, а единица измерения не всегда укладывалась целое число раз в измеряемой величине. Далее понятие числа развивалось в математике, и сегодня считается фундаментальным понятием не только математики, но и информатики. Число – это некоторая величина.

Числа складываются из цифр по особым правилам. На разных этапах развития человечества, у разных народов эти правила были различны и сегодня мы их называем системами счисления.

Система счисления – это способ записи чисел с помощью цифр.

Все известные системы счисления делятся на непозиционные и позиционные.

Непозиционные системы счисления возникли раньше позиционных. Непозиционной называется такая система счисления, у которой количественный эквивалент («вес») цифры не зависит от ее местоположения в записи числа.

В древние времена, когда люди начали считать, появилась потребность в записи чисел. Количество предметов, например мешков, изображалось нанесением черточек или засечек на какой-либо твердой поверхности: камне, глине, дереве (до изобретения бумаги было еще очень далеко). Каждому мешку в такой записи соответствовала одна черточка.

Ученые назвали этот способ записи чисел единичной или унарной системой счисления.

Неудобства такой системы счисления очевидны: чем большее число надо записать, тем больше палочек. При записи большого числа легко ошибиться – нанести лишнее количество палочек или, наоборот, не дописать палочки. Поэтому позже эти значки стали объединять в группы по 3, 5, 10 палочек. Таким образом, возникали уже более удобные системы счисления.

Древнеегипетская десятичная непозиционная система возникла во второй половине третьего тысячелетия до н.э. Бумагу заменяла глиняная дощечка, и именно поэтому цифры имеют такое начертание.

В этой системе счисления использовали в качестве цифр ключевые числа 1, 10, 100, 1000 и т.д. и записывались они при помощи специальных иероглифов: шест, дуга, свернутый пальмовый лист, цветок лотоса.

Именно из комбинаций таких «цифр» записывались числа и каждая «цифра» повторялась не более девяти раз.

Вопрос: Почему?

Ответ: Так как десять подряд идущих одинаковых цифр можно заменить одним числом, но на разряд старше.

Все остальные числа составлялись из этих ключевых при помощи обычного сложения.

Вопрос: Какое число записано?

Ответ: 2342

Знакомая нам римская система принципиально не намного отличается от египетской. Но она более распространена в наши дни.

Для записи чисел в римской системе используются правила:

Для закрепления в памяти буквенных обозначений цифр в порядке убывания существует мнемоническое правило: Мы Dарим Сочные Lимоны, Хватит Vсем Iх.

Соответственно M, D, C, L, X, V, I.

Рассмотрим, как записывается число 444 в римской системе счисления.

444 = 400+40+4 (сумма четырех сотен, четырех десятков и четырех единиц).

Обратите внимание, что в десятичной записи числа используются три одинаковые цифры, а в римской системе счисления разные. Количество цифр, используемых при записи одного и того же числа, в десятичной и римской системах не одинаково (в римской – в два раза больше).

В ходе развития человеческого общества непозиционные системы счисления уступили место позиционным системам.

Система называется позиционной, если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Основные достоинства позиционной системы счисления:

Позиционных систем существует множество, и отличаются они друг от друга алфавитом.

Алфавит – это множество используемых цифр в данной системе.

Основание системы счисления –это размер алфавита (число цифр).

на данный момент мы используем цифры 0,1,2,3,4,5,6,7,8,9 – это алфавит системы;

Всего цифр 10 – это основание системы, поэтому система называется десятичной.

Источник

Системы счисления. Основные понятия.

Запись числа в некоторой системе счисления называется кодом числа.

Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.

Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся

на однородные и смешанные.

Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не

зависит от позиции (разряда).

Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости

от её места в строке, соответствует только 1 предмет.

Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.

Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.

Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению

50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)

одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,

(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может

отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде

В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в

числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции

Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда

меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.

Самая первая система счисления — единичная (непозиционная).

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в

последовательности цифр, которые изображают число.

Каждая позиционная система характеризуется своим основанием.

Основание позиционной системы счисления – это количество разных знаков либо символов, которые

используются для изображения цифр в этой системе.

множество позиционных систем.

Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.

Таблица соответствия цифр в различных системах счисления.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *