Что такое пум в молниезащите
Как защищают подстанции от ударов молнии
Любой ресурс, электроэнергия, в том числе, нуждается в транспортировке и перераспределении. В отличие от нефти или угля, электричество передается посредством линий электропередач (ЛЭП), которые в большинстве своем представляют собой воздушные линии (ВЛ). Эти каналы, по причине экономической целесообразности, предполагают транзит энергии огромной мощности.
Для приведения характеристик электроэнергии в соответствие с параметрами электросетей конечных потребителей, а также для ее распределения применяют трансформаторные подстанции.
Знание вопроса молниезащиты трансформаторных подстанций поможет не только предотвратить финансовый ущерб от атмосферного электричества, но и сохранит жизнь людям.
Опасность разряда молнии
Превышение рабочего напряжения (перенапряжение) в результате удара молнии может происходить двумя путями. Перенапряжение прямого удара (ПУМ) возникает при непосредственном попадании молнии в подстанцию. Индуцированное же происходит в результате удара в землю вблизи от объекта.
Несмотря на кратковременность воздействия (порядка 100 микросекунд), ущерб может быть весьма значительным. Кроме того что молния обладает колоссальным напряжением, температура разряда в главном канале может достигать 30000°C. Разумеется, разрушения подстанции или ее элементов могут быть весьма значительными.
Перенапряжение на установке может быть вызвано ударом молнии в участок воздушной линии, соединенный с ней. Поэтому грозозащита линий электропередач также относится к комплексу мер по защите подстанций от молний.
В общем случае можно выделить следующие основные причины необходимости оснащения объектов молниезащитными устройствами:
Сюда же можно добавить снижение уровня травмоопасности для персонала. Это значит, что молниезащита подстанции необходима и обязательна в соответствии с действующими требованиями законодательства (ПУЭ).
Эти правила позволяют не защищать лишь подстанции на 20 и 35 кВ, оборудованные трансформаторами мощностью менее 1,6 кВ. Также разрешено не оборудовать молниезащиту подстанций и ОРУ в климатических зонах, где количество грозовых часов не превышает 20.
Защита от ПУМ
Здания, подстанции, в том числе, открытые распределительные устройства (ОРУ), воздушные линии и другие объекты защищают от ПУМ при помощи стержневого молниеотвода или комплексом таковых. Устройство, изобретенное в середине 18 века, актуально по сей день.
Вообще, молниеотводы бывают тросовыми и стержневыми. Первые из них используются для защиты от молнии протяженных объектов, типа шинных мостов, и применяются относительно редко. Вторые же наиболее распространены и способны обеспечить молниезащиту зданий, опор воздушных ЛЭП и других объектов.
Требования к молниеприемнику
Молниеприемник изготавливается из стали. Для того чтобы выдерживать термические нагрузки при протекании тока, а также высокую температуру самой молнии, согласно ПУЭ его диаметр должен быть более 6 мм. Соединение молниеприемника с токопроводом необходимо производить путем их сваривания.
Если это невозможно, то допустимо резьбовое соединение болтом и гайкой. Диаметр шайб в этом случае должен быть увеличен. Во избежание падения и нанесения по этой причине ущерба, устройство должно быть прочно закреплено на опоре или другой несущей конструкции.
Молниеприемники обычно закрепляют на уже имеющихся металлических конструкциях. Это могут быть прожекторные мачты, крыши высотных зданий, высокие точки на входе в подстанцию.
Исключение составляют трансформаторные подстанции. На них приемники молний для молниезащиты не устанавливают. Если же такая необходимость возникает, то обмотки с низшим напряжением защищают вентильными разрядниками.
Заземлитель
Токоотвод соединяется он с заземлителем – одной из наиважнейших частей молниезащиты. В качестве заземлителя в целях экономии используется одно заземляющее устройство ЗУ, которое отвечает наиболее жестким требованиям следующих видов заземления:
Заземляющее устройство молниезащиты на подстанциях выполняют горизонтально размещенными в грунте полосами, которые соединяются с вертикальными электродами, идущими к токоотводу. Все металлические части подстанции, включая корпуса баков, выключателей и прочего, должны иметь контакт с заземлением. Только в этом случае гарантирована надежная молниезащита.
Сети с напряжением от 110 кВт делают с глухозаземленной нейтралью, а подстанции на 35 кВ и ниже заземляют через дугогасящий реактор.
Все компоненты молниеотвода должны иметь антикоррозийное покрытие, в качестве которого обычно применяется оцинковка. Количество устройств на одном сооружении, а также их эффективность и зоны защиты определяются при соответствующих расчетах. Таким образом, обеспечивается защита подстанций от прямых ударов молнии при помощи стержневых молниеотводов.
Защита от индуцированных волн
Молниезащита подстанции при непрямом попадании молнии обеспечивается специальными аппаратами, которые обеспечивают защиту от импульсного перенапряжения.
Учитывая то, что заранее неизвестно, куда попадет молния, все входы и выходы подстанции оснащаются либо разрядниками, либо более совершенными ограничителями перенапряжения (ОПН).
Принцип действия искрового разрядника основан на образовании дуги между двумя стержневыми электродами, один из которых заземлен, а второй соединен с фазным проводом.
Они разделены защитным промежутком. При пробое последнего (появлении искры) вся электроустановка отключается, обеспечивая ее молниезащиту.
Более эффективным считается трубчатый разрядник, состоящий из газогенерирующей трубки, кольцевого и стержневого электродов и двух искровых зазоров, внутреннего и внешнего.
Последние в случае возникновения перенапряжения пробиваются и образуется дуга, высокая температура которой запускает газогенератор. Под давлением газ перемещается к открытому концу трубки, чего оказывается достаточно для задувания дуги.
Разрядник вентильного типа
Еще более продвинутым устройством молниезащиты от индуцированных волн является разрядник вентильного типа. Кроме промежутков для искрообразования, в его состав входит герметичная фарфоровая покрышка и резисторы с нелинейной вольт-амперной характеристикой (ВАХ).
Стоит отметить, что согласно ПУЭ имеются ограничения на максимальное расстояние от разрядника до трансформаторов подстанции, колеблющееся от 60 до 90 м, в зависимости от типа опор ВЛ.
Разрядники для обеспечения молниезащиты подстанций применяют все реже. Более совершенные устройства постепенно занимают их нишу. Основными их преимуществами является отсутствие искровых промежутков, малые размеры, глубокое ограничение перенапряжений.
Принцип действия ОПН предельно прост. Варистор (нелинейный резистор) ведет себя как сопротивление до достижения порогового напряжения. Превышение этой величины приводит к тому, что прибор поддерживает напряжение на заданном уровне за счет ответвления части тока на землю.
При использовании ОПН в качестве молниезащиты, есть сложности с длительностью удержания рабочего напряжения и некоторые другие. Но при правильном подборе типа прибора нелинейная молниезащита наиболее эффективна.
Что такое пум в молниезащите
Устройство молниезащиты предназначено для обеспечения защиты от прямых ударов молнии (ПУМ).
Здание относится к III категории молниезащиты зоне Б согласно пп.14, таблицы 1 Инструкции по устройству молниезащиты зданий и сооружений РД 34.21.122-87.
Таблица 1
Здания и сооружения
Тип зоны защиты при использовании стержневых и тросовых молниеотводов
Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа
В местностях со средней продолжительностью гроз 20 ч в год и более
Для зданий и сооружений I и II степеней огнестойкости при 0,1 2- зона А
Зона защиты типа Б — 95 % и выше.
В соответствии с требованиями «Инструкции по устройству молниезащиты зданий, сооружении и промышленных коммуникации» проектируемое здание по устройству молниезащиты относится к обычному объекту.
На кровле здания разместить молниеприемник с учетом угла наклона кровли.
Уклон кровли 5%, что равно 1:20, что меньше, чем 1:8. Это означает, что можно применять молниеприемную сетку с шагом ячейки 6х6 м, п.п. 2.11 РД 34.21.122-87.
Молниеприемная сетка – это ячейка, выполненная из стальной проволоки размером 6х6, 10х10, 12х12 м. Материал используемый в качестве молниеприемной сетки – проволока стальная оцинкованная диаметром 8 мм согласно Таблице 3.1
Таблица 3.1 СО 153-34.21.122-2003
Материал и минимальные сечения элементов внешней МЗС
Оцинкованная проволока защищена от коррозии методом горячего цинкования, что увеличивает срок службы. Цвет от темно-серого до блестящего (S10301).
Молниеприемная сетка крепится на специальных держателях для плоских кровель.
П.п. 3.2.4.1 СО 153-34.21.122-2003 Крепление и соединения элементов внешней МЗС
Молниеприемники и токоотводы жестко закрепляются, так чтобы исключить любой разрыв или ослабление крепления проводников под действием электродинамических сил или случайных механических воздействий (например, от порыва ветра или падения снежного пласта). Устанавливается проволока для молниеприемной сетки в паз держателя. Расстояние между держателями 0,5-1 м. Масса одного держателя – 1 кг (D10130).
Узлы сетки как правильно должны быть сварки. Так же допускаются болтовые соединения п.п. 3.2.4.2. СО 153-34.21.122-2003(3.2.4.2. Соединения. Количество соединений проводника сводится к минимальному. Соединения выполняются сваркой, пайкой, допускается также вставка в зажимной наконечник или болтовое крепление.) Для соединения принимаем специальную болтовую клемму (D10118).
Клемма для соединения проволоки весь удобна, это обусловлено, тем, что не надо варить оцинкованную проволоку, нет необходимости перемещать сварочный аппарат по площади кровли, увеличивается скорость крепления узлов проволоки. Кроме того, при сварочном соединении нарушается изначальный слой цинка. После сварки соединение можно покрыть цинконаполенным составом (M10247).
Но требуется постоянный контроль, чтобы не допустить коррозии в соединении.
Необходимо учесть размеры здания и если того требуется, установить температурные алюминиевые компенсаторы (M10235).
Они устанавливаются через каждые 50 м стальной проволоки молниеприемной сетки. Компенсаторы крепятся к стальной стеке при помощи соединительных клемм (D10118).
Токоотвод выполнить из стальной оцинкованной проволоки 8 мм согласно Таблице 3.1.
Расположение токоотвода от молниеприемной сетки до заземляющего устройства должно быть минимальным. Необходимо установить несколько токоотводов для равного стекания тока молнии и снижения его величины на проволоке. Токоотводы должны располагаться равноме
рно по периметру объекта. Среднее расстояние между токоотводами должно быть 20 м. (Таблица 3.3 СО 153-34.21.122-2003).
Токоотводы располагаются на поверхности стены и крепятся на специальных фасадных держателях (D10149).
Держатель крепится при помощи шпильке и пластикового дюбеля. Расстояние от плоскости стен 100 мм. Проволока фиксируется двумя болтами М8х25. Материал шпильки и держателя – оцинкованная сталь.
Заземление объекта
Согласно п.п. 2.13 «В качестве заземлителей защиты от прямых ударов молнии во всех возможных случаях (см. п. 1.8) следует использовать железобетонные фундаменты зданий и сооружений. При невозможности использования фундаментов предусматриваются искусственные заземлители:
— при наличии молниеприемной сетки или металлической кровли по периметру здания или сооружения прокладывается наружный контур следующей конструкции:
— в грунтах с эквивалентным удельным сопротивлением 500 Омм при площади здания более 250 м 2 выполняется контур из горизонтальных электродов, уложенных в земле на глубине не менее 0,5 м, а при площади здания менее 250 м 2 к этому контуру в местах присоединения токоотводов приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2—3 м;»
3.2.3.2. Специально прокладываемые заземляющие электроды СО 153-34.21.122-2003.
«Сильно заглубленные заземлители оказываются эффективными, если удельное сопротивление грунта уменьшается с глубиной и на большой глубине оказывается существенно меньше, чем на уровне обычного расположения. Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Глубина закладки и тип заземляющих электродов выбираются из условия обеспечения минимальной коррозии, а также возможно меньшей сезонной вариации сопротивления заземления в результате высыхания и промерзания грунта.»
Необходимо выполнить траншею глубиной 0,5 м и шириной 0,25 м
Таким образом, согласно таблице 2. 11 РД 34.21.122-87, минимальный диаметр стального вертикального электрода заземления: 10 мм.
Выбираем стержень стальной оцинкованный диаметром 16 мм длиной 1,5 (Z10161).
Конструкция стержня такова, что толщина стержня позволяет заглублять его вертикально при помощи электроинструмента. А резьбовая оснастка позволяет соединять стержня между собой для увеличения глубины залегания. Так достигается наилучшее растекание тока, кроме того на большой глубине, грунт не промерзает и не высыхает.
Стержень оцинкованный длиной 1,5 м – соединяется между собой при помощи муфты (Z10163) и образует вертикальный очаг заземления длиной 3 м.
Для увеличения скорости монтажа на первый стержень накручивается стальной наконечник (Z10164).
Заглубить вертикальные стержни заземления в местах опусков токоотводов. При установке вертикальных заземлителей необходимо оставить на дне траншеи выпуск стержня длиной 150 мм для подключения горизонтального заземлителя (S10309).
Горизонтальный заземлитель полоса стальная оцинкованная 40х4 мм. П.п. Таблица 3. РД 34.21.122-87.
Таблица 3
Форма токоотвода и заземлителя
Сечение (диаметр) токоотвода и заземлителя, проложенных
снаружи здания на воздухе
Круглые токоотводы и перемычки диаметром, мм
Круглые вертикальные электроды диаметром, мм
Круглые горизонтальные* электроды диаметром, мм
* Только для выравнивания потенциалов внутри зданий и для прокладки наружных контуров на дне котлована по периметру здания.
Контур прокладывается вокруг здания и соединяется между собой сваркой. Перед сваркой необходимо зачистить слой цинка. После сварки требуется окрасить цинконаполненным составом ( M10247 ). Длина шва 6 см.
Выполнить соединение горизонтального и вертикального заземлителя при помощи специального зажима типа Z (Z10101). Подключить к зажиму токоотвод.
Очистить соединение «полоса-токоотвод-стержень» от грунта, воды. Обмотать соединение лентой изоляционной (Z10104).
Расчет сопротивления растекания заземляющего устройства
Для сопротивления внешней молниезащиты здания требуется заземляющее устройство с сопротивлением до 10 Ом. Для расчета возьмем усредненную величину удельного сопротивления грунта – 100 Ом/м.
Сопротивление растеканию вертикального заземлителя определяется по формуле:
,
п.8.7 Формула (14) Справочник по молниезащите Р.Н. Карякин
Рис. 1 – условие заглубления вертикального электрода.
Рис. 2 – условие заглубления горизонтального электрода.
Расчёт вертикальных электродов
Сопротивление одного вертикального электрода
Коэффициент использования стержней равен 0,8
Сопротивление всех вертикальных заземлителей
Безразмерный коэффициент вертикального электрода, зависящий от формы заземлителя и условий его заглубления:
Найдем коэффициент по формуле, указанной в п.6 таблицы 8 справочника по молниезащите Р.Н. Карякина
Следовательно, сопротивление одного вертикального электрода:
Предусматривая коэффициент использования стержней находим сопротивление всех вертикальных заземлителей по формуле:
— сопротивление одного вертикального электрода;
— коэффициент использования стержней (справочник по технике безопасности П.А. Долин);
Отношение расстояний между электродами к их длине
Электроды размещены в ряд (рас.1)
Электроды размещены по контуру (рис.2)
— количество вертикальных электродов.
Расчёт горизонтальных электродов
ρ- удельное сопротивление грунта, Ом/м
— длина проводника(общая длина горизонтального электрода);
— ширина проводника;
— коэффициент использования стержней (справочник по технике безопасности П.А. Долин).
Отношение расстояний между вертикальными электродами к их длине
Число вертикальных электродов
Вертикальные электроды размещены в ряд (рис.1 см. выше)
Вертикальные электроды размещены по контуру (рис.2 см. выше)
Сопротивление всего контура рассчитывается по формуле:
6 Условия эксплуатации
Для обеспечения постоянной надежности работы устройства молниезащиты ежегодно перед началом грозового сезона производится проверка и осмотр всех устройств молниезащиты.
Во время осмотра и проверки устройств молниезащиты рекомендуется:
Для определения технического состояния заземляющего устройства должны проводиться визуальные осмотры видимой части, осмотры заземляющего устройства с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования.
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником, им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.
Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования должны производиться:
Периодическому контролю со вскрытием в течение шести лет подвергаются все искусственные заземлители, токоотводы и места их присоединений, при этом ежегодно производится проверка до 20 % их общего количества. Пораженные коррозией заземлители и токоотводы при уменьшении их площади поперечного сечения более чем на 25 % должны быть заменены новыми.
Внеочередные замеры сопротивления заземления устройств молниезащиты следует
производить после выполнения ремонтных работ как на устройствах молниезащиты, так и на
самих защищаемых объектах и вблизи них.
Результаты проверок оформляются актами, заносятся в паспорта и журнал учета состояния
Земляные работы у защищаемых зданий и сооружений объектов, устройств молниезащиты, а также вблизи них производятся, как правило, с разрешения эксплуатирующей организации, которая выделяет ответственных лиц, наблюдающих за сохранностью устройств молниезащиты.
Во время грозы работы на устройствах молниезащиты и вблизи них не производятся.
Приложения 1-7 – Схемы молниезащиты плоской кровли с основными элементами
Схема 1 – Общая схема молниезащиты
Схема 2 – Держатель круглого проводника на плоскую кровлю.
Схема 3 – Клемма параллельного и последовательного соединения, оцинкованная сталь
Схема 4 – Держатель фасадный круглого проводника
Схема 5 – Компенсатор проволоки
Схема 6 – Соединение через специальный зажим вертикального и горизонтального заземлителя.