Что такое пусковая мощность
Что такое пусковая мощность
Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.
Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.
Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.
В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка. Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в Такое явление обусловлено наличием пусковых токов. Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания. В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.
Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах). По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания. Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.
Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.
Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.
Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.
В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение. В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты. Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).
С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.
Единственный вид ИБП, который может выдерживать пусковые токи, в раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа. Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.
При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая. При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины). Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.
Выводы:
Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.
Примеры номинальной мощности и мощности при запуске бытовой техники
Тип техники | Номинальная мощность, Вт | Продолжительность пусковых токов, с | Коэффициент во время начала работы | Пример модели стабилизатора, ВА | Пример модели ИБП |
Холодильник | 4 | 3 | «Штиль» R1200 / Progress 1500T | N-Power Pro-Vision Black M 3000 LT | |
Стиральная машина | 2500 | Progress 3000T | |||
Микроволновая печь | 1600 | 2 | «Штиль» R2000 | ||
Кондиционер | Progress 5000L | ||||
Пылесос | 1500 | 2 | Progress 3000T | ||
Кухонный комбайн | 7 | Progress 2000T | |||
Посудомоечная машина | 2200 | 3 | Progress 3000L | ||
Погружные скважинные насосы, глубинные насосы | 2 | Progress 3000L | ДПК-1/1-3-220-М | ||
Циркуляционные насосы | «Штиль» R 600 ST | Inelt Intelligent 500LT2 | |||
Лампа накаливания | 100 | 0,15 | высокоточная серия L |
В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.
Правильный выбор оборудования для резервного электроснабжения
В данной статье мы расскажем о том, как правильно выбрать оборудование для резервного электроснабжения Вашего объекта с учетом параметров электрооборудования на объекте, требуемого времени автономной работы и прочих условий.
Для чего нужен инвертор
Качественное бесперебойное электроснабжение является важным критерием для любого объекта, будь то частный коттедж, офисное помещение или специализированный объект (например, узел связи в сфере телекоммуникаций).
Что такое инвертор? Инвертор это устройство для преобразования постоянного тока в переменный с изменением величины частоты и/или напряжения.
Что такое внезапное исчезновение электроснабжения в жилом доме:
Этот список может быть продолжен. Но главное, что это происходит при полном отсутствии вины и контроля с Вашей стороны, а затраты на возмещение таких аварий обычно ложатся на Ваши плечи.
Инвертор это надежное и технологичное решение этих проблем. Почему инвертор, а не генератор? Сравнению двух этих решений можно посвятить отдельную статью, которая в ближайшее время появится у нас на сайте.
Что такое временное отсутствие электроснабжения на промышленном объекте, например, на узле связи телекоммуникационной компании
Как определить необходимую мощность инвертора
В данной статье, в качестве примера, мы рассмотрим выбор оборудования (инвертора и аккумуляторных батарей) для частного дома.
Чтобы правильно выбрать инвертор 12-220 необходимо знать, какая нагрузка может быть включена одновременно и характер этой нагрузки (активный или реактивный). Общая суммарная мощность нагрузки определит понимание того, какой номинальной мощности инвертор нам потребуется.
Типы нагрузки
Для оценки мощности нам пригодится немного скучной, но крайне необходимой и полезной теории.
Активные нагрузки это такие нагрузки, у которых вся потребляемая электроэнергия переходи в тепло. Сюда можно отнести лампы накаливания, утюг, электрическую плиту, обогреватель и прочее.
Реактивные нагрузки используют не всю переданную им энергию. Они частично запасают ее с последующей отдачей в электрическую цепь. Соответственно для них полная мощность P, необходимая для работы, больше чем активная мощность Pa. Она рассчитывается по формуле P=Pa/cos φ.
Это очень важно, поскольку номинальная мощность инвертора указывается в ВА, а номинальная мощность электроприборов зачастую указана в Вт (только активная составляющая). Не учитывая прирост мощности, расчет будет произведен ошибочно и будет выбран инвертор недостаточной номинальной мощности.
Например, на приборе указано, что активная мощность составляет 700 Вт, а cos φ равен 0,5. Полная мощность, потребляемая таким прибором, составит P=Pa/cos φ =700/0,5=1400 ВА.
Если величина cos φ не указана ни на приборе, ни в документации на него, данный коэффициент принимается равным 0,7. В этом случае формула будет иметь вид P=Pa/0,7.
Пусковая мощность
Крайне важно при расчете не забыть учесть пусковые токи. Дело в том, что любой электродвигатель в момент его запуска, потребляет электроэнергию в несколько раз больше, чем в установившемся режиме работы. Эта величина называется кратностью пускового тока.
В зависимости от типа электродвигателя, наличия или отсутствия устройства плавного запуска он варьируется от 3 до 7. В момент запуска электрических приборов с электродвигателями (насосы, электрические дрели, холодильники) потребляемую мощность нагрузки необходимо умножить как минимум в 3-5 раз. Длительность пусковых токов обычно составляет от 0,25 до 0,5 с.
Суммарно пусковую мощность не рассчитывают, поскольку это означало бы одновременный запуск (с точностью до долей секунды) всех электроприборов, что практически не происходит. При расчете необходимо ориентироваться на максимальную величину из всех электроприборов такого типа.
Типовой расчет
В частном доме с большой вероятностью одновременно будут работать следующие приборы
Прибор | Мощность | Кол-во | Нагрузка | Пусковая мощность | Часов в день | Потребление в сутки | Среднечасовая нагрузка |
электролампа | 75 Вт | 4 | 300 ВА | 1500 ВА | 5 | 1500 кВА-ч | 150 ВА |
холодильник* | 250 Вт | 1 | 357 ВА | 1071 ВА | 6 | 2142 кВА-ч | 89 ВА |
телевизор | 400 Вт | 1 | 400 ВА | 2000 ВА | 5 | 2000 кВА-ч | 200 ВА |
котел | 150 Вт | 1 | 150 ВА | 450 ВА | 24 | 3600 кВА-ч | 150 ВА |
циркуляционный насос | 90 Вт | 4 | 516 ВА | 1548 ВА | 24 | 12384 кВА-ч | 516 ВА |
* в отличии от остальных приборов в таблице, работающих непрерывно, холодильник работает примерно 15 минут в час.
Итого потребляемая мощность постоянно работающих приборов составляет 1723 ВА.
На непродолжительное время могут включаться достаточно мощные потребители. Среди них насосы водоснабжения или привод автоматических ворот. Естественно, что при работе от батарей не нужно использовать, например, стиральную машину. Однако, использовать чайник вполне допустимо, поскольку в пересчете на среднечасовые показатели это мало повлияет на разряд батарей.
Прибор | Мощность | Кол-во | Нагрузка | Пусковая мощность | Часов в день | Потребление в сутки | Среднечасовая нагрузка |
электрочайник | 1000 Вт | 1 | 1000 ВА | 1000 ВА | 0,3 | 300 кВА-ч | 30 ВА |
погружной насос | 2000 Вт | 1 | 2857 ВА | 8571 ВА | 0,3 | 857 кВА-ч | 86 ВА |
привод ворот | 500 Вт | 1 | 714 ВА | 2142 ВА | 0,1 | 71 кВА-ч | 7 ВА |
С учетом максимальной мощности погружного насоса, потребляемая мощность суммарно работающих приборов составит 4580 ВА.
Для бесперебойного питания такой нагрузки подойдет инвертор Tripp Lite модели APSX6048VRNET. Номинальная мощность инвертора составляет 6 кВт, выдерживает пиковую мощность до 12 кВт.
Данный расчет является типовым. Делать такой расчет необходимо исходя из состава оборудования на Вашем объекте или в Вашем жилом доме.
Также Вы можете заказать в нашей компании специальное обследование, с выездом специалиста на Ваш объект для замеров параметров мощности при включенной нагрузке. Это более надежный способ выбора необходимого оборудования.
Время бесперебойного энергоснабжения
После того, как инвертор выбран необходимо определиться с желаемым временем автономной работы. Для этого необходимо знать две величины
Среднечасовую нагрузку необходимо знать, так как максимальная суммарная нагрузка не отражает реальной нагрузки на батарею. Электроприборы включаются и выключаются и в некоторые моменты забираемая из аккумуляторов мощность в разы ниже максимальной.
Метод расчет среднечасовой нагрузки: вычисляем примерную продолжительность работы прибора в сутки с учетом режимов его работы (непрерывный, непрерывный с периодами включения и отключения, редкие включения), например, для холодильника 15 минут в час, это 6 часов в сутки.
Далее время работы умножаем на мощность прибора. Получаем величину потребления электроприбора в сутки (в ВА-часах). И последним этапом делим это значение на 24 часа (для непрерывно работающих приборов, в частности холодильника) либо на 8 часов для приборов, работающих только в активное время суток, например, телевизор.
Емкость батарей
Рекомендуется комплектация инверторов специализированными (необслуживаемыми) аккумуляторами 12 В на 200 Ач.
Одна 12 В батарея 200 Ач содержит в себе энергию в объеме 2 кВтч. Таким образом, если мы будем разряжать его нагрузкой 400 Вт, то теоретически ее должно хватить на 5 часов автономной работы.
В общем случае, для приблизительной оценки, рекомендуется ориентироваться на номинал инвертора и размер батарей, указанных в таблице ниже.
Мощность нагрузки дома | Мощность инвертора | Напряжение инвертора | Количество АКБ 12В-200 Ач | Энергия батарей, кВтч | Время работы, часов |
1,0 кВт | 2,0 кВт | 12 и 24 | 2 | 4,0 | 4 |
2,0 кВт | 3,0 кВт | 24 и 48 | 4 | 8,0 | 4 |
3,0 кВт | 3,5 кВт | 48 | 8 | 16,0 | 5 |
4,0 кВт | 6,0 кВт | 48 | 8 | 16,0 | 4 |
5,0 кВт | 6,0 кВт | 48 | 12 | 24,0 | 5 |
В случае рассматриваемого выше пример подбора инвертора среднечасовая мощность нагрузки равна 1192 ВА, емкость аккумуляторной батареи 16 кВАч. Соответственно ориентировочное время бесперебойного питания составляет 13,4 часа.
В том случае, когда длительные отключения электроэнергии (сутки и более) происходя достаточно часто, целесообразно дополнить имеющуюся систему генератором вместо дальнейшего наращивания емкости аккумуляторной батареи.
Можно создать полностью автоматическую систему резервного энергоснабжения, если дополнить инвертор генератором с автозапуском. В данной схеме инвертор автоматически отдаст команду на запуск генератора, когда батареи разрядятся и отключит генератор после их зарядки.
© 2012-2021, «ЭнергоТехнологии».
Газовые генераторы Generac и системы резервного питания для дома и предприятия в Челябинске
Разработка сайта —
интернет-компания «Инсайт»
Пусковой ток.
Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:
Iн = Pн/(√3Uн х сosφ), кА
Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.
Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.
Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.
Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).
Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.
Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.
Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.
Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.
Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).
Что такое пусковой ток двигателя?
Что такое пусковой ток, как его посчитать, увидеть и измерить?
Решил разобраться в теме, про которую написано предостаточно, но суть неясна. Вопрос касается пуска электродвигателей, при котором возникает так называемый пусковой ток.
Итак, сразу к делу. Корень проблемы кроется в том, что для запуска электродвигателя (при подаче питания) требуется гораздо большее усилие, чем для продолжения. Эта физика работает со всеми предметами в мире – ведь начать движение всегда труднее, чем продолжить его.
В статье речь пойдёт об асинхронном электродвигателе с короткозамкнутым ротором, который применяется в промышленном оборудовании в 95% случаев. Питание – трехфазное. Как обычно, по тексту буду отсылать к своим статьям, а в конце можно будет скачать много чего интересного по теме.
Пусковой ток и его кратность
Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.
Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:
Номинальный ток всегда указан на шильдике двигателя:
Номинальный ток двигателя для разных напряжений и схем включения
Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.
Замечу, что не надо путать номинальный и рабочий токи. Номинальный ток – это ток, на котором двигатель может работать продолжительное время, он ограничен только нагревом обмотки статора. Рабочий ток – это реальный ток в данном агрегате, он всегда меньше либо равен номинальному. На практике рабочий ток измеряется токоизмерительными клещами, амперметром или трансформатором тока.
Если рабочий ток больше номинального – жди беды. Читайте мою статью про то, как защитить электродвигатель от перегрузки и перегрева.
Параметры двигателей. Кратность пускового тока
Пример из первой строчки на картинке: конкретный двигатель мощностью 1,5 кВт имеет номинальный ток 3,4 А. Значит, пусковой ток в какой-то момент (сколько длится этот “момент” – рассмотрим ниже) может достигать значения 3,4 х 6,5 = 22,1 А!
Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.
То есть, самым большим током при пуске (7 – 8,5 от номинала) обладают высокооборотистые двигатели (3000 об/мин, 1 пара полюсов) сравнительно большой мощности (более 10 кВт).
Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.
Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.
Кому хочется узнать подробнее – в конце статьи я выложил несколько хороших книг по теме.
На самом деле не так всё просто, начинаем копать глубже.
Как узнать пусковой ток?
Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:
Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.
Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!
Теперь разберём другой вопрос –
Какой вред от пускового тока?
Пусковой ток – это проблема. Это –
От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.
И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.
Как уменьшить пусковой ток асинхронного двигателя
Решить проблему большого пускового тока электрически можно двумя путями:
Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.
В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.
Как снизить вред от пускового тока?
Если изменить схему питания двигателя невозможно (например, сосед по даче каждые пол часа запускает токарный станок, а никакие “методы воздействия” не воздействуют), то можно применить различные методы минимизации вреда от пусковых токов. Например:
Но напоминаю, что мы тут занимаемся не устранением последствий, а предотвращением проблем, поэтому погнали дальше.
Время действия и величина пускового тока
Длительностью пускового тока будем считать время, в течение которого ток понижается от максимума (Iп) до номинала (Iн). Эта длительность фактически равна времени разгона от нуля до номинальной скорости вращения.
Весь вопрос в том, какова длительность этого тока – 10 миллисекунд (пол периода), когда двигатель на холостом ходу, или 10 секунд, когда на валу массивная крыльчатка. Теоретически рассчитать это время невозможно. Однако, поделюсь некоторыми соображениями.
Как я говорил выше, ток двигателя при пуске может превышать норму в несколько раз (Кп). И некоторые начинающие электрики, которые не читают мой блог, считают, что защитный автомат нужно выбирать так же – на повышенный ток. В статьях и даже инструкциях пишут, что “При выборе автомата необходимо учитывать, что пусковой ток асинхронного электродвигателя в 5 – 7 раз превышает номинальный”. Как это учитывать? Неужели ток автомата выбирать в 5-7 раз выше номинального тока двигателя?
Шильдик китайского электродвигателя 30 кВт
Написано – 56 А. Что это значит? Неужели то, что ток защитного автомата должен быть более 300 А? Конечно, нет. И выбор автомата в данном случае зависит не только от номинального тока двигателя (56 А), но и от времени действия пускового тока.
Кстати, давайте проведём расследование и узнаем пусковой ток этого двигателя. Ведь на сайт этого китайского производителя нам попасть не суждено. Исходные номинальные данные: мощность – 30 кВт, момент – 190,9 N·m, ток – 56 А. Смотрим по каталогам отечественных производителей, ищем подобный двигатель, ведь законы физики одинаковы и в России, и в Китае. Находим (каталог в конце статьи): это двигатель на 1500 оборотов, 4 полюса, с кратностью пускового тока Кп = 7. В итоге получаем: Iп = Iн · Кп = 56 · 7 = 392 А. Это теоретический пусковой ток, но это не ток уставки автомата!
Пусковой ток является максимально возможным током. Максимальным ток будет при пуске, то есть тогда, когда двигатель стоит. То есть, пусковой ток есть ВСЕГДА, и всегда его начальное значение имеет запредельную величину. В случае с нашим китайским движком – 392 А, если принять ток КЗ питающей сети равным бесконечности (источник напряжения с нулевым внутренним сопротивлением).
Тепловое действие пускового тока
Если перейти к формулам, пусковой ток оказывает тепловое действие на электродвигатель, которое описывается так называемым интегралом Джоуля. Если по простому, то тепловая энергия, производимая электрическим током, пропорциональна квадрату тока, умноженному на время. Обозначается эта величина через I2t.
Хорошая новость в том, что защитный автомат имеет примерно такую же тепловую (время-токовую) характеристику, что и время-токовая характеристика разгона двигателя.
Время-токовые характеристики защитного автомата
Что видим? Для защиты двигателя используются в основном автоматы с характеристикой D, как раз для того, чтобы меньше реагировать на кратковременные перегрузки. Подробнее здесь.
А для пускового тока двигателя график будет примерно такой:
График пускового тока (теоретический) при Кп = 6
Линейность графика – условная. Всё зависит от изменения момента нагрузки в процессе разгона. Теоретический график показан пунктиром. На этом графике Кп = Iп / Iн = 6, но это теоретическое (табличное) значение. Время разгона до номинала = tп.
Реальный график начерчен сплошной линией. На нём Iп` – это реальное значение пускового тока, которое всегда меньше теоретического. Это обусловлено тем, что питающая сеть имеет не нулевое сопротивление, и при повышении тока на проводах возникают потери напряжения.
Про потери на низком напряжении я писал тут, про потери в сетях 0,4 кВ – здесь.
Понятно, что из-за потерь время разгона будет больше, оно обозначено на графике через tп`.
Теперь повернём последний график, чтобы привести оси к одной системе координат:
Время от тока, если можно так выразиться
Не правда ли, весьма похоже на время-токовую характеристику защитного мотор-автомата?
Получается, что обе характеристики компенсируют друг друга, и при выборе автомата достаточно настроить его уставку на номинальный ток двигателя. При особо тяжелых пусках, когда площадь под кривой пуска двигателя больше площади под кривой защитного автомата, стоит подумать о плавном пуске – УПП либо ПЧ.
Реальные измерения тока
Как я говорил выше, по моему мнению лучший способ “увидеть” пусковой ток – использовать активный (резистивный) шунт, и смотреть на нём напряжение осциллографом.
Я использовать вот такой шунт:
Шунт для измерения пускового тока при помощи осциллографа
Подопытный – мотор-редуктор, который через цепную передачу крутит вертикальный шнек:
Мотор-редуктор, на котором измеряем пусковой ток
Шнек на момент пуска был полным, поэтому его рабочий ток (7,7 А, измерено клещами) был почти равен номинальному (8,9 А, видно на шильдике).
Шильдик двигателя вертикального шнека
Ситуация по пусковому току видна на осциллографе:
Осциллограмма пускового тока 500 мс/дел
Приблизим интересующий момент, ускорив развертку до 100 мс/дел:
Осциллограмма пускового тока 100 мс/дел
Тут уже легко увидеть синус питающего тока и оценить коэффициент кратности пускового тока Кп, который примерно равен 4.
Ещё приблизим момент истины (до 50 мс/дел):
Момент пуска двигателя – ток пуска
Тут уже видны хорошо и переходные процессы, обусловленные индуктивностью и ЭДС самоиндукции обмоток двигателя. Этот импульс, длительность которого гораздо меньше периода сети 20 мс, даёт хорошую помеху с широким спектром в питающую сеть и радиоэфир.
Ещё один повод для использования ПЧ? Не совсем, там с помехами ситуация гораздо хуже!
Для тех, кто не хочет заморачиваться, повторю – есть клещи с функцией Inrush, которые могут измерять пусковой ток.
Скачать
Надеюсь, читатели простят мне вольное объяснение процессов – я постарался всё объяснить “на пальцах”. Кому нужны академические знания, пожалуйста:
• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 6890 раз./
• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1105 раз./
• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2401 раз./
• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1541 раз./
• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2423 раз./
Ещё пособие по двигателям:
• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1862 раз./