Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Β§ 25. Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡƒΡ‚ΠΈ

1. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния. Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡƒΡ‚ΠΈ.

Π­Ρ‚ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ являСтся частным случаСм двиТСния с постоянным ускорСниСм, поэтому Π»ΡŽΠ±ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ извСстных Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ скорости ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ двиТСния с постоянным ускорСниСм. Но ΠΈΠ½ΠΎΠ³Π΄Π° для Π±ΠΎΠ»Π΅Π΅ быстрого Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ модуля скорости ΠΈ ΠΏΡƒΡ‚ΠΈ.

Π’Π½Π°Ρ‡Π°Π»Π΅ Π½Π°ΠΉΠ΄Ρ‘ΠΌ врСмя, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ Π΄ΠΎ остановки.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ модуля скорости Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Из Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ двиТСния с постоянным ускорСниСм ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡƒΡ‚ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

2. Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡƒΡ‚ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ являСтся Π²Π΅Ρ‚Π²ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹; Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ располоТСна Π² ΠΊΠΎΠ½Ρ†Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния.

2Π°. Π’Π΅Π»ΠΎ двигалось Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ, ΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ»ΠΎΡΡŒ, Π° Π·Π°Ρ‚Π΅ΠΌ вновь Π½Π°Ρ‡Π°Π»ΠΎ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ (равноускорСнно) Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ: Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, мяч, Π±Ρ€ΠΎΡˆΠ΅Π½Π½Ρ‹ΠΉ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ Π²Π²Π΅Ρ€Ρ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ Π² этом случаС Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Ρ‚Π°ΠΊ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠΠΈΠΊΠ°ΠΊΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ этого ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½ΠΈ Π² ΠΊΠ°ΠΊΠΈΡ… цСлях, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π½Π°ΡƒΡ‡Π½Ρ‹Π΅, нСльзя Π±Π΅Π· письмСнного Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π²Π»Π°Π΄Π΅Π»ΡŒΡ†Π° авторских ΠΏΡ€Π°Π² Π΄ΡƒΠ±Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² сСти Π˜Π½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ ΠΈ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π² ΠΊΠ°ΠΊΠΎΠΉ Π±Ρ‹ Ρ‚ΠΎ Π½ΠΈ Π±Ρ‹Π»ΠΎ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈ ΠΊΠ°ΠΊΠΈΠΌΠΈ Π±Ρ‹ Ρ‚ΠΎ Π½ΠΈ Π±Ρ‹Π»ΠΎ срСдствами, Π±ΡƒΠ΄ΡŒ Ρ‚ΠΎ элСктронныС ΠΈΠ»ΠΈ мСханичСскиС, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ запись Π½Π° ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΈΠ»ΠΈ элСктронный Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ, Π²Ρ‹Π²ΠΎΠ΄ Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ, Ρ„ΠΎΡ‚ΠΎΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Рассмотрим прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° вдоль оси (ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ случай) ΠΈ ΠΏΡƒΡΡ‚ΡŒ ΠΏΡ€ΠΈ этом ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° измСняСтся.

Когда ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСняСтся, появляСтся ускорСниС. УскорСниС, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ.

Если измСняСтся ΠΈ ускорСниС, ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ слоТноС, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅;

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ β€” Ссли измСняСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, Π° ускорСниС постоянноС.

Π’Π΅Ρ€ΠΌΠΈΠ½ Β«Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅Β» ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ ΠΏΠΎΡ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ Π·Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ измСняСтся Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ.

ΠŸΡ€ΠΈ этом, Ссли ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ увСличиваСтся – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ равноускорСнным, Π° Ссли ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ – Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: ВмСсто слов «ускорСниС постоянноС» ΠΌΠΎΠΆΠ½ΠΎ произнСсти «ускорСниС Π½Π΅ мСняСтся», ΠΈΠ»ΠΈ «ускорСниС ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅Β».

Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡŽ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с основными Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°ΠΌΠΈ для описания двиТСния.

Π‘ΡƒΠ΄Π΅ΠΌ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ направлСния для Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² скорости ΠΈ ускорСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси. Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ нСсколько Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ².

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡƒΡΡ‚ΡŒ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ прямой ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° увСличиваСтся. ΠžΠ±Ρ€Π°Ρ‚ΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ равноускорСнноС, Π·Π½Π°Ρ‡ΠΈΡ‚, Π·Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ.

Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ рисунок 1. Из рисунка Π²ΠΈΠ΄Π½ΠΎ: ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠ΅Ρ€Π²ΠΎΠΉ сСкундой, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду ΠΏΡƒΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ увСличиваСтся Π½Π° нСбольшой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, Π° Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду – Π½Π° Π΄Π²Π° Ρ‚Π°ΠΊΠΈΡ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π‘Ρ‡ΠΈΡ‚Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΈ ускорСния сонаправлСны с осью, вдоль ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ (рис. 2).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ увСличиваСтся, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния сонаправлСн с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ скорости.

Π’ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ Π² ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ скорости Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² скалярном Π²ΠΈΠ΄Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит вдоль ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈ направлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² извСстны.

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ выглядит Ρ‚Π°ΠΊ:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния выглядит Ρ‚Π°ΠΊ:

\[ S = v_ <0>\cdot t + a \cdot \frac <2>\]

\[ x – x_ <0>= v_ <0>\cdot t + a \cdot \frac <2>\]

ΠšΡ€ΠΎΠΌΠ΅ уравнСния двиТСния Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π΅ΡΡ‚ΡŒ связь ΠΌΠ΅ΠΆΠ΄Ρƒ скоростями. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, Ρ€Π΅ΡˆΠ°Ρ Π·Π°Π΄Π°Ρ‡ΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ увСличиваСтся, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ систСму, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· Π΄Π²ΡƒΡ… Ρ‚Π°ΠΊΠΈΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

\[ \large \boxed < \beginv = v_ <0>+ a \cdot t \\ S = v_ <0>\cdot t + a \cdot \frac <2>\end > \]

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ, Π½Π΅ обладая ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния, зная Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° ΠΈ Π΅Π³ΠΎ ускорСниС. Об этом ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ написано Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΡƒΡ‚ΠΈ Π±Π΅Π· Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡƒΡΡ‚ΡŒ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Ρ‚Π΅Π»ΠΎ двиТСтся ΠΏΠΎ прямой ΠΈ Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ. Рассмотрим ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, Π·Π½Π°Ρ‡ΠΈΡ‚, Π·Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ. ΠŸΡ€ΠΈ Ρ‡Π΅ΠΌ, Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

На рисункС 3 прСдставлСно ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ пСрСмСщСния. Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠ΅Ρ€Π²ΠΎΠΉ сСкундой, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° нСбольшой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, Π° Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду – Π½Π° Π΄Π²Π° Ρ‚Π°ΠΊΠΈΡ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ скорости.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡƒΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости сонаправлСн с осью, вдоль ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ, Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния – Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΡ€ΠΎΡ‚ΠΈΠ² этой оси.

Π’ Π½Π°Ρ‡Π°Π»Π΅ ΠΈ Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΏΡƒΡ‚ΠΈ скорости Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ Π² скалярном Π²ΠΈΠ΄Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит вдоль ΠΎΠ΄Π½ΠΎΠΉ прямой. Π‘ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ось.

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ скоростями выглядит Ρ‚Π°ΠΊ:

А ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄:

\[ S = v_ <0>\cdot t β€” a \cdot \frac <2>\]

Π—Π°ΠΌΠ΅Π½ΠΈΠ² ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ \( S = x β€” x_<0>\), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

\[ x – x_ <0>= v_ <0>\cdot t β€” a \cdot \frac <2>\]

Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ, для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½ΡƒΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ систСму ΠΈΠ· Π΄Π²ΡƒΡ… Ρ‚Π°ΠΊΠΈΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

\[ \large \boxed < \beginv = v_ <0>β€” a \cdot t \\ S = v_ <0>\cdot t β€” a \cdot \frac <2>\end > \]

Π Π°ΡΡˆΠΈΡ„Ρ€ΡƒΠ΅ΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, словосочСтаниС «прямолинСйноС Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β» β€” это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ прямой, ускорСниС Π΅ΡΡ‚ΡŒ, ΠΎΠ½ΠΎ Π½Π΅ мСняСтся. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ скорости.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π·Π°ΠΌΠ΅Π΄Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Ρ‚Π΅Π»Π° ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ врСмя. ΠŸΠΎΡ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ сущСствуСт запись Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡƒΡ‚ΠΈ Π±Π΅Π· Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для случая, ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² оси, Π° ускорСниС – ΠΏΠΎ оси

Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ рассмотрим случай, ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ ускорСниС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны, ускорСниС – ΠΏΠΎ оси, Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – ΠΏΡ€ΠΎΡ‚ΠΈΠ² оси (рис. 5).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

А Ссли Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ‚ΠΎ Π½Π°Ρ‡Π½Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ сторону ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ скорости Π½Π°Ρ‡Π½Π΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ равноускорСнным ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ сонаправлСнным с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ускорСния.

Когда ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ² оси, Π΅Π΅ проСкция Π½Π° ось ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠ½Π° Π²ΠΎΠΉΠ΄Π΅Ρ‚ со Π·Π½Π°ΠΊΠΎΠΌ минус. УскорСниС ΠΆΠ΅, Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ², совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси, поэтому, Π²ΠΎΠΉΠ΄Π΅Ρ‚ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ со Π·Π½Π°ΠΊΠΎΠΌ Β«+Β».

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ связь ΠΌΠ΅ΠΆΠ΄Ρƒ скоростями:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния для рассмотрСнного случая ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄:

\[ x – x_ <0>= β€” v_ <0>\cdot t + a \cdot \frac <2>\]

Для Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ направлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΈΡ‚ΠΎΠ³Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚Π°ΠΊΡƒΡŽ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

\[ \large \boxed < \beginv = β€” v_ <0>+ a \cdot t \\ x – x_ <0>= β€” v_ <0>\cdot t + a \cdot \frac <2>\end > \]

РСшая Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΈΠ½ΠΎΠ³Π΄Π° Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΡƒΡŽ ΠΈ ΡΡ€Π΅Π΄Π½ΡŽΡŽ скорости.

Π’Π΅Ρ€ΠΌΠΈΠ½Ρ‹ «мгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΒ» ΠΈ «срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΒ» ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ для случаСв, ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСняСтся – Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, для Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния.

МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ

МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅. Когда ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° мСняСтся, Ρ‚ΠΎ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ мгновСния (ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ) скорости Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ.

ΠœΠ³Π½ΠΎΠ²Π΅Π½Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ v Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚, вмСсто символа t подставляя Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‰Π΅Π΅ нас врСмя:

Π—Π½Π°ΠΊ ускорСния зависит Π΅Π³ΠΎ направлСния.

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° – ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΡƒΠΆΠ½ΠΎ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‚ ΠΆΠ΅ ΠΏΡƒΡ‚ΡŒ Π·Π° Ρ‚ΠΎ ΠΆΠ΅ врСмя.

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ, с ΠΊΠ°ΠΊΠΎΠΉ постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Ρ‚Π΅Π»ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠΉΡ‚ΠΈ вСсь ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ Π·Π° Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ врСмя.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΡ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для расчСта срСднСй скорости:

\( S_<\text<вСсь>>(\text<ΠΌ>) \) ​– ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ;

\( t_<\text<ΠΏΠΎΠ»Π½ΠΎΠ΅>> \left( c \right)\) – врСмя, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΡˆΠ»ΠΎ вСсь ΠΏΡƒΡ‚ΡŒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это частный случай Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния.

НСравномСрноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π΅Π»ΠΎ (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ°) Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ пСрСмСщСния. НапримСр, городской автобус двиТСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ состоит Π² основном ΠΈΠ· Ρ€Π°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

УскорСниС Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ остаётся постоянным ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ (a = const).

Π Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ равноускорСнным ΠΈΠ»ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ разгоняСтся с Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ускорСниСм. Π’ случаС равноускорСнного двиТСния ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ возрастаСт, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости двиТСния.

Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ замСдляСтся. ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΈ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ любоС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся ускорСнным, поэтому Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ отличаСтся ΠΎΡ‚ ускорСнного лишь Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния Π½Π° Π²Ρ‹Π±Ρ€Π°Π½Π½ΡƒΡŽ ось систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния опрСдСляСтся ΠΏΡƒΡ‚Ρ‘ΠΌ дСлСния пСрСмСщСния Ρ‚Π΅Π»Π° Π½Π° врСмя, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ это ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΠΎ. Π•Π΄ΠΈΠ½ΠΈΡ†Π° измСрСния срСднСй скорости – ΠΌ/с.

МгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ – это ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ) Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ скорости Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° ось ОΠ₯:

это производная ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси).

УскорСниС – это Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая опрСдСляСт быстроту измСнСния скорости Ρ‚Π΅Π»Π°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ стрСмится ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости ΠΏΡ€ΠΈ бСсконСчном ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ξ”t:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если Ρ‚Π΅Π»ΠΎ двиТСтся прямолинСйно вдоль оси ОΠ₯ прямолинСйной Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚Π΅Π»Π°, Ρ‚ΠΎ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° эту ось опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π—Π½Π°ΠΊ Β«-Β» (минус) ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния относится ΠΊ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡƒ двиТСнию. Аналогично Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ уравнСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ускорСниС являСтся постоянным (a = const), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ускорСния – это прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси 0t (оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, рис. 1.15).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Рис. 1.15. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ускорСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ – это линСйная функция, Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся прямая линия (рис. 1.16).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Рис. 1.16. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 1.16) ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ этом ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ числСнно Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ 0abc (рис. 1.16).

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ полусуммы Π΄Π»ΠΈΠ½ Π΅Ρ‘ оснований Π½Π° высоту. Основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ 0abc числСнно Ρ€Π°Π²Π½Ρ‹:

Высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ проСкция пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ двиТСния проСкция ускорСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния ΠΏΠ΅Ρ€Π΅Π΄ ускорСниСм ставится Π·Π½Π°ΠΊ «–» (минус).

ΠžΠ±Ρ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ускорСниях ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.17. Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости пСрСмСщСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 1.18.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Рис. 1.17. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ускорСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Рис. 1.18. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t1 Ρ€Π°Π²Π½Π° тангСнсу ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΈ осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если врСмя двиТСния Ρ‚Π΅Π»Π° нСизвСстно, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ пСрСмСщСния, Ρ€Π΅ΡˆΠ°Ρ систСму ΠΈΠ· Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° сокращённого умноТСния разности ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΌ вывСсти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ опрСдСляСтся суммой Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x(t) Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния), Π½ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ совпадаСт с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈ Π°x

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

тСория ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ 🧲 ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ГСомСтричСский смысл пСрСмСщСния Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости, осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ прямыми, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ пСрпСндикулярно ΠΊ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π° двиТСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ опрСдСляСтся ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, основаниями ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слуТат ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости Ρ‚Π΅Π»Π°, Π° Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ сторонами β€” ось Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ скорости соотвСтствСнно. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ (ΠΏΡƒΡ‚ΡŒ) ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=3 с.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости, осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ пСрпСндикулярами, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊ Π½Π΅ΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² нашСм случаС:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ИзвлСкаСм ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ 0, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π΅Π»ΠΎ сначала ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π»ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ, Π° Π·Π°Ρ‚Π΅ΠΌ Π²Π΅Ρ€Π½ΡƒΠ»ΠΎΡΡŒ Π² исходноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ записи Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ пСрСмСщСния

ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ‚Π΅Π»Π° часто нСизвСстна. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ вмСсто Π½Π΅Π΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π’ ΠΈΡ‚ΠΎΠ³Π΅ получаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π·Π½Π°ΠΊ «–». Если Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ равноускорСнноС, оставляСтся Π·Π½Π°ΠΊ Β«+Β».

Если Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° 0 (v0 = 0), эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если нСизвСстно врСмя двиТСния, Π½ΠΎ извСстно ускорСниС, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΈ конСчная скорости, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2. Найти Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ автомобиля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°Ρ‡Π°Π» Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈ скорости 72 ΠΊΠΌ/Ρ‡. Π’ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ остановки заняло 3 сСкунды. ΠœΠΎΠ΄ΡƒΠ»ΡŒ ускорСния ΠΏΡ€ΠΈ этом составил 2 ΠΌ/с.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π΅ ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π°

ВсС пСрСчислСнныС Π²Ρ‹ΡˆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚, Ссли Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ ( Π° ↑↑ v ). Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ( Π° ↑↓ v ), Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ слСдуСт ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ Π² Π΄Π²Π° этапа:

Π­Ρ‚Π°ΠΏ тормоТСния

ВрСмя тормоТСния Ρ€Π°Π²Π½ΠΎ разности ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ этапа:

Когда Ρ‚Π΅Π»ΠΎ Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚, Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя t1ΠΎΠ½ΠΎ останавливаСтся. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t1 Ρ€Π°Π²Π½Π° 0:

ΠŸΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ s1 Ρ€Π°Π²Π½ΠΎ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π­Ρ‚Π°ΠΏ Ρ€Π°Π·Π³ΠΎΠ½Π°

ВрСмя Ρ€Π°Π·Π³ΠΎΠ½Π° Ρ€Π°Π²Π½ΠΎ разности ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа:

Π’Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Ρ€Π°Π·Π³ΠΎΠ½ΡΡ‚ΡŒΡΡ сразу послС прСодолСния Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ значСния скорости, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t2 Ρ€Π°Π²Π½Π°:

ΠŸΡ€ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ s2 Ρ€Π°Π²Π½ΠΎ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ всСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния Ρ€Π°Π²Π΅Π½:

ΠŸΠΎΠ»Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ (ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Π΅Π³ΠΎ l), ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ Π·Π° ΠΎΠ±Π° этапа, Ρ€Π°Π²Π΅Π½:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π° этапа, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊ сначала разогнался, ΠΏΠΎΡ‚ΠΎΠΌ Π·Π°Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΠ». Π’ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ этапу. Π§Π΅Ρ€Π΅Π· Π½Π΅Π³ΠΎ ΠΌΡ‹ Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ ускорСниС:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Из ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа (Ρ€Π°Π·Π³ΠΎΠ½Π°) ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, которая послуТит для Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ этапа Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π² n-Π½ΡƒΡŽ сСкунду прямолинСйного равноускорСнного двиТСния

Иногда Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΊΠΎΠ³Π΄Π° Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π·Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· состояния покоя. Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π—Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ пСрСмСстится Π½Π° расстояниС, Ρ€Π°Π²Π½ΠΎΠ΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π—Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ пСрСмСстится Π½Π° расстояниС, Ρ€Π°Π²Π½ΠΎΠ΅ разности пСрСмСщСния Π·Π° 2 сСкунды ΠΈ пСрСмСщСния Π·Π° 1 сСкунду:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π—Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ пСрСмСстится Π½Π° расстояниС, Ρ€Π°Π²Π½ΠΎΠ΅ разности пСрСмСщСния Π·Π° 3 сСкунды ΠΈ пСрСмСщСния Π·Π° 2 сСкунды:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ Ρ†Π΅Π»ΠΎΠΌΡƒ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΌΡƒ числу:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Из Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ Π·Π° 1, 2 ΠΈ 3 сСкунду ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ: ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π·Π° n-Π½ΡƒΡŽ сСкунду Ρ€Π°Π²Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния модуля ускорСния Π½Π° (2n–1), Π³Π΄Π΅ n β€” сСкунда, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ ΠΈΡ‰Π΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈ это записываСтся Ρ‚Π°ΠΊ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° пСрСмСщСния Π·Π° n-Π½ΡƒΡŽ сСкунду

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–4. ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ разгоняСтся с ускорСниСм 3 ΠΌ/с 2. Найти Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π·Π° 6 сСкунду.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ способом ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π½Π΅ Π·Π° 1 сСкунду, Π° Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ: Π·Π° 2, 3, 4 сСкунды ΠΈ Ρ‚. Π΄. Π’ этом случаС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π³Π΄Π΅ t β€” врСмя ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°, Π° n β€” порядковый Π½ΠΎΠΌΠ΅Ρ€ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°.

ВрСмя ΠΎΡ‚ 4 Π΄ΠΎ 6 сСкунд Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ β€” это 3 сСкунды: 4-ая, 5-ая ΠΈ 6-ая. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ составляСт 3 сСкунды. Π”ΠΎ наступлСния этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° успСло ΠΏΡ€ΠΎΠΉΡ‚ΠΈ Π΅Ρ‰Π΅ 3 сСкунды. Π—Π½Π°Ρ‡ΠΈΡ‚, врСмя ΠΎΡ‚ 4 Π΄ΠΎ 6 сСкунд β€” это Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎ счСту Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ пСрСмСщСния Π½Π° ось ОΠ₯. Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния β€” это Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости пСрСмСщСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ пСрСмСщСния ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ являСтся Π²Π΅Ρ‚ΠΊΠ° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону оси ОΠ₯ ( v ↑↑OX), Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΈ ускорСния сонаправлСны ( v ↑↑ a ), ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону оси ОΠ₯ (v↑↑OX), Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΈ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ ( v ↓↑ a ), ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ направлСния Π·Π½Π°ΠΊΠ° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΅Π³ΠΎ пСрСмСщСния:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–6. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ускорСниС Ρ‚Π΅Π»Π° ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΅Π³ΠΎ пСрСмСщСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=0 с соотвСтствуСт Π½ΡƒΠ»ΡŽ. Π—Π½Π°Ρ‡ΠΈΡ‚, ускорСниС ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ пСрСмСщСния Π±Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ускорСния. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅ΠΏΠ΅Ρ€ΡŒ возьмСм Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. ΠŸΡƒΡΡ‚ΡŒ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2 с. Π­Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ соотвСтствуСт ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ 30 ΠΌ. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² случаС равноускорСнного двиТСния совпадаСт с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ s = l.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ случаС с Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ прСдставляСт собой линию, ΠΏΠΎΠ΄Π΅Π»Π΅Π½Π½ΡƒΡŽ Π½Π° 2 части:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° (Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΉ) ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡƒΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ β€” ΠΎΠ½ Π»ΠΈΠ±ΠΎ Π½Π΅ мСняСтся (Π² состоянии покоя), Π»ΠΈΠ±ΠΎ растСт нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, с ΠΊΠ°ΠΊΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΈ с ΠΊΠ°ΠΊΠΈΠΌ ускорСниСм двиТСтся Ρ‚Π΅Π»ΠΎ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–7. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡƒΡ‚ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌΡƒ равноускорСнному прямолинСйному двиТСнию, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ускорСниС Ρ‚Π΅Π»Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡƒΡ‚ΠΈ являСтся Π²Π΅Ρ‚Π²ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ наш Π³Ρ€Π°Ρ„ΠΈΠΊ β€” красный. Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΆΠ΅ совпадаСт с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π΅Π³ΠΎ ускорСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для вычислСния ускорСния ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Для расчСта возьмСм Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. ΠŸΡƒΡΡ‚ΡŒ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2 c. Π•ΠΉ соотвСтствуСт ΠΏΡƒΡ‚ΡŒ, Ρ€Π°Π²Π½Ρ‹ΠΉ 5 ΠΌ. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π²Π½ΠΎ 5 ΠΌ. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Π’Π΅Π»ΠΎ массой 200 Π³ двиТСтся вдоль оси ΠžΡ…, ΠΏΡ€ΠΈ этом Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° измСняСтся Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² соотвСтствии с Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Ρ…(t) = 10 + 5t – «>– 3t 2 (всС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² БИ).

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ физичСскими Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ ΠΈΡ… зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² условиях Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ.

К ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ столбца ΠΏΠΎΠ΄Π±Π΅Ρ€ΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ столбца ΠΈ Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Π΅ Ρ†ΠΈΡ„Ρ€Ρ‹ ΠΏΠΎΠ΄ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

РСшСниС

Из условия Π·Π°Π΄Π°Ρ‡ΠΈ извСстна Ρ‚ΠΎΠ»ΡŒΠΊΠΎ масса Ρ‚Π΅Π»Π°: m = 200 Π³ = 0,2 ΠΊΠ³.

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π΅Π»ΠΎ двиТСтся вдоль оси Ox, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ прямолинСйном равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ :

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ кинСматичСскиС характСристики двиТСния Ρ‚Π΅Π»Π°:

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π½Π΅ учитываСтся, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ это расстояниС Π±Ρ‹Π»ΠΎ ΡƒΠΆΠ΅ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½ΠΎ Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° отсчСта Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ:

ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энСргия Ρ‚Π΅Π»Π° опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ прямолинСйном равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ€Π°Π²Π½Π°:

v = v 0 + a t = 5 βˆ’ 6 t

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ кинСтичСская энСргия Ρ‚Π΅Π»Π° Ρ€Π°Π²Π½Π°:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΡ„Ρ€ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ Π±ΡƒΠ΄Π΅Ρ‚: 34.

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

На рисункС ΠΏΠΎΠΊΠ°Π·Π°Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x Ρ‚Π΅Π»Π°, двиТущСгося вдоль оси ΠžΡ…, ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t (ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°). Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ А ΠΈ Π‘ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой зависимости физичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ этого Ρ‚Π΅Π»Π°, ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ ΠΈ физичСскими Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, зависимости ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ эти Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ.

К ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎΠ΄Π±Π΅Ρ€ΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ утвСрТдСния ΠΈ Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² ΠΏΠΎΠ»Π΅ Ρ†ΠΈΡ„Ρ€Ρ‹ Π² порядкС АБ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

РСшСниС

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² случаС, ΠΊΠΎΠ³Π΄Π° это Ρ‚Π΅Π»ΠΎ двиТСтся равноускорСнно. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° описываСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠžΡ…, Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ являСтся прямая. РавноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ характСризуСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ:

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΈΡ… зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚ΠΎΠΆΠ΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ прямой, которая Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости ускорСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ прямой, пСрпСндикулярной оси ускорСния ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ускорСниС Π² этом случаС β€” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° постоянная.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· этого, ΠΎΡ‚Π²Π΅Ρ‚ Β«3Β» ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ. ΠžΡΡ‚Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚ Β«1Β». ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энСргия Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния массы Ρ‚Π΅Π»Π° Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΅Π³ΠΎ скорости. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΎΡ‚Π²Π΅Ρ‚ Β«1Β» Ρ‚ΠΎΠΆΠ΅ Π½Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚.

Π“Ρ€Π°Ρ„ΠΈΠΊ А β€” прямая линия, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠœΡ‹ установили, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ускорСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (ΠΈΠ»ΠΈ Π΅Π³ΠΎ модуля). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ пСрвая Ρ†ΠΈΡ„Ρ€Π° ΠΎΡ‚Π²Π΅Ρ‚Π° β€” Β«4Β».

Π“Ρ€Π°Ρ„ΠΈΠΊ Π‘ β€” прямая линия, Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠœΡ‹ установили, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (ΠΈΠ»ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ вторая Ρ†ΠΈΡ„Ρ€Π° ΠΎΡ‚Π²Π΅Ρ‚Π° β€” Β«2Β».

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

РСшСниС

Π’Π΅ΡΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° 3 участка:

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ t1 = 20 c Π΄ΠΎ t2 = 50 с. Π­Ρ‚ΠΎΠΌΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° участка:

ЗаписываСм Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ искомой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

s1 β€” ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ участкС, s2 β€” ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ участкС.

s1ΠΈ s2 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡƒΡ‚ΠΈ для Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈ равноускорСнного двиТСния соотвСтствСнно:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассчитаСм ΠΏΡƒΡ‚ΠΈ s1ΠΈ s2, Π° Π·Π°Ρ‚Π΅ΠΌ слоТим ΠΈΡ…:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *