Что такое разъем atapi
Atapi: внутренний разъем Atapi — что это?
Что собой представляет интерфейс IDE (ATA, PATA и ATAPI) и как он работает?
В данной статье мы разберем, понятие интерфейса ПК и подробно осветим работу IDE или ATA. Коснемся истории создания данного интерфейса, его работы и возможности. Нужно понимать, что сейчас ATA широко не применяется на домашних ПК и является устаревшим интерфейсом. Со временем были придуманы новые, более быстрые и надежные шины и типы разъемов для ПК, такие как SATA, eSATA, USB и Thunderbolt.Однако нельзя сказать, что IDE больше не используется. Этот интерфейс актуален для подключения старых устройств, таких как дисководы DVD и CD дисков и винчестеры (НЖМД).
Что такое интерфейс IDE и из чего он состоит?
Определение интерфейс ПК означает комплекс или систему средств сопряжения и связи компьютеров, таких как шины, сигналы, алгоритмы и электронные схемы. Соответственно функция данного устройства – обмен информацией между устройствами. Требования к этой совокупности определяется стандартом.
Суть ATA или IDE в параллельном подключении накопителей к ПК. То есть количество каналов, подключенных к системе, может быть не больше 2х. К примеру, у SATA последовательное подключение, но у каждого устройства отдельный кабель, через который идет передача данных в обоих направлениях.
У IDE использовался кабель с большой площадью, не более 46 см и 40контакный. Ограничение длинны кабеля было обусловлено попыткой избежать появления помех и искажений сигнала при передаче данных. Ширина шины данных была 16 бит. К каждому каналу интерфейса подключались до 2х устройств, которые назывались MASTER и SLAVE.
История и терминология интерфейса IDE
Интерфейс был изобретен в 1986 году фирмой Western Digital. В 1990е годы интерфейс IDE был ужестандартом на ПК IBM. В то время данный интерфейс ввел множество важных новшеств, таких как: улучшение характеристик накопителей, благодаря уменьшенному расстоянию до контроллера (так как он располагался в нем самом), упрощение управления и снижение цены на производство. Можно сказать IDE стал универсальным «проводником» для подключения: дискет, оптических дисководов, жестких дисков к ПК, и передачи информации.
Со временем интерфейс улучшался и сейчас можно выделить несколько видов или поколений:
ATAPI: интерфейс для хранения данных, допускал команду «извлечь», поэтому он подходил для работы с дискетами. Так же стала доступна команда SCSI.
UDMA и ATA4: компания разработала новый стандарт, который смог повысить сигнал до 33 МБ / с, а в дальнейшем увеличение производительности до 133 МБ / с, благодаря 80-контактным кабелям. Сам разъём при этом не претерпел изменений.
Ультра ATA: характеризовал более высокую производительность, но так и не вышел.
Сейчас ATA ушел на второй план благодаря шине SATA или Serial ATA и стал называться PATA (Parralel ATA).
Главный и подчиненный диски, как они работали?
Как было описано ранее, к каждому каналу ATA можно было подключить до 2х устройств. Однако когда два устройства подключались к одному шлейфу, одно из них обозначалось 0 (ведущее — мастер) устройство, а второе, как устройство 1 (ведомое). Это было необходимо для предотвращения ошибок в процессе работы. Ведущее устройство (master) шло первым в списке дисков операционной системы, вслед за ним ведомое (slave). Если на шлейфе было подключено только одно устройство, то оно обозначалось как Мастер или ведущее.
Интерфейс IDE
Что бы ни говорили сторонники SCSI, широкое распространение IDE-устройств на сегодняшний день — свершившийся факт. Как посчитали умные люди из компании Quantum, свыше 90% РС-совместимых персональных компьютеров оснащены жесткими дисками с интерфейсом IDE. Беда, однако, в том, что IDE или Integrated Device Electronic — понятие слишком общее и относится, вообще говоря, к любому устройству с интегрированным контроллером вплоть до электрического чайника с автоматическим отключением при закипании. В попытках как-то конкретизировать, какой именно интерфейс имеется в виду, было изобретено столько различных названий, что при выборе жесткого диска с интерфейсом IDE у неподготовленного человека может закружиться голова. Посудите сами: есть интерфейсы АТА с различными номерами, Fast ATA (тоже с номерами), Ultra ATA (тоже несколько), и, наконец, EIDE! Действительно ли все эти интерфейсы разные, какие из них совместимы и какой лучше? Попробуем разобраться.
«Оригинальный» интерфейс АТА предназначен только для подключения жестких дисков и не поддерживает такие возможности, как ATAPI — интерфейс для подключения IDE-устройств, отличных от жестких дисков, режим передачи block mode и LBA (logical block addressing).
И все было бы хорошо, но фирмы-производители в стремлении заполучить еще кусочек рынка начали придумывать красивые названия и обзывать ими интерфейсы своих жестких дисков. На самом деле интерфейсы Fast ATA, Fast ATA-2 и Enhanced IDE базируются на стандарте АТА-2 и являются не более, чем маркетинговыми терминами. Все различие между ними состоит в том, какую часть стандарта и как они поддерживают.
Наибольшую путаницу вызывают названия Fast ATA и Fast ATA-2, принадлежащие перу соответственно Seagate и Quantum. Создается вполне естественное впечатление, что Fast ATA является некоторым улучшением стандарта АТА, тогда как Fast ATA-2 базируется на стандарте АТА-2. Но все, увы, не так просто. На самом деле Fast ATA-2 есть просто другое название стандарта АТА-2, а Fast ATA отличается от него лишь тем, что не поддерживает самые быстрые режимы — PIO mode 4 и DMA mode 2. При этом обе компании нападают на компанию Western Digital и ее стандарт EIDE за то, что он вносит еще большую путаницу. У EIDE есть свои недостатки, но об этом чуть позже.
АТА-3 не был утвержден в качестве стандарта ANSI в основном потому, что не вводил новых режимов передачи данных, хотя технология SMART в настоящее время широко используется производителями жестких дисков.
Следующим шагом в развитии интерфейса IDE/ATA явился стандарт Ultra ATA (он же Ultra DMA, он же ATA-33, он же DMA-33, его же иногда называют АТА-3(!)). Ultra ATA является стандартом де-факто использования самого быстрого режима DMA — mode 3, обеспечивающего скорость передачи данных 33,3 МВ/сек. Для обеспечения надежной передачи данных по все тому же кабелю используются специальные схемы контроля и коррекции ошибок, при этом сохраняется обратная совместимость с предыдущими стандартами — АТА и АТА-2. То есть если вы, купив жесткий диск с интерфейсом Ultra АТА, вдруг обнаружили, что ваша системная плата его не поддерживает, не огорчайтесь — диск все равно будет работать, хотя и медленнее 🙂
И, наконец, последнее достижение в этой области — интерфейс Ultra ATA/66, разработанный компанией Quantum, позволяющий осуществлять передачу данных со скоростью 66МВ/сек.
В то время, когда разрабатывался интерфейс IDE/ATA, единственным устройством, которое нуждалось в этом интерфейсе, был жесткий диск, поскольку стриммеры и зарождающиеся драйвы CD-ROM имели собственный интерфейс (многие помнят времена, когда CD-ROM подключался через интерфейс на звуковой карте). Однако вскоре стало ясно, что использование для подключения всех устройств быстрого и относительно простого интерфейса IDE/ATA сулит значительные выгоды, в том числе и за счет своей универсальности. Однако система команд интерфейса IDE/ATA была рассчитана только на жесткие диски, поэтому просто подключить, например, CD-ROM к IDE-каналу нельзя — работать не будет (проверялось мною лично при попытке подключить CD-ROM вместо загрузочного IDE-диска на 486 сервере Hewlett-Packard). Поначалу, по молодости лет пребывал в недоумении: как так — шлейф подходит, а не работает?). Пришлось разработать новый протокол — ATA Packet Interface или ATAPI. Этот протокол позволяет другим устройствам подключаться с помощью стандартного шлейфа IDE и «вести себя» как IDE/ATA жесткий диск. На самом деле протокол ATAPI намного сложнее, чем ATA, поскольку передача данных идет с использованием стандартных режимов PIO и DMA, а реализация поддержки этих режимов существенно зависит от типа подключенного устройства. Название packet (пакетный) этот протокол получил по той причине, что команды устройству действительно приходится передавать группами или пакетами. Тем не менее, с точки зрения пользователя, что, согласитесь, важнее всего, нет разницы между IDE/ATA жестким диском, ATAPI CD-ROMом или ZIP-драйвом. Современные BIOSы даже поддерживают загрузку с ATAPI-устройств.
Теперь посмотрим, что означает фраза «жесткий диск с интерфейсом EIDE». Поскольку поддерживать ATAPI ему абсолютно незачем, а два канала IDE он поддержать не в состоянии, то все это сводится к гораздо более скромному: «жесткий диск с интерфейсом АТА-2». В принципе идея была хорошая — создать стандарт, охватывающий BIOS, чипсет и жесткий диск. Но поскольку большая часть EIDE как стандарта относится именно к BIOS и чипсету, то получилась еще и путаница между Enhanced IDE и возникшим приблизительно в это же время Enhanced BIOS (BIOS, поддерживающий IDE/ATA диски емкостью больше 504MB). Сложилось вполне естественное мнение, что для использования дисков объемом больше 504МВ нужен интерфейс EIDE (тогда как на самом деле нужен был только Enhanced BIOS), тем более, что производители карт с Enhanced BIOS рекламировали их как «enhanced IDE cards». Сейчас, к счастью, эти проблемы позади (как и барьер 540 МВ).
Итак, основные (как официальные, так и неофициальные) стандарты интерфейса IDE приведены в следующей таблице.
Интерфейс | Стандарт | PIO modes | DMA modes | Отличия от IDE/ATA |
---|---|---|---|---|
IDE/ATA | ANSI | 0, 1, 2 | Single word 0, 1, 2; multiword 0 | |
ATA-2 | ANSI | 0, 1, 2, 3, 4 | Single word 0, 1, 2; multiword 0, 1, 2 | Режим block transfer, поддержка LBA, Усовершенствованная команда identify drive |
Fast ATA | Маркетинговый термин | 0, 1, 2, 3 | Single word 0, 1, 2; multiword 0, 1 | Аналогично АТА-2 |
Fast ATA-2 | Маркетинговый термин | 0, 1, 2, 3, 4 | Single word 0, 1, 2; multiword 0, 1, 2 | Аналогично АТА-2 |
ATA-3 | Неофициальный | 0, 1, 2, 3, 4 | Single word 0, 1, 2; multiword 0, 1, 2 | Аналогично АТА-2, добавлена поддержка надежности передачи на высоких скоростях и SMART |
Ultra ATA | Неофициальный | 0, 1, 2, 3, 4 | Single word 0, 1, 2; multiword 0, 1, 2, 3 (DMA-33/66) | Аналогично АТА-3 |
ATAPI | ANSI | 0, 1, 2, 3, 4 | Single word 0, 1, 2; multiword 0, 1, 2 | Аналогично АТА-2, добавлена поддержка устройств, отличных от жестких дисков |
EIDE | Маркетинговый термин | 0, 1, 2, 3, 4 | Single word 0, 1, 2; multiword 0, 1, 2 | ATA-2 + ATAPI и поддержка двух хост-адаптеров |
Теперь перейдем к теме, не менее интересной. Существуют два параметра, характеризующих скорость передачи данных при использовании IDE/ATA-жесткого диска. Внутренняя скорость передачи (internal transfer rate) характеризует скорость передачи непосредственно между магнитным носителем и внутренним буфером жесткого диска и определяется плотностью записи, скоростью вращения и т.д. Эти параметры зависят от конструкции диска, а не от типа интерфейса. С другой стороны, внешняя скорость передачи данных, то есть скорость передачи по каналу IDE, полностью зависит от используемого режима передачи данных. На заре использования дисков IDE/ATA скорость работы дисковой подсистемы определялась внутренней скоростью передачи данных, которая была заведомо меньше внешней. В настоящее время в связи с увеличением плотности записи (что позволяет снимать больше информации за один оборот диска) и частоты вращения на первый план выходит именно внешняя скорость передачи. Что же все-таки означают номера режимов и чем PIO отличается от DMA?
Изначально общеупотребительным способом передачи данных через интерфейс IDE/ATA был протокол, называемый Programmed I/O или PIO. Существует пять режимов PIO, различающихся максимальными скоростями пакетной передачи данных (burst transfer rates). Общеупотребительное английское название — PIO modes.
PIO mode | Максимальная скорость передачи (МВ/сек) | Поддерживается стандартами |
---|---|---|
0 | 3.3 | Всеми |
1 | 5.2 | Всеми |
2 | 8.3 | Всеми |
3 | 11.1 | ATA-2, Fast ATA, Fast ATA-2, ATA-3, ATAPI, Ultra ATA, EIDE |
4 | 16.6 | ATA-2, Fast ATA-2, ATA-3, ATAPI?, Ultra ATA, EIDE |
Естественно, речь идет о внешней скорости передачи данных и определяет скорость интерфейса, а не диска. Необходимо также учитывать (хотя сейчас это уже вряд ли актуально), что PIO mode 3 и 4 требуют использования шины VLB или PCI, так как шина ISA не может обеспечить скорость передачи данных больше 10 МВ/сек. До появления режима DMA-33 максимальная скорость передачи данных у режимов PIO и DMA была одинаковой. Главным недостатком режимов PIO является то, что передачей данных управляет процессор, что существенно увеличивает его загрузку. Зато эти режимы не требуют специальных драйверов и идеально подходят для однозадачных операционных систем. Похоже, однако, что это вымирающий вид…
Direct Memory Access (DMA) — прямой доступ к памяти — собирательное название протоколов, позволяющих периферийному устройству передавать информацию непосредственно в системную память без участия центрального процессора. Современные жесткие диски используют эту возможность в сочетании с возможностью перехватывать управление шиной и самостоятельно управлять передачей информации (bus mastering подробно обсуждался в серии статей по шинам). Существует несколько режимов DMA (DMA modes), которые приведены в таблице. Стоит отметить, что так называемые single word режимы в настоящее время не используются и приведены только для сравнения.
DMA mode | Максимальная скорость передачи (МВ/сек) | Поддерживается стандартами |
---|---|---|
Single word 0 | 2.1 | Всеми |
Single word 1 | 4.2 | Всеми |
Single word 2 | 8.3 | Всеми |
Multiword 0 | 4.2 | Всеми |
Multiword 1 | 13.3 | ATA-2, Fast ATA, Fast ATA-2, ATA-3, Ultra ATA, EIDE |
Multiword 2 | 16.6 | ATA-2, Fast ATA-2, ATA-3, Ultra ATA, EIDE |
Multiword 3 (DMA-33) | 33.3 (66) | Ultra ATA(АТА/66) |
Еще одной забавной вещью, связанной с интерфейсом IDE/ATA, является 32-разрядный доступ к диску. Как уже отмечалось выше, интерфейс IDE/ATA был и остается 16-битным. Резонный вопрос: А почему тогда при отключении драйверов 32-разрядного доступа к диску в Windows скорость работы оного диска падает? Не менее резонный ответ: Во-первых, как работает Windows — отдельный разговор. А во-вторых, шина PCI, на которой в настоящий момент располагаются IDE host-контроллеры, 32-разрядная. Поэтому 16-битная передача по этой шине есть зряшнее расходование пропускной способности. В нормальных условиях host-контроллер формирует из двух 16-битных пакетов один 32-битный и пересылает его дальше по шине PCI (повторяю, я не берусь объяснять, как с диском работает Windows).
Выше встречался термин — режим block transfer. На самом деле это всего-навсего режим, позволяющий передавать несколько команд чтения/записи за одно прерывание. Современные IDE/ATA диски позволяют передавать 16->32 сектора за «одно прерывание». Поскольку прерывания генерируются реже, снижается загрузка процессора и уменьшается доля команд в общем объеме передаваемых данных.
К каждому каналу IDE может быть подключено одно или два устройства. В современных компьютерах, как правило, устанавливается два канала IDE (что соответствует спецификации EIDE), хотя теоретически возможно установить до 4-х (!), что позволяет подключать 8 IDE устройств. Все каналы IDE являются равноправными. Использование системных ресурсов каналами приведено в таблице.
Канал | IRQ | I/O Addresses | Поддержка и возможные проблемы при использовании |
---|---|---|---|
Primary | 14 | 1F0-1F7h и 3F6-3F7h | Используется во всех компьютерах с интерфейсом IDE/ATA |
Secondary | 15 (10) | 170-177h и 376-377h | Широко распространен, присутствует практически во всех современных компьютерах. |
Tertiary | 11(12) | 1E8-1Efh и 3EE-3Efh | Используется редко. Возможны проблемы с софтом |
Quaternary | 10(11) | 168-16Fh и 36E-36Fh | Крайне редко используется. Весьма вероятны проблемы с софтом |
Как было сказано выше, каждый канал IDE/AТА интерфейса поддерживает подключение двух устройств — master и slave. Конфигурация обычно задается перемычкой на задней стенке устройства. Кроме этих двух позиций там обычно присутствует и третья — cable select. Что же будет, если установить перемычку в это положение? Оказывается, для работы устройств в положении перемычки cable select требуется специальный Y-образный шлейф, центральный разъем которого подключается к системной плате. Крайние разъемы такого кабеля неравноправны — устройство, подключенное к одному разъему, автоматически становится master, к другому — slave (аналогично флопам А и В). При этом перемычки на обоих устройствах должны стоять в положении cable select. Основная проблема такой конфигурации в том, что она экзотична, хотя и является стандартной, и не всеми поддерживается, поэтому и Y-образный шлейф найти достаточно трудно (я, например, его не видел, да и вообще не совсем понятно, зачем это нужно).
Все вышесказанное, естественно, не является аксиомой, а лишь рекомендациями, основанными на здравом смысле и собственном опыте. Более того, тот же здравый смысл и опыт подсказывают, что если взять 4 IDE-устройства, то они на исправной плате будут работать всегда в любых сочетаниях и при минимуме усилий со стороны пользователя (см. выше, главное, чтобы они попарно были совместимы). И это одно из главных преимуществ IDE перед SCSI.
Интерфейс IDE, ATA, PATA и ATAPI, что это такое и как он работает?
В истории ПК многие интерфейсы и типы разъемов были использованы, потому что по мере развития отрасли были приняты более современные и быстрые интерфейсы. Сегодня мы расскажем, что IDE интерфейс есть и как это работает, то, что, хотя сегодня оно уже исчезло в домашних ПК, широко используется в течение многих лет и, фактически, все еще используется в некоторых промышленных областях.
Что такое интерфейс IDE и из чего он состоит?
Параллельный ATA (PATA), первоначально AT Attachment, также известный как ATA или IDE, представляет собой стандартный интерфейс, созданный Western Digital и Compaq в 1986 году для подключения жестких дисков и приводов CD / DVD к материнской плате ПК, хотя он также использовался. вариант подключить дисководы. Стандарт по-прежнему поддерживается комитетом X3 / INCITS и использует базовые стандарты ATA и ATAPI (AT Attachment Packet Interface).
Действительно, мы говорим о том удлиненном интерфейсе со множеством разъемов (39 или 40 в зависимости от устройства), которые были у жестких дисков и оптических приводов прошлых лет, и чей кабель был серым, плоским и удлиненным с индивидуально изолированными контактами. В отличие от стандарта Serial ATA, как следует из названия, разъемы работают параллельно, что позволяет подключить более одного устройства к одному кабелю.
Очевидно, что на материнских платах был этот 40-контактный разъем для подключения кабелей, которые шли к жестким дискам и оптическим приводам точно так же, как мы теперь подключаем кабели данных SATA. Кстати, особенность этих блоков заключалась в том, что они питались от блока питания с помощью 4-контактных разъемов MOLEX, а не от современных разъемов SATA.
История и терминология интерфейса IDE
Стандарт изначально задумывался как «AT Bus Attachment», официально назывался AT Attachment и сокращался как «ATA», потому что его главной особенностью было прямое соединение с 16-битной шиной ISA, представленной IBM. Когда в 2003 году был представлен интерфейс SATA, исходный ATA был переименован в Parallel ATA или для краткости PATA.
Физические интерфейсы ATA стали стандартным компонентом любого ПК, сначала в адаптерах главной шины, иногда в звуковой карте, но в конечном итоге в виде двух физических интерфейсов, встроенных в южный мост материнской платы. Названные «первичным» и «вторичным» или «ведущим» и «ведомым» интерфейсами ATA, они были назначены базовым адресам 0x1F0 и 0x170 в шинных системах ISA.
Главный и подчиненный диски, как они работали?
Текущий интерфейс SATA работает последовательно, поэтому невозможно подключить более одного устройства к одному кабелю для передачи данных, но параллельный интерфейс IDE позволял это. Однако, когда два устройства были подключены одним и тем же кабелем, одно должно быть обозначено как устройство 0 (ведущее), а другое как устройство 1 (ведомое). Это различие было необходимо, чтобы позволить обоим накопителям использовать один и тот же кабель для передачи данных без конфликтов, и было сделано с помощью знаменитой перемычки, встроенной в жесткие диски и оптические приводы того времени.
IDE ATA/ATAPI контроллеры
Часть 1
Сегодня, уважаемые читатели, я бы хотел поговорить с Вами о том, что такое ATA/ATAPI контроллеры, откуда появился интерфейс IDE и что это такое?
Для начала давайте с Вами усвоим необходимый минимум теории. Когда-то очень давно (еще в прошлом тысячелетии :)) фирма «Western Digital» разработала параллельный интерфейс подключения жестких дисков.
Новым и важным в этом было то, что контроллер (управлявший всеми операциями ввода-вывода) был интегрирован в сам привод, а не вынесен в виде отдельной платы расширения, как раньше. Это позволяло:
При прямом доступе к памяти потоком данных управляет уже сам накопитель, считывая данные в память и обратно без участия процессора. Роль последнего сводится лишь к отдаче команд на выполнение того или иного действия. При этом жесткий диск выдает сигнал запроса на операцию прямого доступа к памяти. Если операция доступа данный момент возможна, контроллер дает «добро» и диск начинает выдавать данные, а контроллер считывает их в оперативную память (без участия CPU).
Вот, к слову, как выглядит плата типичного контроллера, устанавливаемая производителями на свои изделия:
Примечание: Операция прямого доступа к памяти возможна только тогда, когда такой режим работы поддерживается одновременно «BIOS», контроллером и операционной системой. Иначе система будет работать используя предыдущий режим программного ввода-вывода (PIO).
Всю хронологию развития и достижений на пути становления ATA интерфейса можно представить в виде следующей сводной таблицы.
Обратите Ваше внимание на колодки обоих кабелей. У них есть «ключ» (пластмассовый «П» образный выступ), который исключает неправильное подключение к разъему. Мало того, у 80-ти жильного кабеля на интерфейсе отсутствует одно из центральных гнезд (на материнских платах тогда начали устанавливать специальный IDE-разъем без центрального контакта), который также выполняет функцию дополнительного «ключа».
Чтобы более полно осветить тему добавлю, что бывают еще, так называемые, «круглые» ATA шлейфы.
На пути своего развития стандарт ATA преодолел много препятствий, которые были заложены именно «в железе». Сначала это было ограничение, связанное с геометрией накопителя. Стандартный PC BIOS поддерживал жестко определенное предельно возможное число головок, секторов и цилиндров из которых состоят жесткие диски (максимально адресуемый размер пространства равнялся тогда 528 мегабайтам).
И тут, казалось бы, когда все ограничения на объем используемых дисков были так героически преодолены выяснилось, что параллельный интерфейс ATA (в том виде, в котором он существует на данный момент) не подходит для дальнейшего развития стандарта. Попытки увеличить его пропускную способность сводятся на нет возникающими вследствие возросших скоростей наводками в кабеле. Укорачивать сам кабель? Тоже не выход из положения.
Несмотря на то, что последовательный способ передачи медленнее, в данном случае это компенсируется возможностью работы на более высоких частотах. Отпадает необходимость в синхронизации каналов. Также сам интерфейсный кабель гораздо более помехоустойчив (все его 7 жил отдельно экранированы). Это, в свою очередь, дало возможность довести максимальную длину кабеля до одного метра.
За время своего существования новая спецификация успела сменить несколько ревизий (поколений), которые характеризуются все увеличивающейся пропускной способностью интерфейса.
О чем это мы? Ах, да! О преимуществах сата: надо также помнить, что каждое SATA устройство располагается на отдельном канале (контроллере), поэтому отпадает необходимость в их конфигурировании с помощью перемычек (джамперов).
Хотя, справедливости ради стоит отметить, что на ранних этапах внедрения нового стандарта на SATA жестких дисках можно было обнаружить джамперы, но они использовались редко и то лишь для принудительного перевода накопителя SATA-2 в режим SATA-1 (для совместимости с первым поколением контроллеров).
Вот так друзья, коротко мы разобрали основные понятия, связанные с интерфейсом ATA/ATAPI. Теперь смело нажимайте на ссылку «следующая», переходим к практической части материала.
О том, как правильно подключать кабели передачи данных, смотрите в видео ниже: