Что такое различные числа

Теория для 19 задания ЕГЭ

Цифры и числа – это не синонимы. Цифры – это символы, которыми записывают числа. Числа состоят из цифр, как слова состоят из букв. Пример: число \(1806\) состоит из цифр \(1\), \(8\), \(0\) и \(6\).

Однозначные числа – числа, состоящие из одной цифры, например \(7\). Двухзначные числа – состоящие из двух цифр, например \(29\). Трехзначные – из трёх, например \(341\). И так далее.

Простое число – число, имеющее только два делителя, – единицу и само себя (при этом число \(1\) простым не считается). Пример: \(13\) или \(277\).

Составное число – число, имеющее больше двух делителей. Например, \(12\) или \(735\).

Натуральное число – целое положительное число. Пример: \(5\), \(34\), \(6908\)…
\(0\) – не натуральное, \(-7\) – тоже.

Четное число – целое число делящиеся на \(2\). Нечетное число – целое число не делящиеся на \(2\). Пример: \(12\), \(1000\), \(106\) – четные; \(3\), \(99\), \(9000001\) – нечетные.

Если написано «попарно различные числа», это означает, что все числа в наборе разные. То есть, любые \(2\) числа не равны друг другу. (Для меня загадка, почему в задачах не пишут просто «все числа разные»).

Если цифры числа неизвестны, их можно записать буквами и провести сверху черточку. Пример: \(\overline\) – число, состоящие из цифр \(a\), \(b\), \(c\).

Любое двухзначное число можно представить как: \(\overline=10a+b\).
Трехзначное: \(\overline=100a+10b+c\).
Четырехзначное: \(\overline=1000a+100b+10c+d\).
\(n\) – значное: \(\underbrace<\overline>_ =10^a+10^ b+. +z\).

На \(2\): последняя цифра числа делится на \(2\) (в том числе \(0\))

На \(3\): сумма цифр числа делится на \(3\). Например, число \(4635\) делится на \(3\), т.к. \(4+6+3+5=18\) (а \(18\) делится на \(3\))

На \(4\): две последние цифры либо нули, либо образуют число, делящееся на \(4\)

На \(5\): последняя цифра \(0\) или \(5\)

На \(6\): одновременно соблюдаются признаки делимости на \(2\) и \(3\)

На \(7\): признаков делимости, увы, нет

На \(8\): три последние цифры нули или образуют число, делящееся на \(8\)

На \(9\): сумма цифр числа делится на \(9\)

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

На \(11\): разность между суммой цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на \(11\).
Например, число \(281765\) делится на \(11\), т.к. сумма цифр нечетных мест \(2+1+6=9\), сумма цифр на четных \(8+7+5=20\), т.е. разность между ними \(11\), а \(11\) делится на \(11\)

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Если разность равна нулю – число тоже будет делиться на \(11\). Пример: число \(5247\).

На \(25\): две последнее цифры \(00\), \(25\), \(50\) или \(75\)

На \(100\): две последнее цифры \(00\)

На \(125\): три последнее цифры \(000\) или образуют число, делящееся на \(125\).

Число \(b\) делится на число \(a\), если найдётся такое целое число \(q\), что \(b=a \cdot q\).
Обозначается \(b \,\vdots \, a\). Например, \(6\) делится на \(2\), т.к. \(6=2\cdot 3\).
Также в этом случае число \(b\) называют кратным числу \(a\).

Общим делителем чисел называют такое число, которое является делителем для каждого из них. Например, общим делителем чисел \(12\) и \(30\) будет число \(4\).

Два числа называются взаимно простыми, если их общим делителем является только \(1\). Например: \(12\) и \(5\); \(25\) и \(14\); \(3\) и \(11\).
Замечание: два любых простых числа автоматически являются взаимно простыми.

Если одно из двух чисел делится на некоторое число, то и их произведение делится на это число. Например, \(9m\, \vdots \, 3\), так как \(9\) делится на \(3\) (здесь и далее \(m\), \(k\) и \(n\) – любые целые числа).

Если два числа делятся на некоторое число, то и их сумма, и их разность делятся на это число. Например, \((3k+9m)\, \vdots \, 3\), так как \(3k\) – делится на \(3\) и \(9m\) – делится на \(3\). Еще пример: \((99-88+77)\, \vdots \, 11\).

Если одно из чисел делится на некоторое число, а второе нет, то их сумма и их разность не делятся на это число. Например, если \(k\) целое, то: \((3k+17)\) Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа\(3\); \((930-174)\) Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа\(10\).

Если произведение нескольких чисел делится на некоторое простое число, то хотя бы одно из них делится на это простое число. Например, если \(5k\,⋮\,3\), то \(k\,⋮\,3\).

Каждое натуральное число, большее единицы, либо является простым, либо может быть разложено на простые множители.

Примеры:
число \(20\) может быть разложено в произведение \(2\cdot 2\cdot 5\)
число \(105 =21 \cdot 5=7\cdot 3 \cdot5\)
число \(17\) – является простым числом и разложено быть не может.

Замечание: разложение \(17\) как \(17\cdot 1\) – не подходит, т.к. единица не считается простым числом.

Любые два разложения одного и того же числа могут отличаться только порядком множителей.
Например, разложение числа \(6\) мы можем записать либо как \(2\cdot 3\), либо как \(3\cdot 2\) и более никак.
Замечание: вот именно поэтому \(1\) не считается простым числом, ведь иначе любое число имело бы бесконечно много разложений: \(2\cdot 3\cdot 1\); \(2\cdot 1\cdot 3\cdot 1\); \(2\cdot 1\cdot 3\cdot 1\cdot 1\cdot 1\)….

Источник

Алгебра

План урока:

Натуральные числа

Ещё в далекие доисторические времена человек освоил такую математическую операцию, как счет. Можно было подсчитать количество соплеменников в племени или животных в стае, на которых велась охота. При этом человек ещё не осознавал понятие числа как некое отвлеченное понятие. Анализ языков народов, находящихся на самых низких стадиях развития, показывает, что они в словосочетаниях «три змеи», «три палки», «три камня» используют разные слова для числа 3. Однако со временем человек осознал, что количество предметов можно определять числом, которое не будет зависеть от природы подсчитываемых объектов. Числа, используемые для счета, сегодня называют натуральными числами. Долгое время человечество не знало никаких других чисел.

В качестве примера можно привести следующие натуральные числа: 1, 8, 10, 1000, 64141 и т.п. Если можно представить, что в каком-то множестве содержится N элементов, то N будет натуральным числом.

Вообще все натуральные числа являются частью так называемого натурального ряда чисел. Начинается этот ряд с единицы, а каждое следующее число больше предыдущего на 1.

Таким образом, можно дать ещё одно определение натуральных чисел – это числа, входящие в натуральный ряд. Традиционно ноль не является натуральным числом, ведь при подсчете предметов счет начинают с единицы. Такой подход используется в большинстве российских источников. Однако стоит отметить, что иногда в зарубежной литературе всё же предпочитают начинать натуральный ряд не с единицы, а с нуля. В этом случае 0 становится натуральным числом. Это деление весьма условно. Для обозначения множества натуральных чисел используется буква N. Очевидно, что натуральных чисел существует бесконечно много, а потому не существует наибольшего натурального числа.

Любые два натуральных числа можно складывать друг с другом и перемножать, при этом в результате будет снова получаться натуральное число. При вычитании может получиться ноль или отрицательное число, а при делении – дробное.

Простые и составные числа

Все натуральные числа можно разбить на три группы:

Единицу традиционно не считают ни простым, ни составным числом. Составным же называют натуральное число, делящееся не только на единицу и себя. Можно дать и другие определения, основанные на количестве делителей у числа. Так, единица имеет ровно 1 делитель. У простого числа всегда ровно 2 делителя, а у составного – 3 и более.

В качестве примера простых чисел можно привести: 2, 3, 5, 7, 31, 101, 163. Примерами составных чисел являются:

Среди делителей составного числа могут быть как другие составные, так и простые числа. Например, 50 имеет простые делители 2 и 5 и составные 10 и 25.

Заметим, что если число n делится на m, а m в свою очередь делится на k, то и n делится на k. Так, 45 делится на 9, а 9 делится на 3. Значит, и 45 делится на 3. Из этого свойства чисел вытекает следующее утверждение:

Любое составное число имеет хотя бы один простой делитель, причем им обязательно будет наименьший из всех делителей числа. Докажем это. Пусть число H – составное, и имеет наименьший делитель F. Предположим, что F – составное число. Тогда у него есть делитель L, который меньше его. Но тогда L должен быть делителем и для H. Так как L 1 1

Источник

Виды чисел.

У нас есть числа натуральные, целые, рациональные и иррациональные, а также вещественные или действительные и еще есть другие, но в школьной программе в основном используют эти числа.

Натуральные числа ( N ) − это числа, используемые для счета предметов. Нуль не является натуральным числом.
Например: 1; 2; 3; 132; 168; 326; 548; 10050…

Целые числа ( Z ) — множество чисел, получающееся в результате арифметических операций сложения (+) и вычитания (−) натуральных чисел.
Например: …−3; −2; 1; 0; 548; 10050…

Рациональные числа ( Q ) – это положительные и отрицательные числа можно представить в виде обыкновенной несократимой дроби вида:
Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа
где m−целое число (числитель), n – натуральное число (знаменатель).
Например:
Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Иррациональные числа ( I ) − числа, которые не представимыми в виде дроби вида
Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа
Например: √2; √5; π; e

Вещественные (действительные) числа ( R ).
Рациональные числа и иррациональные числа образуют множество действительных чисел.
Изобразим это множество чисел в виде рисунка:
Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Видно их вложенность друг в друга.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Источник

Разряды и классы чисел

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Числа и цифры

Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.

Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

От количества цифр в числе зависит его название.

Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.

Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.

Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.

Каждая цифра в записи многозначного числа занимает определенное место — позицию.

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Названия классов многозначных чисел справа налево:

Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:

А теперь прочитаем число единиц каждого класса слева направо:

Разряды чисел

От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:

Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.

Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Разрядные единицы обозначают так:

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Чтобы легче понимать математику — записывайтесь на наши курсы по математике!

Потренируемся

Пример 1. Записать цифрами число, в котором содержится:

Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.

Пример 2. Сколько сотен содержится в числе 6284?

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.

Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.

Значит, в данном числе содержится 62 сотни.

Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.

Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.

Источник

Какие числа называются целыми

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение целых чисел

Что важно знать о целых числах:

Целые числа на числовой оси выглядят так:

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.

Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.

Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.

Выглядит эти ребята вот так:

Что такое различные числа. Смотреть фото Что такое различные числа. Смотреть картинку Что такое различные числа. Картинка про Что такое различные числа. Фото Что такое различные числа

Последовательность целых чисел можно записать так:

Свойства целых чисел

Таблица содержит основные свойства сложения и умножения для любых целых a, b и c:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *