Что такое размерность массива numpy
3. Массивы NumPy
3.1. Прежде чем читать
Нужно немного знать Python. Причем «немного» означает действительно немного и вовсе не означает, что перед чтением данного руководства вам нужно досконально изучить этот язык. Открытой вкладки с официальным руководством окажется вполне достаточно.
Все примеры выполнены в консоли IDE Spyder дистрибутива Anaconda на Python версии 3.5. и NumPy версии 1.14.0. Приводимые примеры так же будут работать в любом другом дистрибутиве Python 3.х версии и последней версией пакета NumPy. Но если некоторые примеры все же не работают, то ознакомьтесь с официальной документацией вашего дистрибутива, возможно причина связана с его особенностями.
Например, если в своем дистрибутиве вы обнаружили последнюю версию IDE Spyder, то в ней нет Python консоли, к которой привыкают многие новички, учившиеся экспериментировать с кодом в IDLE. При этом новичкам может так же показаться, что и все примеры, представленные здесь, тоже лучше выполнять в Python консоли. Но нет, Python консоль использовалась автором лишь по техническим причинам, которые связаны с редактурой, версткой и дизайном кода. Консоль IPython имеет гораздо больше преимуществ.
3.2. Основы
Что бы перейти к примерам, сначала выполним импорт пакета:
Импортирование numpy под псевдонимом np уже стало общепринятой, негласной, договоренностью, можно сказать, традицией.
Теперь у нас есть одномерный массив (словосочетание «ранг массива» вряд ли приживется в русском языке), т.е. у него всего одна ось вдоль которой происходит индексирование его элементов.
Получить доступ к числу 33 можно привычным способом:
В общем-то, можно подумать, что ничего интересного и нет в этих массивах, но на самом деле это только начало кроличьей норы. Оцените:
Вместо одного индекса, указан целый список индексов. А вот еще любопытный пример, теперь вместо индекса укажем логическое выражение:
Визуально, данный массив выглядит следующим образом:
То же самое мы можем проделать с каждой строкой массива a :
Например, у нас есть двумерный массив и мы хотим узнать его минимальные элементы по строкам и столбцам. Для начала создадим массив из случайных чисел и пусть, для нашего удобства, эти числа будут целыми:
Минимальный элемент в данном массиве это:
А вот минимальные элементы по столбцам и строкам:
Такое поведение заложено практически во все функции и методы NumPy:
Чтож, мы рассмотрели одномерные и двумерные массивы, а так же некоторые трюки NumPy. Но данный пакет позиционируется прежде всего как научный инструмент. Что насчет вычислений, их скорости и занимаемой памяти?
Для примера, создадим трехмерный массив:
Почему именно трехмерный? На самом деле реальный мир вовсе не ограничивается таблицами, векторами и матрицами. Еще существуют тензоры, кватернионы, октавы. А некоторые данные, гораздо удобнее представлять именно в трехмерном и четырехмерном представлении, например, биржевые торги по всем инструментам, лучше всего представлять в трехмерном виде, а торги нескольких бирж в четырехмерном. Конечно, такими сложными вычислениями занимается очень небольшое количество людей, но надо отметить, что именно эти люди двигают науку и индустрию вперед. Да и слово «сложное» можно считать синонимом «интересное. Поэтому. что-то мы отвлеклись. вот наш трехмерный массив:
Визуализация (и хорошее воображение) позволяет сразу догадаться, как устроена индексация трехмерных массивов. Например, если нам нужно вытащить из данного массива число 31, то достаточно выполнить:
Но, что если мы хотим узнать побольше об этом массиве. В самом деле, у массивов есть целый ряд важных атрибутов. Например, количество осей массива (его размерность), которую при работе с очень большими массивами, не всегда легко увидеть:
Массив a действительно трехмерный. Но иногда становится интересно, а на сколько же большой массив перед нами. Например, какой он формы, т.е. сколько элементов расположено вдоль каждой оси? Ответить позволяет метод ndarray.shape :
Метод ndarray.size просто возвращает общее количество элементов массива:
ndarray.itemsize возвращает размер элемента в байтах. Теперь мы можем узнать сколько «весит» наш массив:
Мы с вами собирались ответить на вопросы производительности вычислений в NumPy, но это тоже тема отдельной главы. Могу лишь сказать, что на самом деле скорость вычислений, очень сильно зависит от того кода, который вы пишите. Например, частое копирование и присваивание массивов, приводит к бесполезному потреблению памяти, а работа универсальных функций NumPy без дополнительных настроек, особенно в циклах, так же может выполняться несколько медленнее. В общем задача по использованию всего вычислительного потенциала программного обеспечения и железа, не такая уж и простая, но определенно решаемая задача.
3.3. Напоследок
Если вы новичок, то очень скоро поймете, что в использовании NumPy так же прост как и Python. Но, рано или поздно, дело дойдет до сложных задач и вот тогда начнется самое интересное: документации не хватает, ничего не гуглится, а бесчисленные «почти» подходящие советы приводят к необъяснимым сверхъестественным последствиям. Что делать в такой ситуации?
Это шутка и серьезная рекомендация одновременно. Но, если говорить абсолютно серьезно, то просто придерживайтесь здравого смысла. Где этот здравый смысл начинается, а где заканчивается в конкретной задаче сказать очень трудно. import this вам в помощь:
NumPy Ndarray: создание массива, генерация и типы данных / np 2
Количество размерностей и объектов массива определяются его размерностью ( shape ), кортежем N-положительных целых чисел. Они указывают размер каждой размерности. Размерности определяются как оси, а количество осей — как ранг.
Еще одна странность массивов NumPy в том, что их размер фиксирован, а это значит, что после создания объекта его уже нельзя поменять. Это поведение отличается от такового у списков Python, которые могут увеличиваться и уменьшаться в размерах.
Это был пример простейшего одномерного массива. Но функциональность массивов может быть расширена и до нескольких размерностей. Например, при определении двумерного массива 2×2:
Ранг этого массива — 2, поскольку у него 2 оси, длина каждой из которых также равняется 2.
Создание массива
Функция array() также может принимать кортежи и последовательности кортежей.
Она также может принимать последовательности кортежей и взаимосвязанных списков.
Типы данных
Пока что рассматривались только значения простого целого числа и числа с плавающей запятой, но массивы NumPy сделаны так, чтобы включать самые разные типы данных. Например, можно включать строки:
Типы данных, поддерживаемые NumPy
Параметр dtype
Например, если нужно определить массив с комплексными числами в качестве значений, необходимо использовать параметр dtype следующим образом:
Функции генерации массива
Библиотека NumPy предоставляет набор функций, которые генерируют ndarray с начальным содержимым. Они создаются с разным значениями в зависимости от функции. Это очень полезная особенность. С помощью всего одной строки кода можно сгенерировать большой объем данных.
А функция ones() создает массив, состоящий из единиц.
Если в начале нужен не ноль, то необходимо обозначить уже два аргумента: первый и последний.
Оно может быть и числом с плавающей точкой.
Полученные числа будут отличаться с каждым запуском. Для создания многомерного массива, нужно передать его размер в виде аргумента.
NumPy в Python. Часть 1
Предисловие переводчика
Доброго времени суток, Хабр. Запускаю цикл статей, которые являются переводом небольшого мана по numpy, ссылочка. Приятного чтения.
Введение
Установка
Если у вас есть Python(x, y) (Примечание переводчика: Python(x, y), это дистрибутив свободного научного и инженерного программного обеспечения для численных расчётов, анализа и визуализации данных на основе языка программирования Python и большого числа модулей (библиотек)) на платформе Windows, то вы готовы начинать. Если же нет, то после установки python, вам нужно установить пакеты самостоятельно, сначала NumPy потом SciPy. Установка доступна здесь. Следуйте установке на странице, там всё предельно понятно.
Немного дополнительной информации
Сообщество NumPy и SciPy поддерживает онлайн руководство, включающие гайды и туториалы, тут: docs.scipy.org/doc.
Импорт модуля numpy
Есть несколько путей импорта. Стандартный метод это — использовать простое выражение:
Тем не менее, для большого количества вызовов функций numpy, становится утомительно писать numpy.X снова и снова. Вместо этого намного легче сделать это так:
Это выражение позволяет нам получать доступ к numpy объектам используя np.X вместо numpy.X. Также можно импортировать numpy прямо в используемое пространство имен, чтобы вообще не использовать функции через точку, а вызывать их напрямую:
Однако, этот вариант не приветствуется в программировании на python, так как убирает некоторые полезные структуры, которые модуль предоставляет. До конца этого туториала мы будем использовать второй вариант импорта (import numpy as np).
Массивы
Главной особенностью numpy является объект array. Массивы схожи со списками в python, исключая тот факт, что элементы массива должны иметь одинаковый тип данных, как float и int. С массивами можно проводить числовые операции с большим объемом информации в разы быстрее и, главное, намного эффективнее чем со списками.
Создание массива из списка:
Здесь функция array принимает два аргумента: список для конвертации в массив и тип для каждого элемента. Ко всем элементам можно получить доступ и манипулировать ими так же, как вы бы это делали с обычными списками:
Массивы могут быть и многомерными. В отличии от списков можно использовать запятые в скобках. Вот пример двумерного массива (матрица):
Array slicing работает с многомерными массивами аналогично, как и с одномерными, применяя каждый срез, как фильтр для установленного измерения. Используйте «:» в измерении для указывания использования всех элементов этого измерения:
Метод shape возвращает количество строк и столбцов в матрице:
Метод dtype возвращает тип переменных, хранящихся в массиве:
Тут float64, это числовой тип данных в numpy, который используется для хранения вещественных чисел двойной точности. Так же как float в Python.
Метод len возвращает длину первого измерения (оси):
Метод in используется для проверки на наличие элемента в массиве:
Массивы можно переформировать при помощи метода, который задает новый многомерный массив. Следуя следующему примеру, мы переформатируем одномерный массив из десяти элементов во двумерный массив, состоящий из пяти строк и двух столбцов:
Обратите внимание, метод reshape создает новый массив, а не модифицирует оригинальный.
Имейте ввиду, связывание имен в python работает и с массивами. Метод copy используется для создания копии существующего массива в памяти:
Списки можно тоже создавать с массивов:
Можно также переконвертировать массив в бинарную строку (то есть, не human-readable форму). Используйте метод tostring для этого. Метод fromstring работает в для обратного преобразования. Эти операции иногда полезны для сохранения большого количества данных в файлах, которые могут быть считаны в будущем.
Заполнение массива одинаковым значением.
Транспонирование массивов также возможно, при этом создается новый массив:
Многомерный массив можно переконвертировать в одномерный при помощи метода flatten:
Два или больше массивов можно сконкатенировать при помощи метода concatenate:
Если массив не одномерный, можно задать ось, по которой будет происходить соединение. По умолчанию (не задавая значения оси), соединение будет происходить по первому измерению:
В заключении, размерность массива может быть увеличена при использовании константы newaxis в квадратных скобках:
Заметьте, тут каждый массив двумерный; созданный при помощи newaxis имеет размерность один. Метод newaxis подходит для удобного создания надлежаще-мерных массивов в векторной и матричной математике.
На этом у нас конец первой части перевода. Спасибо за внимание.
Нескучный туториал по NumPy
Меня зовут Вячеслав, я хронический математик и уже несколько лет не использую циклы при работе с массивами…
Ровно с тех пор, как открыл для себя векторные операции в NumPy. Я хочу познакомить вас с функциями NumPy, которые чаще всего использую для обработки массивов данных и изображений. В конце статьи я покажу, как можно использовать инструментарий NumPy, чтобы выполнить свертку изображений без итераций (= очень быстро).
Что такое NumPy?
Это библиотека с открытым исходным кодом, некогда отделившаяся от проекта SciPy. NumPy является наследником Numeric и NumArray. Основан NumPy на библиотеке LAPAC, которая написана на Fortran. Не-python альтернативой для NumPy является Matlab.
В силу того, что NumPy базируется на Fortran это быстрая библиотека. А в силу того, что поддерживает векторные операции с многомерными массивами — крайне удобная.
Кроме базового варианта (многомерные массивы в базовом варианте) NumPy включает в себя набор пакетов для решения специализированных задач, например:
Создание массива
Создать массив можно несколькими способами:
Либо взять размеры уже существующего массива:
По умолчанию from = 0, step = 1, поэтому возможен вариант с одним параметром, интерпретируемым как To:
Либо с двумя — как From и To:
Обратите внимание, что в методе №3 размеры массива передавались в качестве одного параметра (кортеж размеров). Вторым параметром в способах №3 и №4 можно указать желаемый тип элементов массива:
Используя метод astype, можно привести массив к другому типу. В качестве параметра указывается желаемый тип:
Все доступные типы можно найти в словаре sctypes:
Доступ к элементам, срезы
Доступ к элементам массива осуществляется по целочисленным индексами, начинается отсчет с 0:
Если представить многомерный массив как систему вложенных одномерных массивов (линейный массив, элементы которого могут быть линейными массивами), становится очевидной возможность получать доступ к подмассивам с использованием неполного набора индексов:
С учетом этой парадигмы, можем переписать пример доступа к одному элементу:
При использовании неполного набора индексов, недостающие индексы неявно заменяются списком всех возможных индексов вдоль соответствующей оси. Сделать это явным образом можно, поставив «:». Предыдущий пример с одним индексом можно переписать в следующем виде:
«Пропустить» индекс можно вдоль любой оси или осей, если за «пропущенной» осью последуют оси с индексацией, то «:» обязательно:
Индексы могут принимать отрицательные целые значения. В этом случае отсчет ведется от конца массива:
Можно использовать не одиночные индексы, а списки индексов вдоль каждой оси:
Либо диапазоны индексов в виде «From:To:Step». Такая конструкция называется срезом. Выбираются все элементы по списку индексов начиная с индекса From включительно, до индекса To не включая с шагом Step:
Шаг индекса имеет значение по умолчанию 1 и может быть пропущен:
Значения From и To тоже имеют дефолтные значения: 0 и размер массива по оси индексации соответственно:
Если вы хотите использовать From и To по умолчанию (все индексы по данной оси) а шаг отличный от 1, то вам необходимо использовать две пары двоеточий, чтобы интерпретатор смог идентифицировать единственный параметр как Step. Следующий код «разворачивает» массив вдоль второй оси, а вдоль первой не меняет:
Как видите, через B мы изменили данные в A. Вот почему в реальных задачах важно использовать копии. Пример выше должен был бы выглядеть так:
В NumPy также реализована возможность доступа ко множеству элементов массива через булев индексный массив. Индексный массив должен совпадать по форме с индексируемым.
Как видите, такая конструкция возвращает плоский массив, состоящий из элементов индексируемого массива, соответствующих истинным индексам. Однако, если мы используем такой доступ к элементам массива для изменения их значений, то форма массива сохранится:
Над индексирующими булевыми массивами определены логические операции logical_and, logical_or и logical_not выполняющие логические операции И, ИЛИ и НЕ поэлементно:
logical_and и logical_or принимают 2 операнда, logical_not — один. Можно использовать операторы &, | и
для выполнения И, ИЛИ и НЕ соответственно с любым количеством операндов:
Что эквивалентно применению только I1.
Получить индексирующий логический массив, соответсвующий по форме массиву значений можно, записав логическое условие с именем массива в качестве операнда. Булево значение индекса будет рассчитано как истинность выражения для соответствующего элемента массива.
Найдем индексирующий массив I элементов, которые больше, чем 3, а элементы со значениями меньше чем 2 и больше 4 — обнулим:
Форма массива и ее изменение
Многомерный массив можно представить как одномерный массив максимальной длины, нарезанный на фрагменты по длине самой последней оси и уложенный слоями по осям, начиная с последних.
Для наглядности рассмотрим пример:
В этом примере мы из одномерного массива длиной 24 элемента сформировали 2 новых массива. Массив B, размером 4 на 6. Если посмотреть на порядок значений, то видно, что вдоль второго измерения идут цепочки последовательных значений.
В массиве C, размером 4 на 3 на 2, непрерывные значения идут вдоль последней оси. Вдоль второй оси идут последовательно блоки, объединение которых дало бы в результате строки вдоль второй оси массива B.
А учитывая, что мы не делали копии, становится понятно, что это разные формы преставления одного и того же массива данных. Поэтому можно легко и быстро менять форму массива, не изменяя самих данных.
Чтобы узнать размерность массива (количество осей), можно использовать поле ndim (число), а чтобы узнать размер вдоль каждой оси — shape (кортеж). Размерность можно также узнать и по длине shape. Чтобы узнать полное количество элементов в массиве можно воспользоваться значением size:
Обратите внимание, что ndim и shape — это атрибуты, а не методы!
Чтобы увидеть массив одномерным, можно воспользоваться функцией ravel:
Чтобы поменять размеры вдоль осей или размерность используется метод reshape:
Важно, чтобы количество элементов сохранилось. Иначе возникнет ошибка:
Можно reshape использовать вместо ravel:
Рассмотрим практическое применение некоторых возможностей для обработки изображений. В качестве объекта исследования будем использовать фотографию:
Попробуем ее загрузить и визуализировать средствами Python. Для этого нам понадобятся OpenCV и Matplotlib:
Результат будет такой:
Обратите внимание на строку загрузки:
OpenCV работает с изображениями в формате BGR, а нам привычен RGB. Мы меняем порядок байтов вдоль оси цвета без обращения к функциям OpenCV, используя конструкцию
«[:, :, ::-1]».
Уменьшим изображение в 2 раза по каждой оси. Наше изображение имеет четные размеры по осям, соответственно, может быть уменьшено без интерполяции:
Поменяв форму массива, мы получили 2 новые оси, по 2 значения в каждой, им соответствуют кадры, составленные из нечетных и четных строк и столбцов исходного изображения.
Низкое качество свзано с использованием Matplotlib, за то там видны размеры по осям. На самом деле, качество уменьшенного изображения такое:
Перестановка осей и траспонирование
В кроме изменения формы массива при неизменном порядке единиц данных, часто встречается необходимость изменить порядок следования осей, что естественным образом повлечет перестановки блоков данных.
Примером такого преобразования может быть транспонирование матрицы: взаимозамена строк и столбцов.
В этом примере для транспонирования матрицы A использовалась конструкция A.T. Оператор транспонирования инвертирует порядок осей. Рассмотрим еще один пример с тремя осями:
У этой короткой записи есть более длинный аналог: np.transpose(A). Это более универсальный инструмент для замены порядка осей. Вторым параметром можно задать кортеж номеров осей исходного массива, определяющий порядок их положения в результирующем массиве.
Для примера переставим первые две оси изображения. Картинка должна перевернуться, но цветовую ось оставим без изменения:
Для этого примера можно было применить другой инструмент swapaxes. Этот метод переставляет местами две оси, указанные в параметрах. Пример выше можно было реализовать так:
Объединение массивов
Объединяемые массивы должны иметь одинаковое количество осей. Объединять массивы можно с образованием новой оси, либо вдоль уже существующей.
Для объединения с образованием новой оси исходные массивы должны иметь одинаковые размеры вдоль всех осей:
Как видно из примера, массивы-операнды стали подмассивами нового объекта и выстроились вдоль новой оси, которая стоит самой первой по порядку.
Для объединения массивов вдоль существующей оси, они должны иметь одинаковый размер по всем осям, кроме выбранной для объединения, а по ней могут иметь произвольные размеры:
Для объединения по первой или второй оси можно использовать методы vstack и hstack соответсвенно. Покажем это на примере изображений. vstack объединяет изображения одинаковой ширины по высоте, а hsstack объединяет одинаковые по высоте картинки в одно широкое:
Обратите внимание на то, что во всех примерах этого раздела объединяемые массивы передаются одним параметром (кортежем). Количество операндов может быть любым, а не обязательно только 2.
Также обратите внимание на то, что происходит с памятью, при объединении массивов:
Так как создается новый объект, данные в него копируются из исходных массивов, поэтому изменения в новых данных не влияют на исходные.
Клонирование данных
Оператор np.repeat(A, n) вернет одномерный массив с элементами массива A, каждый из которых будет повторен n раз.
После этого преобразования, можно перестроить геометрию массива и собрать повторяющиеся данные в одну ось:
Этот вариант отличается от объединения массива с самим собой оператором stack только положением оси, вдоль которой стоят одинаковые данные. В примере выше это последняя ось, если использовать stack — первая:
Как бы ни было выполнено клонирование данных, следующим шагом можно переместить ось, вдоль которой стоят одинаковые значения, в любую позицию с системе осей:
Если же мы хотим «растянуть» какую либо ось, используя повторение элементов, то ось с одинаковыми значениями надо поставить после растягиваемой (используя transpose), а затем объединить эти две оси (используя reshape). Рассмотрим пример с растяжением изображения вдоль вертикальной оси за счет дублирования строк:
Математические операции над элементами массива
Если A и B массивы одинакового размера, то их можно складывать, умножать, вычитать, делить и возводить в степень. Эти операции выполняются поэлементно, результирующий массив будет совпадать по геометрии с исходными массивами, а каждый его элемент будет результатом выполнения соответствующей операции над парой элементов из исходных массивов:
Можно выполнить любую операцию из приведенных выше над массивом и числом. В этом случае операция также выполнится над каждым из элементов массива:
Учитывая, что многомерный массив можно рассматривать как плоский массив (первая ось), элементы которого — массивы (остальные оси), возможно выполнение рассматриваемых операций над массивами A и B в случае, когда геометрия B совпадает с геометрией подмассивов A при фиксированном значении по первой оси. Иными словами, при совпадающем количестве осей и размерах A[i] и B. Этом случае каждый из массивов A[i] и B будут операндами для операций, определенных над массивами.
В этом примере массив B подвергается операции с каждой строкой массива A. При необходимости умножения/деления/сложения/вычитания/возведения степень подмассивов вдоль другой оси, необходимо использовать транспонирование, чтобы поставить нужную ось на место первой, а затем вернуть ее на свое место. Рассмотри пример выше, но с умножением на вектор B столбцов массива A:
Для более сложных функций (например, для тригонометрических, экспоненты, логарифма, преобразования между градусами и радианами, модуля, корня квадратного и.д.) в NumPy есть реализация. Рассмотрим на примере экспоненты и логарифма:
С полным списком математических операций в NumPy можно ознакомиться тут.
Матричное умножение
Описанная выше операция произведения массивов выполняется поэлементно. А при необходимости выполнения операций по правилам линейной алгебры над массивами как над тензорами можно воспользоваться методом dot(A, B). В зависимости от вида операндов, функция выполнит:
Рассмотрим примеры со скалярами и векторами:
С тензорами посмотрим только на то, как меняется размер геометрия результирующего массива:
Для выполнения произведения тензоров с использованием других осей, вместо определенных для dot можно воспользоваться tensordot с явным указанием осей:
Мы явно указали, используем третью ось первого массива и вторую — второго (размеры по этим осям должны совпадать).
Агрегаторы
Агрегаторы — это методы NumPy позволяющие заменять данные интегральными характеристиками вдоль некоторых осей. Например, можно посчитать среднее значение, максимальное, минимальное, вариацию или еще какую-то характеристику вдоль какой-либо оси или осей и сформировать из этих данных новый массив. Форма нового массива будет содержать все оси исходного массива, кроме тех, вдоль которых подсчитывался агрегатор.
Для примера, сформируем массив со случайными значениями. Затем найдем минимальное, максимальное и среднее значение в его столбцах:
При таком использовании mean и average выглядят синонимами. Но эти функции обладают разным набором дополнительных параметров. У нах разные возможности по маскированию и взвешиванию усредняемых данных.
Можно подсчитать интегральные характеристики и по нескольким осям:
В этом примере рассмотрена еще одна интегральная характеристика sum — сумма.
Список агрегаторов выглядит примерно так:
Если не указать оси, то по умолчанию все рассматриваемые характеристики считаются по всему массиву. В этом случае argmin и argmax тоже корректно отработают и найдут индекс максимального или минимального элемента так, как буд-то все данные в массиве вытянуты вдоль одной оси командой ravel().
Еще следует отметить, агрегирующие методы определены не только как методы модуля NumPy, но и для самих массивов: запись np.aggregator(A, axes) эквивалентна записи A.aggregator(axes), где под aggregator подразумевается одна из рассмотренных выше функций, а под axes — индексы осей.
Вместо заключения — пример
Давайте построим алгоритм линейной низкочастотной фильтрации изображения.
Для начала загрузим зашумленное изображение.
Рассмотрим фрагмент изображения, чтобы увидеть шум:
Фильтровать изображение будем с использованием гауссова фильтра. Но вместо выполнения свертки непосредственно (с итерированием), применим взвешенное усреднение срезов изображения, сдвинутых относительно друг друга:
Применим эту функцию к нашему изображению единожды, дважды и трижды:
Получаем следующие результаты:
при однократном применении фильтра;
Видно, что с повышением количества проходов фильтра снижается уровень шума. Но при этом снижается и четкость изображения. Это известная проблема линейных фильтров. Но наш метод денойзинга изображения не претендует на оптимальность: это лишь демонстрация возможностей NumPy реализации свертки без итераций.
Теперь давайте посмотрим, сверткам с какими ядрами эквивалентна наша фильтрация. Для этого подвергнем аналогичным преобразованиям одиночный единичный импульс и визуализируем. На самом деле импульс будет не единичным, а равным по амплитуде 255, так как само смешивание оптимизировано под целочисленные данные. Но это не мешает оценить общий вид ядер:
Мы рассмотрели далеко не полный набор возможностей NumPy, надеюсь, этого было достаточно для демонстрации всей мощи и красоты этого инструмента!