Что такое регуляторная функция в биологии

Основные функции белков в клетке

Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом.

Белок — это отдельный полипептид или агрегат нескольких полипептидов, выполняющий биологическую функцию.

Полипептид — понятие химическое. Белок — понятие биологическое.

В биологии функции белков можно разделить на следующие виды:

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

1. Строительная функция

Белки участвуют в образовании клеточных и внеклеточных структур. Например:

2. Транспортная функция

Некоторые белки способны присоединять различные вещества и переносить их к различным тканям и органам тела, из одного места клетки в другое. Например:

Белки транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.

3. Регуляторная функция

Большая группа белков организма принимает участие в регуляции процессов обмена веществ. Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например:

4. Защитная функция

5. Двигательная функция

6. Сигнальная функция

7. Запасающая функция

8. Энергетическая функция

9. Каталитическая (ферментативная) функция

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты можно разделить на две группы:

10. Функция антифириза

11. Питательная (резервная) функция.

Решай задания и варианты по биологии с ответами

Источник

Регуляторная функция белков

Регуляторная функция белков ― осуществление белками регуляции процессов в клетке или в организме, что связано с их способностью к приёму и передаче информации. Действие регуляторных белков обратимо и, как правило, требует присутствия лиганда. Постоянно открывают всё новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть.

Существует несколько разновидностей белков, выполняющих регуляторную функцию:

Содержание

Белки, участвующие в межклеточной сигнализации

Белки-гормоны (и другие белки, участвующие в межклеточной сигнализации) оказывают влияние на обмен веществ и другие физиологические процессы.

Гормоны — вещества, которые образуются в железах внутренней секреции, переносятся кровью и несут информационный сигнал. Гормоны распространяются безадресно и действуют только на те клетки, которые имеют подходящие белки-рецепторы. Гормоны связываются со специфическими рецепторами. Обычно гормоны регулируют медленных процессы, например, рост отдельных тканей и развитие организма, однако есть и исключения: например, адреналин (см. статью адреналин) — гормон стресса, производное аминокислот. Он выделяется при воздействии нервного импульса на мозговой слой надпочечников.При этом начинает чаще биться сердце, повышается кровяное давление и наступают другие ответные реакции. Также он действует на печень(расщепляет гликоген). Глюкоза выделяется в кровь, и ее используют мозг и мышцы как источник энергии.

Белки-рецепторы

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

К белкам с регуляторной функцией можно отнести также белки-рецепторы. Мембранные белки — рецепторы передают сигнал с поверхности клетки внутрь, преобразовывая его. Они регулируют функции клеток за счет связывания с лигандом, который «сел» на этот рецептор снаружи клетки; в результате активируется другой белок внутри клетки.

Большинство гормонов действуют на клетку, только если на ее мембране есть определенный рецептор — другой белок или гликопротеид. Например, β2- адренорецептор находится на мембране клеток печени. При стрессе молекула адреналина связывается с β2- адренорецептором и активирует его. Далее активированный рецептор активирует G-белок, который присоединяет ГТФ. После многих промежуточных этапов передачи сигнала происходит фосфоролиз гликогена. Рецептор осуществил самую первую операцию по передаче сигнала, ведущего к расщеплению гликогена. Без него не было бы последующих реакций внутри клетки.

Внутриклеточные регуляторные белки

Белки регулируют процессы, происходящие внутри клеток, при помощи нескольких механизмов:

Белки-регуляторы транскрипции

Транскрипционный фактор — это белок, который, попадая в ядро, регулирует транскрипцию ДНК, то есть считывание информации с ДНК на мРНК (синтез мРНК по матрице ДНК). Некоторые транскрипционные факторы изменяют структуру хроматина, делая его более доступным для РНК-полимераз. Существуют различные вспомогательные транскрипционные факторы, которые создают нужную конформацию ДНК для последующего действия других транскрипционных факторов. Еще одна группа транскрипционных факторов — это те факторы, которые не связываются непосредственно с молекулами ДНК, а объединяются в более сложные комплексы с помощью белок-белковых взаимодействий.

Факторы регуляции трансляции

Трансляция — синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами, в том числе и с помощью белков-репрессоров, которые, связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК. В этом случае происходит регуляция по типу обратной связи (примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы).

Факторы регуляции сплайсинга

Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются интронами. Они сначала переписываются на пре-мРНК при транскрипции, но затем вырезаются особым ферментом. Этот процесс удаления интронов, а затем последующее сшивание концов оставшихся участков называют сплайсингом (сшивание, сращивание). Сплайсинг осуществляется с помощью небольших РНК, обычно связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса(сплайсосомы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комплекса есть белки, обладающие АТФ-азной активностью.

Существует альтернативный сплайсинг. Особенности сплайсинга определяются белками, способными связываться с молекулой РНК в областях интронов или участках на границе экзон-интрон. Эти белки могут препятствовать удалению одних интронов и в то же время способствовать вырезанию других. Направленная регуляция сплайсинга может иметь значительные биологические последствия. Например, у плодовой мушки дрозофилы альтернативный сплайсинг лежит в основе механизма определения пола.

Протеинкиназы и протеинфосфатазы

Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Протеинкиназы регулируют активность других белков путем фосфолирования — присоединения остатков фосфорной кислоты к остаткам аминокислот, имеющих гидроксильные группы. При фосфорилировании обычно изменяется функционирование данного белка, например, ферментативная активность, а также положение белка в клетке.

Существуют также протеинфосфатазы — белки, которые отщепляют фосфатные группы. Протеинкиназы и протеинфосфатазы регулируют обмен веществ, а также передачу сигналов внутри клетки. Фосфорилирование и дефосфорилирования белков — один из главным механизмов регуляции большинства внутриклеточных процессов.

Источник

Биология. 11 класс

§ 27. Регуляция жизненных функций организма

Главным преимуществом жизни клеток в многоклеточном организме по сравнению с одиночным существованием является уменьшение неблагоприятного воздействия факторов окружающей среды. Проживая совместно, клетки за счет своей совокупной жизнедеятельности создают для себя особую среду обитания.

*Ярким примером этого факта является существование многоклеточных организмов на поверхности суши. Как известно, для жизни на планете Земля необходимым условием является обязательное наличие достаточных количеств воды как внутри клеток, так и в окружающей их среде. Без этого невозможно ни поступление необходимых для жизни веществ, ни протекание тех самых биохимических реакций, которые лежат в основе жизнедеятельности. С этой точки зрения только водоемы и постоянно содержащая необходимое количество воды поверхность суши (влажная почва) могут быть местом обитания. Однако многоклеточные организмы могут обитать вне водоемов и влажной почвы. При этом все их клетки получают необходимое для жизни количество воды. *

Создание и поддержание благоприятной для жизни среды достигается тем, что в многоклеточном организме клетки специализируются для выполнения определенных функций. Такие функции не обязательны для существования каждой конкретной клетки, но важны для выживания организма в целом. Насколько высок уровень такой специализации можно увидеть, сравнивая клетки разных тканей одного организма. Сравните, например, эритроциты и нейроны человека. Эти клетки очень сильно отличаются по строению, размерам, особенностям процессов жизнедеятельности. Каждая такая специализированная клетка в отдельности существовать не может. Однако действуя совместно, такие клетки создают внутреннюю среду многоклеточного организма, которая гораздо лучше приспособлена для жизни клеток, чем среда, окружающая организм в целом.

При этом необходимые для жизни клеток факторы во внешней среде обитания организма могут колебаться в широких пределах, но во внутренней среде они будут оставаться неизменными. Такое постоянство внутренней среды называется гомеостазисом.

Регуляция жизненных функций у растений. Основным условием существования растительных клеток является наличие света, углекислого газа, воды и ионов солей. Вегетативные органы растений устроены так, чтобы находящиеся в наземно-воздушной среде клетки получали все необходимое. Клетки основной ткани листьев, которые лучше всего освещены, получают необходимую воду и ионы солей благодаря всасывающей функции корня и проводящей функции стебля. Через устьица к этим же клеткам поступает углекислый газ. В результате процесса фотосинтеза в клетках листьев образуется большое количество богатого энергией органического вещества. Его хватает не только для жизнедеятельности этих клеток. По проводящей ткани богатые энергией углеводы доставляются и тем клеткам растений, на которые свет не попадает. Благодаря этому клетки корней и внутренней части стеблей поддерживают свою жизнедеятельность и выполняют функции, необходимые всему растению.

Чтобы все описанное происходило наилучшим образом, необходима регуляция общих жизненных процессов организма. В растениях она осуществляется благодаря направленному росту органов. Корни растут так, чтобы их клетки могли поглотить наибольшее количество воды и минеральных веществ. Рост и ветвление стеблей направлены на вынос листьев к свету. Генеративные органы растений также выносятся в наилучшие условия для осуществления процессов размножения.

Все это возможно потому, что в различных частях организма растения имеются образовательные ткани. Их клетки постоянно способны к делению, но делятся только тогда, когда на них действуют специальные вещества. Эти вещества называются фитогормонами. Под действием фитогормонов ускоряется или замедляется деление клеток и их дифференцировка. Благодаря этому в зависимости от условий окружающей среды происходят сезонные изменения в жизни растений. При благоприятных условиях органы растут и развиваются. При ухудшении условий растение переходит в состояние покоя.

Состав и количество фитогормонов меняется в зависимости от состояния и положения органов на растении. Наглядным примером является регулирование формирования кроны у древесных растений. В зависимости от освещенности той или иной части растения регулируется рост его боковых побегов. Выделяемые верхушечными участками стебля фитогормоны перераспределяются внутри растения так, чтобы рост побегов обеспечивал максимальную освещенность листовой поверхности. При этом часть стеблевых почек под действием этих гормонов переходит в состояние покоя. Если активно растущие побеги повреждаются (например, при обрезке удаляются их верхушечные части), отсутствие выделявшихся ими гормонов приводит к развитию побегов из покоящихся почек. Таким образом растение снова сформирует крону, которая позволит ему наилучшим образом фотосинтезировать.

*Знание характера регулирования жизнедеятельности растительного организма имеет практическое значение. Агротехнические приемы, которые используются в растениеводстве, разрабатываются и применяются с учетом действия фитогормонов. Например, пересадку луковичных многолетних растений осуществляют в периоды покоя. В это время рост и развитие их надземных побегов и корней ограничены из-за соответствующего действия фитогормонов. Это гарантирует отсутствие повреждений, возможных при пересадке. Обрезку веток древесных пород проводят, исходя из их способности формировать покоящиеся почки. Эффективность размножения растений стеблевыми или листовыми черенками повышают путем обработки черенков растворами фитогормонов, стимулирующих формирование корней.*

Источник

Неорганические и органические вещества клетки

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет ей быть отличным растворителем для других гидрофильных (полярных) веществ.

Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее «спасение» для клеток: чуть только температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов обмена веществ.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Если же клетка окажется в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей), приводя при этом к разбуханию (и возможному разрыву) клетки.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Элементы

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится нормальное образование эритроцитов без должного уровня Fe и Cu.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от высших структур организации к низшим, или «раскручивание белка». Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон, адренокортикотропный гормон (АКТГ).

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Помимо антител, защитную функцию выполняют также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна, а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах. Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам) жировые запасы помогают длительное время обходиться без воды.

Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех клеток органов и тканей!

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой. Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Углеводы

При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков. Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза, мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой, нерастворимы в воде, на вкус несладкие.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет нам оставаться в сознании и быть активными между приемами пищи.

Гликоген представляет собой разветвленную молекулу, состоящую из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам быстро отщеплять множество молекул глюкозы одновременно.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Существуют заболевания, при которых распад гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку грибов и наружный скелет членистоногих.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Нуклеиновые кислоты (от лат. nucleus — ядро)

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Синтезируется в ядрышке. рРНК входит в состав малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Наиболее сложные вопросы преподавания раздела «Человек и его здоровье»

Предлагаемый курс предполагает изучение наиболее сложных вопросов раздела «Человек и его здоровье», затрагивающих физиологические механизмы функционирования организма человека в целом и отдельных его структур (клеток, тканей, органов).

Цель курса – дать педагогу современные знания о закономерностях функционирования организма человека, показать их роль и место в учебном процессе в соответствии с образовательными стандартами, материалами ЕГЭ, учебниками биологии нового поколения. Содержание курса носит не только теоретический, но и практико-ориентированный характер, расширяющий возможности использования материалов образовательной программы для внедрения новых педагогических технологий.

Основные задачи, решаемые в ходе изучения учебного курса:

раскрытие и углубление наиболее сложных анатомо-физиологических понятий;
ознакомление с образовательными стандартами, программами и существующими учебниками по разделу «Человек и его здоровье» и их анализ;
освоение методики преподавания сложных вопросов раздела на уроке и во внеурочной деятельности;
применение новых педагогических технологий.

Интегрированный подход, предложенный авторами, обусловливает широкие возможности применения практически всех учебников по данной тематике, допущенных Министерством образования и науки РФ. Существенная роль отводится формированию педагогических умений проектирования учебного процесса в зависимости от материально-технической оснащенности кабинета и интересов школьников.

Материалы учебного курса могут использоваться на уроке и во внеурочной деятельности, для подготовки учащихся к ЕГЭ, олимпиадам по биологии и экологии. Новизна данного учебного курса заключается в ориентации на современные формы организации педагогического процесса, примеры которых даны во всех лекциях.

Учебный план курса

№ газеты

Учебный материал

Лекция 1. Регуляторные системы организма

Лекция 2. Иммунитет

Лекция 3. Нарушения в работе иммунной системы
Контрольная работа № 1

Лекция 4. Общий план строения нервной системы

Лекция 5. Строение и функции отделов центральной нервной системы
Контрольная работа № 2

Лекция 6. Гуморальная регуляция функций в организме

Лекция 7. Стресс в жизнедеятельности организма человека

Лекция 8. Основы рационального питания

Итоговая работа

Лекция 1
Регуляторные системы организма

В настоящее время в науке сформировались представления о том, что основные процессы жизнедеятельности сложно устроенных многоклеточных организмов, в том числе человека, поддерживаются за счет трех регуляторных систем: нервной, эндокринной и иммунной.

Каждый многоклеточный организм развивается из одной клетки – оплодотворенной яйцеклетки (зиготы). Сначала зигота делится и образует подобные себе клетки. С определенного этапа начинается дифференцировка. В итоге из зиготы образуются триллионы клеток, имеющих разные формы и функции, но составляющие единый, целостный организм. Многоклеточный организм может существовать как единое целое благодаря информации, заложенной в генотипе (набор генов, получаемых потомками от родителей). Генотип является основой наследственных признаков и программы развития. На протяжении индивидуальной жизни контроль над генетическим постоянством организма обеспечивает иммунная система. Согласование деятельности различных органов и систем, а также приспособление к изменяющимся условиям среды являются функциями нервной и гуморальной систем.

Филогенетически наиболее древней является гуморальная регуляция. Она обеспечивает взаимосвязь клеток и органов у примитивно устроенных организмов, не имеющих нервной системы. Основными регуляторными веществами в этом случае являются продукты обмена веществ – метаболиты. Такой способ регуляции называется гуморально-метаболическим. Он, как и другие виды гуморальной регуляции, основан на принципе «всем-всем-всем». Выделяющиеся вещества распространяются по всему организму и изменяют деятельность систем жизнеобеспечения.

В процессе эволюционного развития появляется нервная система, и гуморальная регуляция все более подчиняется нервной. Нервная регуляция функций является более совершенной. В ее основе лежит сигнализация по принципу «письмо с адресом». По нервным волокнам биологически важная информация достигает определенного органа. Развитие нервной регуляции не устраняет более древнюю – гуморальную. Нервная и гуморальная системы объединяются в нейрогуморальную систему регуляции функций. У высокоразвитых живых организмов появляется специализированная система – эндокринная. Эндокринная система использует для передачи сигналов от одних клеток другим специальные химические вещества – гормоны. Гормоны – биологически активные вещества, которые с током крови разносятся к различным органам и регулируют их работу. Действие гормонов проявляется на уровне клеток. Некоторые гормоны (адреналин, инсулин, глюкагон, гормоны гипофиза) связываются с рецепторами на поверхности клеток-мишеней, активируют реакции, происходящие в клетке, и изменяют физиологические процессы. Другие гормоны (гормоны коры надпочечников, половые гормоны, тироксин) проникают внутрь клеточного ядра, связываются с участком молекулы ДНК, «включая» определенные гены. В результате этого «запускается» образование иРНК и синтез белков, изменяющих функции клетки. Гормоны, проникающие в ядро, запускают «программы» работы клеток, поэтому они ответственны за их общую дифференцировку, формирование половых различий, многие поведенческие реакции.

Эволюция нейрогуморальной регуляции функций происходила следующим образом.

• Метаболическая регуляция – за счет продуктов внутриклеточного обмена веществ (простейшие, губки).
• Нервная регуляция – появляется у кишечнополостных.
• Нейрогуморальная регуляция. У некоторых беспозвоночных появляются нейросекреторные клетки – нервные клетки, способные вырабатывать биологически активные вещества.
• Эндокринная регуляция. У членистоногих и позвоночных дополнительно к нервной и простейшей гуморальной (за счет метаболитов) регуляции присоединяется эндокринная регуляция функций.

Выделяют следующие функции регуляторных систем.

• Регуляция и координация всех органов и систем, поддержание постоянства внутренней среды организма (гомеостаз), объединение организма в единое целое.
• Взаимосвязь организма с окружающей средой и приспособление к изменяющимся условиям среды (адаптация).

• Физическое, половое и умственное развитие.
• Поддержание функций организма на постоянном уровне (гомеостаз).
• Приспособление организма к изменяющимся условиям среды (адаптация).

• Контроль над генетическим постоянством внутренней среды организма.

Иммунная и нейроэндокринная системы образуют единый информационный комплекс и общаются на одном химическом языке. Многие биологически активные вещества (например, вещества гипоталамуса, гормоны гипофиза, эндорфины и др.) синтезируются не только в гипоталамусе и гипофизе, но и в клетках иммунной системы. Благодаря единому биохимическому языку регуляторные системы тесно взаимодействуют между собой. Так, β-эндорфин, высвобождаемый лимфоцитами, действует на болевые рецепторы и уменьшает чувство боли. На иммунных клетках имеются рецепторы, взаимодействующие с пептидами гипоталамуса и гипофиза. Некоторые вещества, секретируемые в иммунной системе (в частности, интерфероны) взаимодействуют со специфическими рецепторами на нейронах гипоталамуса, тем самым регулируя выделение гормонов гипофиза.

На уровне физиологических реакций организма взаимодействие регуляторных систем проявляется при развитии стресса. Последствия стресса выражаются в нарушении функций регуляторных систем и контролируемых ими процессов. Действие стрессоров воспринимается высшими отделами нервной системы (кора больших полушарий, промежуточный мозг) и имеет два выхода, реализуемые через гипоталамус:

1) в гипоталамусе находятся высшие вегетативные нервные центры, регулирующие через симпатический и парасимпатический отделы деятельность всех внутренних органов;

2) гипоталамус контролирует работу эндокринных желез, снижающих функциональную активность иммунной системы, в том числе надпочечников, вырабатывающих стресс-гормоны.

В настоящее время доказана роль стресса в развитии язвенных поражений слизистой оболочки желудка, гипертонической болезни, атеросклероза, нарушений функций и структуры сердца, иммунодефицитных состояний, злокачественных опухолей и др.

Возможные исходы стресс-реакции представлены на схеме 1.

Схема 1

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

На сегодняшний день связи между нервной и эндокринной системами, примером которых может быть гипоталамо-гипофизарная система, хорошо изучены.

Гипофиз, или нижний мозговой придаток, расположен под гипоталамусом в выемке костей черепа, называемой турецким седлом, и соединяется с ним через специальную ножку. Масса гипофиза у человека небольшая, около 500 мг, размер – не больше средней вишни. Гипофиз состоит из трех долей – передней, средней и задней. Передняя и средняя доли объединяются в аденогипофиз, а задняя доля иначе называется нейрогипофизом.

Активность аденогипофиза находится под непосредственным контролем гипоталамуса. В гипоталамусе вырабатываются биологически активные вещества (гипоталамические гормоны, рилизинг-факторы), которые с током крови поступают к гипофизу и стимулируют или тормозят образование гипофизарных тропных гормонов. Тропные гормоны гипофиза регулируют деятельность других желез внутренней секреции. К ним относятся: кортикотропин, регулирующий секреторную активность коры надпочечников; тиротропин, регулирующий деятельность щитовидной железы; лактотропин (пролактин), стимулирующий образование молока в молочных железах; соматотропин, регулирующий процессы роста; лютропин и фоллитропин, стимулирующие активность половых желез; меланотропин, регулирующий активность пигментсодержащих клеток кожи и сетчатки глаза.

Задняя доля гипофиза связана с гипоталамусом аксонными связями, т.е. аксоны нейросекреторных клеток гипоталамуса заканчиваются на клетках гипофиза. Гормоны, синтезированные в гипоталамусе, по аксонам транспортируются к гипофизу, а из гипофиза поступают в кровь и доставляются к органам-мишеням. Гормонами нейрогипофиза являются антидиуретический гормон (АДГ), или вазопрессин, и окситоцин. АДГ регулирует функцию почек, обеспечивая концентрирование мочи, и повышает кровяное давление. Окситоцин в больших количествах выбрасывается в кровь в женском организме в конце беременности, обеспечивая роды.

Как было указано выше, большая часть нейроэндокринных регуляторных реакций обеспечивает гомеостаз и адаптацию организма.

Гомеостаз, или гомеостазис (от homoios – подобный и stasis – стояние) – динамическое равновесие организма, поддерживаемое регуляторными системами за счет постоянного возобновления структур, вещественно-энергетического состава и состояния.

Учение о гомеостазе было создано К.Бернаром. Изучая углеводный обмен у животных, К.Бернар обратил внимание на то, что концентрация в крови глюкозы (важнейшего источника энергии для организма) колеблется очень незначительно, в пределах 0,1%. При увеличении содержания глюкозы организм начинает «задыхаться в дыму» недоокис-ленных углеводов, при недостатке – возникает энергетический голод. В обоих случаях наступает резкая слабость и помрачение сознания. В этом частном факте К.Бернар увидел общую закономерность: постоянство внутренней среды есть условие свободной независимой жизни. Термин «гомеостаз» ввел в науку У.Кэннон. Он понимал под гомеостазом устойчивость и согласованность всех физиологических процессов.

В настоящее время термин «гомеостаз» относится не только к регулируемым параметрам, но и к механизмам регуляции. Реакции, обеспечивающие гомеостаз, могут быть направлены на:

– поддержание определенного уровня стационарного состояния организма или его систем;
– устранение или ограничение действия вредоносных факторов;
– изменение взаимоотношений организма и меняющихся условий среды.

К числу наиболее жестко контролируемых гомеостатических констант организма относят ионный и кислотно-щелочной состав плазмы крови, содержание в артериальной крови глюкозы, кислорода, углекислого газа, температуру тела и др. К пластичным константам – величину кровяного давления, количество форменных элементов крови, объем внеклеточной воды.

Понятие «адаптация» (от adaptatio – приспособлять) имеет общебиологическое и физиологическое значение. С общебиологической точки зрения адаптация – совокупность морфофизиологических, поведенческих, популяционных и других особенностей данного биологического вида, обеспечивающая возможность специфического образа жизни в определенных условиях внешней среды.

Как физиологическое понятие адаптация означает процесс приспособления организма к меняющимся условиям среды (природным, производственным, социальным). Адаптация – это все виды приспособительной деятельности на клеточном, органном, системном и организменном уровнях. Различают 2 вида адаптации: генотипическую и фенотипическую.

В результате генотипической адаптации на основе наследственной изменчивости, мутаций и естественного отбора сформировались современные виды животных и растений.

Фенотипическая адаптация – процесс, развивающийся в ходе индивидуальной жизни, в результате которого организм приобретает ранее отсутствовавшую устойчивость к определенному фактору среды. Выделяют два этапа фенотипической адаптации: срочный этап (срочная адаптация) и долговременный этап (долговременная адаптация).

Срочная адаптация возникает непосредственно после начала действия раздражителя и реализуется на основе готовых, ранее сформировавшихся механизмов. Долговременная адаптация возникает постепенно, в результате длительного или многократного действия на организм того или иного фактора среды. Фактически долговременная адаптация развивается на основе многократной реализации срочной адаптации: происходит постепенное накопление определенных изменений, и организм приобретает новое качество и превращается в адаптированный.

Примеры срочной и долговременной адаптации

Адаптация к мышечной деятельности. Бег нетренированного человека происходит при близких к предельным изменениях частоты сердцебиений, легочной вентиляции, максимальной мобилизации резерва гликогена в печени. При этом физическая работа не может быть ни достаточно интенсивной, ни достаточно длительной. При долговременной адаптации к физическим нагрузкам в результате тренировки происходит гипертрофия скелетных мышц и увеличение в них количества митохондрий в 1,5–2 раза, увеличение мощности систем кровообращения и дыхания, повышение активности дыхательных ферментов, гипертрофия нейронов моторных центров и др. При этом может существенно возрастать интенсивность и длительность мышечной деятельности.

Адаптация к условиям гипоксии. Подъем нетренированного человека в горы сопровождается увеличением частоты сердцебиений и минутного объема крови, выброса крови из кровяных депо, за счет чего происходит увеличение доставки кислорода к органам и тканям. На начальных этапах изменений со стороны дыхания не происходит, т.к. в условиях высокогорья в атмосферном воздухе снижено содержание не только кислорода, но и углекислого газа, который является основным стимулятором активности дыхательного центра. При долговременной адаптации к недостатку кислорода повышается чувствительность дыхательного центра к углекислому газу, повышается легочная вентиляция. Это снижает нагрузку на сердечно-сосудистую систему. Увеличивается синтез гемоглобина и образование эритроцитов в красном костном мозге. Повышается активность дыхательных ферментов тканей. Эти изменения делают организм адаптированным к условиям высокогорья. У людей, хорошо приспособившихся к недостатку кислорода, содержание эритроцитов в крови (до 9 млн/мкл), показатели деятельности сердечно-сосудистой и дыхательной систем, физическая и умственная работоспособность не отличаются от таковых у горцев.

Возможности и пределы адаптационных реакций человека определяются генотипом и реализуются при условии действия тех или иных факторов среды. Если фактор не подействовал, то адаптация не реализуется. Например, животное, выросшее среди людей, не адаптируется к природной среде. Если человек всю жизнь вел малоподвижный образ жизни, то он не сможет адаптироваться к физическому труду.

Примеры регуляции функций

Нервная регуляция. Примером нервной регуляции может служить регуляция величины кровяного давления. У взрослого человека величина артериального давления поддерживается на определенном уровне: систолическое – 105–120 мм рт.ст., диастолическое – 60–80 мм. рт.ст. После увеличения давления, вызванного разными факторами (например, физической нагрузкой), у здорового человека оно быстро возвращается к норме за счет сигналов, поступающих от сердечного нервного центра продолговатого мозга. Механизм такой реакции представлен на схеме 2.

Схема 2

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Гуморальная регуляция. Примером гуморальной регуляции может служить поддержание на определенном уровне содержания глюкозы в крови. Углеводы, поступающие с пищей, расщепляются до глюкозы, которая всасывается в кровь. Содержание глюкозы в крови человека составляет 60–120 мг% (после приема пищи – 110–120 мг%, после умеренного голодания – 60–70 мг%). Глюкоза используется как источник энергии всеми клетками организма. Поступление глюкозы в большинство тканей обеспечивает гормон поджелудочной железы инсулин. Нервные клетки получают глюкозу независимо от инсулина благодаря деятельности глиальных клеток, регулирующей обмен веществ в нейронах. Если в организм поступает избыточное количество глюкозы, она откладывается про запас в виде гликогена печени. При недостатке глюкозы в крови под влиянием гормона поджелудочной железы глюкагона и гормона мозгового слоя надпочечников адреналина происходит расщепление гликогена до глюкозы. Если запасы гликогена истощены, то глюкоза может синтезироваться из жиров и белков при участии гормонов коры надпочечников – глюкокортикоидов. При низких концентрациях глюкозы в крови (ниже 60 мг%) прекращается выработка инсулина и глюкоза в ткани не поступает (сберегается для клеток головного мозга), а в качестве источника энергии используются жиры. При очень высоких концентрациях глюкозы в крови (свыше 150–180 мг%), которые могут быть у людей больных сахарным диабетом, глюкоза выводится с мочой. Такое явление называется глюкозурия. Механизм регуляции содержания глюкозы в крови представлен на схеме 3.

Схема 3

1 – инсулин
2 – глюкагон

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Нейрогуморальная регуляция. Примерами нейрогуморальной регуляции могут быть регуляция потребления энергии (пищи) и регуляция глубокой температуры тела.

Регуляция потребления энергии.

Энергия в организм поступает с пищей. Согласно первому закону термодинамики количество потребленной энергии = выполненной работе + теплопродукция + запасенная энергия (жиры и гликоген), т.е. количество химической энергии, содержащейся в пище у взрослого человека, должно быть таким, чтобы покрывать расходы на выполняемую работу (физический и умственный труд) и поддержание температуры тела.

Если количество потребляемой пищи больше необходимого, то происходит увеличение массы тела, если меньше – ее уменьшение. В связи с тем что запасы углеводов в организме ограничены емкостью печени, избыточное количество употребляемых углеводов превращается в жиры и откладывается про запас в подкожной жировой клетчатке. В детском возрасте часть веществ и энергии расходуются на процессы роста.

Потребление пищи регулируется нервными центрами гипоталамуса: центром голода и центром насыщения. При недостатке питательных веществ в крови активируется центр голода, стимулирующий пищепоисковые реакции. После приема пищи сигналы насыщения поступают к центру насыщения, который тормозит активность центра голода (схема 4).

Схема 4

Что такое регуляторная функция в биологии. Смотреть фото Что такое регуляторная функция в биологии. Смотреть картинку Что такое регуляторная функция в биологии. Картинка про Что такое регуляторная функция в биологии. Фото Что такое регуляторная функция в биологии

Сигналы к центру насыщения могут поступать от разных рецепторов. К их числу относятся механорецепторы стенки желудка, приходящие в состояние возбуждения после приема пищи; терморецепторы, сигналы от которых поступают вследствие повышения температуры, вызванного специфическим динамическим действием пищи (после приема пищи, особенно белковой, возрастает уровень обмена веществ и соответственно температура тела). Существуют теории, объясняющие потребление пищи химическими сигналами. В частности, центр насыщения начинает посылать тормозные сигналы к центру голода после повышения содержания глюкозы или жироподобных веществ в крови.

Регуляция глубокой температуры тела.

У теплокровных (гомойотермных) животных температура «ядра» тела поддерживается на постоянном уровне. Образование тепла в организме происходит за счет экзотермических реакций в каждой живой клетке. Количество образующегося в органе тепла зависит от интенсивности обмена веществ: в печени – оно наибольшее, в костях – наименьшее. Отдача тепла происходит с поверхности тела за счет физических процессов: теплоизлучения, теплопроведения и испарения жидкости (пота).

Путем теплоизлучения организм теряет тепло в виде инфракрасных лучей. Однако если температура окружающей среды выше температуры тела, то инфракрасное излучение окружающей среды будет поглощаться телом и его температура может возрастать. Если организм контактирует с холодными телами, хорошими проводниками тепла, например холодной водой, сырой холодной землей, камнями, металлами и т.п., то он теряет тепло путем теплопроведения. При этом высок риск переохлаждения.

Если температура окружающей среды выше, чем температура тела, то единственным способом охлаждения остается потоиспарение. В условиях высокой температуры окружающей среды и высокой влажности испарение пота затрудняется и повышается риск перегревания. Повышение теплообразования может происходить за счет мышечной работы, дрожи, повышения интенсивности обмена веществ.

Терморегуляция контролируется нервной и эндокринной системами. Соматический отдел нервной системы обеспечивает такие реакции, препятствующие переохлаждению, как мышечная работа и дрожь. Симпатический отдел вегетативной нервной системы контролирует изменение просвета кровеносных сосудов (при повышении температуры происходит их расширение, при понижении – сужение), потовыделение, недрожательный термогенез (окисление свободных жирных кислот в буром жире), сокращение гладких мышц, поднимающих волосы.

В условиях понижения температуры окружающей среды повышается активность щитовидной железы и надпочечников. Гормон щитовидной железы тироксин повышает интенсивность окислительно-восстановительных реакций в клетках. Гормон мозгового слоя надпочечников адреналин также повышает уровень обмена веществ.

Регуляция с участием нервной, эндокринной и иммунной систем. Примером регуляции функции с участием всех регуляторных систем является сон. На сегодняшний день существуют три группы теорий, объясняющих природу сна: нервные, гуморальные и иммунные.

Нервные теории связывают сон с работой нервных центров коры больших полушарий, гипоталамуса и ретикулярной формации ствола головного мозга. Корковая теория сна была предложена И.П. Павловым, который в опытах на животных показал, что во время сна наступает торможение в нейронах коры. Позднее были обнаружены центры, регулирующие чередование сна и бодрствования в гипоталамусе.

Ретикулярная формация ствола мозга, собирая информацию с рецепторных структур организма, поддерживает тонус (бодрствующее состояние коры), т.е. также участвует в регуляции процессов сон–бодрствование. При блокаде ретикулярной формации некоторыми веществами наступает сноподобное состояние.

Гуморальными факторами, регулирующими сон, являются некоторые гормоны. Показано, что при накоплении в крови гормона эпифиза серотонина создаются благоприятные условия для быстрого сна, во время которого происходит обработка информации, полученной человеком во время бодрствования.

Иммунная теория сна получила экспериментальное подтверждение после проверки давно известных фактов о повышенной сонливости людей, больных инфекционными заболеваниями. Оказалось, что вещество мурамил-пептид, которое входит в состав клеточной стенки бактерий, стимулирует образование клетками иммунной системы одного из цитокинов, регулирующих сон. Введение мурамил-пептида животным вызывало у них избыточный сон.

Методическое сопровождение курса

Образовательные стандарты, учебные программы и учебники по разделу «Человек и его здоровье»

Современные образовательные стандарты утверждены приказом Минобразования России № 1089 от 5 марта 2004 г. Согласно стандарту раздел «Человек и его здоровье» изучается в 8-м классе. Однако в ряде школ еще не завершен полностью процесс перехода со стандарта 1998 г., предусматривающего изучение анатомо-физиологических тем в 9-м классе.

Сходством двух названных стандартов является перечень основных предлагаемых тем и рассматриваемых вопросов: организм как единое целое, клетки и ткани организма человека, строение и функционирование систем органов, основные физиологические процессы жизнедеятельности организма, принципы регуляции жизнедеятельности, взаимосвязь с окружающей средой, органы чувств и высшая нервная деятельность, вопросы гигиены и профилактики заболеваний. Эти темы отражены во всех учебниках, допущенных и рекомендованных Министерством образования и науки РФ, но их названия могут быть различными.

Особенностью образовательного стандарта 2004 г. является четкое выделение ступеней образования (начальная, основная 9-летняя, полная 11-летняя) и уровней обучения для старшей школы (базовый и профильный). В стандарте освещены основные цели обучения для ступеней и уровней, обязательный минимум содержания основных образовательных программ, требования к уровню подготовки учащихся.

Первый блок требований включает перечень тем, понятий и проблем, которые должны знать (понимать) школьники, они сгруппированы по рубрикам: основные положения, строение биологических объектов, сущность процессов и явлений, современная биологическая терминология и символика. Второй блок включает в себя умения школьников: объяснять, устанавливать взаимосвязи, решать задачи, составлять схемы, описывать объекты, выявлять, исследовать, сравнивать, анализировать и оценивать, осуществлять самостоятельный поиск информации. Третий блок предусматривает требования к использованию приобретенных знаний и умений в практической деятельности и повседневной жизни: оформление результатов, оказание первой помощи, соблюдение правил поведения в окружающей среде, определение собственной позиции и оценки этических аспектов биологических проблем.

Содержание образовательных стандартов реализуется в учебной литературе. Учебник – один из основных источников знаний, необходимых как для получения учащимися новой учебной информации, так и для закрепления ими изученного на уроке материала. С помощью учебника решаются основные цели и задачи обучения: обеспечить овладение учащимися различными видами репродуктивной и творческой учебной деятельности на основе усвоения системы биологических знаний и умений теоретического и практического характера, способствовать развитию и воспитанию школьников.

Учебники различаются между собой содержанием, а также структурой, объемом учебной информации, методическим аппаратом. Однако обязательным требованием к каждому учебнику является соответствие его содержания федеральному компоненту государственного стандарта общего среднего образования по биологии. В настоящее время учебник представляет собой сложную информационную систему, вокруг которой сгруппированы другие средства обучения (аудиокассеты, компьютерная поддержка, интернет-ресурсы, тетради на печатной основе, раздаточный материал и др.), иначе называемые учебно-методическим комплектом (УМК).

Дадим краткую характеристику линий учебников, рекомендованных (допущенных) к использованию в образовательном процессе в общеобразовательных учреждениях. Отметим, что большинство учебников объединены в линии, содержание которых отражено в авторских учебных программах, имеющих содержательные и методические отличия в изложении учебного материала. Единая линия учебников обеспечивает преемственность биологического образования, общность подходов к отбору учебного материала, разработанную методическую систему формирования и развития знаний и умений.

Вариативные учебники по разделу «Человек и его здоровье» могут различаться последовательностью тем, глубиной их освещения, стилем изложения, объемом лабораторного практикума, вопросами и заданиями, методическими рубриками и др.

Практически все предлагаемые учебные программы имеют концентрическое построение, т.е. основное 9-летнее образование завершается изучением раздела «Общая биология». В каждой программе выделяется ведущая идея, которая последовательно реализуется в учебных книгах по разным разделам курса биологии.

Для учебников, разработанных под редакцией Н.И. Сонина, это функциональный подход, т.е. приоритетность знаний о процессах жизнедеятельности организмов, составляющих основу практической направленности содержания, а также отражение современных достижений биологической науки (Сонин Н.И., Сапин М.Р. «Биология. Человек»).

Главными идеями линии учебников, разработанных коллективом авторов под редакцией В.В. Пасечника, можно считать биоцентризм, усиление практической направленности и приоритет развивающей функции обучения (Колесов Д.В., Маш Р.Д., Беляев И.Н. «Биология. Человек»).

В линии, созданной под редакцией И.Н. Пономаревой, при сохранении традиционной структуры разделов главными концептуальными идеями УМК являются разноуровневый и эколого-эволюционный подход к определению содержания, а учебный материал излагается по принципу от общего к частному (Драгомилов А.Г., Маш Р.Д. «Биология. Человек»).

Отличительная черта всех учебников линии, созданной под руководством Д.И. Трайтака, – это практико-ориентированная направленность, реализуемая через тексты учебника, разнообразный практикум и иллюстративный материал (Рохлов В.С., Трофимов С.Б. «Биология. Человек и его здоровье»).

Отбор содержания учебного материала в линии, разработанной под руководством А.И. Никишова, направлен на развитие познавательных способностей школьников. При отборе и структурировании содержания применен современный методический аппарат, предусматривающий двухуровневую организацию текста, что дает возможность осуществлять дифференциацию обучения (Любимова З.В., Маринова К.В. «Биология. Человек и его здоровье»).

Кроме завершенных линий учебников существуют новые, пока еще не завершенные линии. Учебные книги, включенные в рекомендуемый федеральный перечень, соответствуют современным образовательным стандартам.

Вопросы и задания

1. Дайте определение понятиям: адаптация, гипоталамо-гипофизарная система, гомеостаз.

2. Сравните процессы регуляции, контролирующие функции организма (см. таблицу).

3. Составьте краткое сообщение по теме: «Адаптации организма человека». Используйте следующий план.

• Что такое адаптация?
• Какие адаптации существуют? Приведите примеры.
• Основные этапы развития адаптаций.
• Как осуществляются адаптационные реакции?

4. Укажите характерные признаки, объединяющие линию учебников, по которой вы работаете.

5. В чем особенность структуры, стиля, методического аппарата используемого вами учебника по разделу «Человек и его здоровье»?

Таблица

Вопросы сравнения

Нервная регуляция

Гуморальная регуляция

Иммунная регуляция

При помощи чего осуществляется

На какие процессы жизнедеятельности направлено действие

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *