Что такое результат деления

Деление (математика)

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Деле́ние (операция деления) — одно из четырёх простейших арифметических действий, обратное умножению. Деление — это такая операция, в результате которой получается число (частное), которое при умножении на делитель даёт делимое. Существует несколько символов, используемых для обозначения оператора деления.

Подобно тому, как умножение заменяет неоднократно повторенное сложение, деление заменяет неоднократно повторенное вычитание.

Рассмотрим, например, такой вопрос:

Сколько раз 3 содержится в 14?

Повторяя операцию вычитания 3 из 14, мы находим, что 3 «входит» в 14 четыре раза, и ещё «остаётся» число 2.

Результат деления также называют отношением.

Содержание

Деление натуральных чисел

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Кольцо целых чисел не замкнуто относительно деления. Простым языком это означает то, что результат деления одного целого числа на другое может быть не целым. В случае, если всё-таки результат является целым числом, говорят о делении без остатка.

Деление чисел издавна считалось самой трудной из арифметических операций. В Средние века «секрет» деления знало не очень много посвящённых людей. Происходило это потому, что существовавшие алгоритмы деления были очень громоздки, сложны для исполнения и запоминания (например, деление в виде корабля (англ.) ). Появление деления столбиком радикально изменило эту ситуацию — теперь деление входит в раннюю школьную программу по математике наряду с остальными арифметическими действиями. Однако так же, как и в случае с умножением (см. быстрое умножение), в последнее время открыты более эффективные алгоритмы (см. en:Division (digital), применяющиеся в вычислительной технике.

Существуют правила, позволяющие быстро определить, делится ли число на заданный делитель без остатка (признаки делимости). Наиболее известные признаки делимости на 2, 3, 4, 5, 8, 9, 11, 25 и их производные, также существует признаки делимости на 7, 13, 1001 и другие числа.

Целое число, на которое одновременно делятся без остатка несколько чисел, называется их общим делителем.

Определение количества делителей натурального числа приводит к двум важным понятиям: составное и простое число. У простого числа есть ровно два различных делителя — 1 и само число. У составных чисел различных делителей больше двух. 1 не является ни составным, ни простым числом.

В случае, если одно натуральное число не делится на другое без остатка, можно говорить о делении с остатком. Рассмотрение остатков, их сравнение и формализация в виде вычетов привели к целой науке — теории чисел.

Обычно на остаток накладываются следующие ограничения (чтобы он был корректно, то есть однозначно, определён):

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления, Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления,

где Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления— делимое, Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления— делитель, Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления— частное и Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления— остаток.

Деление целых чисел

Деление произвольных целых чисел несущественно отличается от деления натуральных чисел — достаточно поделить их модули и учесть правило знаков.

Однако деление целых чисел с остатком определяется неоднозначно. В одном случае, (так же как и без остатка) рассматривают сначала модули и в результате остаток приобретает тот же знак, что делитель или делимое (например, Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деленияс остатком (-1)); в другом случае понятие остатка напрямую обобщается и ограничения заимствуются из натуральных чисел:

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления.

Деление рациональных чисел

Замыкание множества целых чисел по операции деления приводит к расширению его до множества рациональных чисел. Это приводит к тому, что результатом деления одного целого числа на другое всегда является рациональное число. Более того, полученные числа (рациональные) уже полностью поддерживают операцию деления (замкнуты относительно неё).

Правило деления обыкновенных дробей: Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Деление вещественных чисел

Деление также замкнуто в поле ненулевых вещественных чисел. Дедекиндово сечение позволяет однозначно определить результат деления.

Деление комплексных чисел

Комплексные числа опять замкнуты относительно операции деления.

Деление в алгебре

В отличие от простейших арифметических случаев на произвольных множествах и структурах деление может быть не только не определено, но и обладать множественностью результата.

Обычно в алгебре деление вводится через понятие единичного и обратного элементов. Если единичный элемент вводится однозначным образом (обычно аксиоматически или по определению), то обратный элемент часто может быть как левым (Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления), так и правым (Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления). Эти два обратных элемента могут по отдельности существовать или не существовать, равняться или не равняться друг другу.

К примеру, отношение матриц определяется через обратную матрицу, при этом даже для квадратных матриц может быть:

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления.

Отношение тензоров в общем случае не определено.

Деление многочленов

В общих чертах оно повторяет идеи деления натуральных чисел, ибо натуральное число есть не что иное, как значения многочлена, у которого коэффициенты — цифры, а вместо переменной стоит основание системы счисления:

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления.

Поэтому аналогично определяются: частное, делитель, делимое и остаток (с той лишь разницей, что ограничение накладывается на степень остатка). Поэтому к делению многочленов также применимо деление столбиком.

Отличие же заключается в том, что при делении многочленов основной упор делается на степени делимого и делителя, а не на коэффициенты. Поэтому обычно считается, что частное и делитель (а следовательно и остаток) определены с точностью до постоянного множителя.

Деление на ноль

По правилам стандартной арифметики деление на число 0 запрещено.

Другое дело — деление на бесконечно малую функцию или последовательность. Деление конечных функций на бесконечно малые приводит к появлению бесконечно больших, а отношение двух бесконечно малых называется неопределённостью 0/0, которую можно преобразовать (см. раскрытие неопределённостей) с тем, чтобы получить определённый результат.

Операции деления ненулевого числа на ноль не соответствует никакое действительное число.

Результат этой операции считается бесконечно большим и равным бесконечности:
Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления, где Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления
Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным a или приближается к нему, то частное неограниченно увеличивается(по модулю).

Источник

Деление натуральных чисел и его свойства, правила и примеры.

Деление натуральных чисел.

Рассмотрим понятие деление на задаче:
В корзине лежало 12 яблок. Шестеро детей разобрали яблоки. У каждого ребенка получилось одинаковое количество яблок. Сколько яблок у каждого ребенка?

Решение:
Нам нужно 12 яблок поделить на шестерых детей. Запишем математически задачу 12:6.
Или по-другому можно сказать. На какое число нужно умножить число 6, чтобы получилось число 12? Запишем в виде уравнения задачу. Количество яблок нам неизвестно, поэтому обозначим их за переменную x.

Чтобы найти неизвестное x нам нужно 12:6=2
Ответ: по 2 яблока у каждого ребенка.

Рассмотрим подробно пример 12:6=2:

Число 12 называется делимым. Это число, которое делят.
Число 6 называется делителем. Это число, на которое делят.
И результат деления число 2 называют частным. Частное показывает во сколько раз делимое больше делителя.

В буквенном виде деление выглядит так:
a:b=c
a – делимое,
b – делитель,
c – частное.

Так что же такое деление?

Деление – это действие, обратное умножению. По произведению одного множителя мы можем найти другой множитель.

Деление проверяется умножением, то есть:
a:b=c, проверка с⋅b=a
18:9=2, проверка 2⋅9=18

Неизвестный множитель.

Рассмотрим задачу:
В каждой упаковке по 3 штуки елочных шаров. Чтобы нарядить елку нам нужно 30 шаров. Сколько нам нужно взять упаковок с елочными шарами?

Решение:
x – неизвестное количество упаковок шаров.
3 – штуки в одной упаковки шаров.
30 – всего шаров.

x⋅3=30 нам нужно столько раз взять по 3, чтобы получилось в итоге 30. x – это неизвестный множитель. То есть, чтобы найти неизвестный множитель нужно, произведение поделить на известный множитель.
х=30:3
х=10.

Ответ: 10 упаковок шаров.

Неизвестное делимое.

Рассмотрим задачу:
В каждой упаковке по 6 цветных карандашей. Всего упаковок 3 штуки. Сколько всего карандашей было, до того пока их не разложили по упаковкам?

Решение:
x – всего карандашей,
6 – карандашей в каждой упаковке,
3 – упаковки карандашей.

Запишем уравнение задачи в виде деления.
x:6=3
x – это неизвестное делимое. Чтобы найти неизвестное делимое надо, частное умножить на делитель.
х=3⋅6
х=18

Ответ: 18 карандашей.

Неизвестный делитель.

Разберём задачу:
Было 15 шаров в магазине. За день в магазин пришло 5 покупателей. Покупатели купили равное количество шаров. Сколько шаров купил каждый покупатель?

Решение:
х – количество шаров, которое купил один покупатель,
5 – количество покупателей,
15 – количество шаров.
Запишем уравнение задачи в виде деления:
15:х=5
х – в данном уравнении является неизвестным делителем. Чтобы найти неизвестный делитель, мы делимое делим на частное.
х=15:5
х=3

Ответ: по 3 шара у каждого покупателя.

Свойства деления натурального числа на единицу.

Правило деления:
Любое число, деленное на 1 результатом будет тоже самое число.

7:1=7
a:1=a

Свойства деления натурального числа на нуль.

Рассмотрим пример: 6:2=3, проверить правильно ли мы поделили можно умножением 2⋅3=6.
Если мы 3:0, то сделать проверку мы не сможем, потому что любое число умноженное на нуль будет нуль. Поэтому запись 3:0 не имеет смысла.
Правило деления:
Делить на нуль нельзя.

Свойства деления нуля на натуральное число.

0:3=0 эта запись имеет смысл. Если мы ничего поделим на три части то получим ничего.
0:a=0
Правило деления:
При делении 0 на любое натуральное число не равное нулю, результат всегда будет равен 0.

Свойство деления одинаковых чисел.

3:3=1
a:a=1
Правило деления:
При делении любого числа на себя, не равное нулю, результат будет равен 1.

Вопросы по теме “Деление”:

В записи a:b=c назовите, что здесь является частным?
Ответ: a:b и c.

Что такое частное?
Ответ: частное показывает во сколько раз делимое больше делителя.

При каком значении m запись 0⋅m=5?
Ответ: при умножении на нуль в ответе всегда будет 0. Запись не имеет смысла.

Существует ли такое n, что 0⋅n=0?
Ответ: да, запись имеет смысл. При умножении любого числа на 0 будет 0, поэтому n – любое число.

Пример №1:
Найдите значение выражение: а) 0:41 б) 41:41 в) 41:1
Ответ: а) 0:41=0 б) 41:41=1 в) 41:1=41

Пример №2:
При каких значениях переменных верно равенство: а) х:6=8 б) 54:х=9

а) х – в данном примере является делимым. Чтобы найти делимое нужно частное умножить на делитель.
х – неизвестное делимое,
6 – делитель,
8 – частное.
х=8⋅6
х=48

б) 54 – делимое,
х – делитель,
9 – частное.
Чтобы найти неизвестный делитель, нужно делимое поделить на частное.
х=54:9
х=6

Задача №1:
У Саши 15 марок, а Миши 45 марок. Во сколько раз у Миши марок больше чем у Саши?
Решение:
Можно задачу решить двумя способами. Первый способ:
15+15+15=45
Нужно 3 числа 15, чтобы получить 45, следовательно, в 3 раза у Миши марок больше, чем у Саши.
Второй способ:
45:15=3

Ответ: в 3 раза у Миши марок больше, чем у Саши.

Источник

Деление

В этом разделе познакомимся с делением и узнаем, что деление – это математическая операция, обратная умножению.

Умножение – это последовательное сложение чисел, а деление – это последовательное вычитание чисел.

Как ёжикам поделить между собой яблоки поровну?

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Нужно воспользоваться действием деления и узнать, сколько раз по 3 содержится в 6.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Любой пример на умножение можно представить двумя примерами на деление.

Например, для выражения 6 • 4 = 24 есть два обратных выражения:

24 : 4 = 6 — нужно из 24 вычесть число 4 ровно 6 раз.

24 : 6 = 4 — нужно из 24 вычесть число 6 ровно 4 раз.

Числа при делении

При делении, как и при другом математическом действии, каждое число имеет свое название.

Число, которое делят, называется делимое.

Число, на которое делят, называется делитель.

Результат деления называется частное.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Чтение числовых выражений

Этот пример можно прочитать по-разному.

Деление на 1

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Деление на 0

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Деление числа само на себя

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Связь деления и умножения

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Чётные и нечётные числа

Числа, которые делятся на 2 без остатка, назы­ваются чётными, а числа, которые не делятся на 2 без остатка, называются нечётными.

Чётные: 6, 22 44, 60, 74, 82, 96

Нечётные: 7, 13, 21, 37, 45, 97

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

В несколько раз меньше

Для примера решим задачу:

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

В магазине было 8 котят, а лисичек в 4 раза меньше. Сколько было лисичек?

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Значит, чтобы узнать, сколько было лисичек, нужно 8 : 4 = 2 (л.)

Во сколько раз больше? Во сколько раз меньше?

Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?

Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.

Поделись с друзьями в социальных сетях:

Источник

Математика. 2 класс

Конспект урока

Математика, 2 класс

Урок № 55. Название чисел при делении

Перечень вопросов, рассматриваемых в теме:

1. Как называются числа при делении?

2. Как называется числовое выражение со знаком деление?

Обязательная литература и дополнительная литература:

Теоретический материал для самостоятельного изучения

Запишем равенство, используя необходимое арифметическое действие:

10 яблок разложили на две тарелки поровну.

9 конфет раздали трём детям поровну.

8 тетрадей раздали четырём ученикам поровну.

Для того, чтобы выполнит задание, нам понадобилось действие деление.

Вы уже знаете, как называются числа при сложении и вычитании, недавно вы познакомились с названиями чисел при умножении.

Вы умеете называть выражения со знаками «плюс», «минус», со знаком умножения. Сегодня вы узнаете, как называются числа при делении. Выражение со знаком деления тоже имеет своё название. Хотите узнать? Вперёд!

Числа при делении имеют свои названия.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

8 листьев раздали детям, по 2 листа каждому.

4 человека получили листья.

Число, которое делят, называется делимым. 8 – это делимое. Число, на которое делят делимое, называется делитель. 2 – это делитель Результат действия деления называется частным. 4 – это частное. Выражение 8 разделить на 2 тоже называется частным.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Компоненты деления: делимое, делитель, частное.

Найдите частное, если делимое – 6, делитель – 3.

Найдите частное чисел 12 и 6. Проверьте: 12 : 6 = 2

Решим задачу: 12 клубничек раздали 4 детям поровну. По сколько клубничек получил каждый ребёнок?

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Для решения задачи выберем действие деление, так как надо узнать, сколько раз по 4 содержится в числе 12.

Ответ: по 3 клубнички получил каждый ребёнок.

Вспомним название чисел при делении. 12 – делимое, 4 – делитель. 3 – частное. 12 : 4 – это частное.

Вывод: компоненты действия деление – делимое, делитель, результат деления – частное.

Ответим на вопросы, поставленные в начале урока.

Число, которое делят, называется делимое.

Число, на которое делят делимое, называется делитель.

Результат деления – частное.

Числа, которые соединены знаком деления, тоже называются частное.

Выполним несколько тренировочных заданий.

1. По рисунку составьте задачи на деление. Запишите решение. Назовите компоненты действия деление.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

а) 15 яблок разложили в 3 вазы, в каждую вазу поровну. Сколько яблок положили в одну вазу?

Проверьте: 15 : 3 = 5 (яб.).

15 – делимое. 3 – делитель. 5 – частное. Выражение 15:3 – частное.

б) 15 яблок разложили в вазы, по 5 штук в каждую. Сколько ваз заняты яблоками?

15 – делимое. 5 – делитель. 3 – частное. Выражение 15:5 – частное.

2. Запишите выражение и найдите их значения:

Источник

Деление натуральных чисел

Подобно тому, как вычитание является обратным действием для сложения, так и для умножения существует свое обратное арифметическое действие.

Рассмотрим задачу. В школьной столовой раздали 90 яблок по 3 яблока каждому ученику класса. Сколько учеников учатся в этом классе?

Если бы нам было известно количество учеников в классе и количество яблок, которое получил каждый из них, то общее число яблок мы узнали бы, умножив число учеников на число яблок, доставшееся каждому. То есть, количество учеников – это первый сомножитель, количество яблок – второй сомножитель, а сколько яблок раздали – это произведение.

Деление – это арифметическое действие, которое состоит в нахождении одного из сомножителей при помощи данного произведения и второго сомножителя.

Делимое – это число, которое мы делим на другое. Это то самое произведение, которое нам дано.

Делитель – это число, на которое мы делим делимое. Это данный нам один из множителей.

Частное – это результат действия деление, то есть, искомый нами второй сомножитель.

На записи действие деление обозначается: двоеточием ( \(\textcolor <:>\) ), знаком обелюс ( \(\textcolor <\div>\) ), горизонтальной чертой или косой чертой ( \(\textcolor \) ).

Так, решение нашей задачи можно записать следующими способами:

При записи от руки действие деление принято записывать в виде двоеточия, обелюс применяется в печатной литературе, косая черта, которая по-другому называется слеш, – при записи на компьютере, а горизонтальная черта используется при записи деления в виде обыкновенной дроби.

Итак, разделить число a на число b – это значит найти такое число c, которое при умножении его на число b дает в результате числа a.
То есть: \(\textcolor \) , если \(\textcolor \) .

Компоненты действия деление:

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Деление с остатком и неполное частное

К примеру, если мы захотим раздать все 37 яблок поровну между пятью детьми, то у нас это сделать не получится. Мы сможем раздать (использовать из всего количества яблок) только по 7 яблок каждому ( \(\textcolor <7\cdot 5=35>\) ), и у нас останется 2 яблока ( \(\textcolor <37-35=2>\) ).

Итак, деление с остатком – это нахождение такого наибольшего целого числа, умножив которое на делитель, мы получим число, максимально близкое к делимому, но не превосходящее его. Это искомое число называется неполное частное. Разница между делимым и неполным частным называется остаток.

Остаток всегда меньше делителя!

Связь деления с умножением, сложением и вычитанием

Когда мы выполняем находим произведение двух чисел, эти числа нам известны, а от нас требуется найти результат действия умножение. При делении (без остатка) нам известно произведение двух чисел, а найти нужно такое число, которое при умножении на известное данное число дает это самое произведение.

Следовательно, действие деление является обратным действию умножения.

Справедливо также и обратное, что действие умножение обратно действию деления. Таким образом:

Умножение и деление – это взаимно обратные действия.

Связь деления с умножением, а также со сложением и вычитанием прекрасно видна, если рассмотреть, как с помощью этих действий можно выполнить действие деление.

Деление двух чисел при помощи сложения

Деление двух чисел при помощи вычитания

То есть, 69 от 345 можно отнять 5 раз, поэтому \(\textcolor <349\div 69=5>\).

Деление двух чисел при помощи умножения

При помощи умножения узнать ответ на наш вопрос можно перебирая множитель числа 69 до тех пор, пока не получим заданное нам 345 :

Но эти три способа очень громоздки, особенно если частное представляет собой очень большое число. Их нужно знать только для того, чтобы понимать суть действия деления, суть тех задач, которые решаются посредством него.

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Прежде всего, нужно узнать количество цифр в частном и первое неполное делимое; как их находить, я подробно расписал в этой статье. В нашем случае первое неполное делимое равно 295 тысяч, а в частном будет 4 цифры.

Далее записываем известные компоненты деления следующим образом:

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

и начинаем вычисление:

1. Берем первое неполное делимое и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру разряда тысяч, а под неполным делимым пишем результат произведения неполного частного и делителя. И сразу же находим остаток от этого действия, т.е. вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor <8\cdot 37=272>\). Записываем его под 295 и находим разницу: \(\textcolor <295-272=23>\). Значит, 23 тысячи у нас остаются неразделенными.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Рассмотрим еще один пример. \(\textcolor <25326\div 63>\).

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Итак, запомните, что каждое неполное делимое образует в частном одну цифру соответствующего разряда и что даже если неполное делимое меньше делителя, то в частном все равно нужно записать нулевой результат этого действия.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Итак, в общем виде алгоритм деления в столбик выглядит так:
1. Находим первое неполное делимое и количество цифр в частном.
2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.
3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.
4. Ставим между ними знак минус и выполняем действие.
5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.
6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.
7. Если неполное делимое невозможно разделить на делитель, то в частном ставится 0 и к этому неполному делимому сносится следующая цифра.

Деление на числа, заканчивающиеся нулями

Как и в случае с умножением, деление чисел облегчается, если делитель заканчивается одним или несколькими нулями. Рассмотрим два возможных случая:

Рассмотрим первый случай.

Деление на единицу с любым количеством нулей

Единица с любым количеством нулей – это не что иное как единица соответствующего разряда. Например, 10 – это 1 единица разряда десятков, 1000 – это одна единица разряда тысяч, 10000000 – 1 единица разряда десятков миллионов и т.д.

Запишите:
Чтобы разделить какое-нибудь число на единицу с любым количеством нулей, нужно отсчитать в делимом справа столько цифр, сколько нулей содержится в делителе; тогда все цифры, находящиеся слева от разделения, составят частное, а те, что справа – будут остатком.

Деление на число, оканчивающееся нулями

Рассмотрим на примере \(\textcolor <284556\div 2800>\).

Делитель здесь не что иное как 28 сотен. Логично предположить, что эти 28 сотен могут хотя бы один раз содержаться только в сотнях делимого. Значит, нам нужно определить, сколько в делимом всего единиц разряда сотен, и разделить их на 28 единиц разряда сотен делимого. А отброшенные цифры десятков и простых единиц добавятся к остатку.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Запишите:
Чтобы разделить какое-нибудь число на число, заканчивающееся нулями, нужно отбросить мысленно нули в делителе, в делимом тоже отбросить мысленно такое же количество цифр, как и нулей в делителе. Получившееся число в делимом разделить на получившееся число в делителе, а к остатку прибавить (снести) те цифры делимого, которые отбросили ранее.

Проверка деления

Так как делимое – это делитель, умноженный на частное и плюс остаток, что следует из определения деления, то результат выполнения деления можно проверить умножением.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Если в результате действия деления не получилось остатка, то деление можно проверить и делением. Действительно, если делимое – это произведение делителя и частного, то разделив делимое на частное (один из сомножителей), мы должны получить второй сомножитель, то есть, делитель.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

Свойства деления

Свойства деления я представлю двумя группами:

Давайте рассмотрим каждую группу подробнее.

Действия деления с единицей и нулем

При делении числа на единицу получается то же самое число.

Действительно, разделить число на единицу означает узнать, сколько единиц содержится в данном числе. А количество единиц в числе – это не что иное, как само это число.

И ли вот, например, если 10 яблок нужно раздать одному человеку ( 10 поделить на 1 ), то ему все эти 10 яблок и достанутся, правда?

При деление одинаковых чисел (числа на равное число) в результате будет 1 (единица).

В самом деле, если все единицы какого-то числа разделить на количество частей, равное количеству единиц этого числа, то в каждая часть получит по 1 единице.

Например, если 20 яблок раздать 20 школьникам, то каждому достанется по 1 яблоку.

При делении нуля на любое число, отличное от нуля, в результате будет нуль.

Разделить нуль на число означает найти такое число, умножив которое на данный делитель, мы получим в результате нуль. А такое число только одно – это нуль.

На нуль делить нельзя, то есть, нуль не может выступать в роли делителя.

При делении каких угодно чисел делителем может быть любое число, кроме нуля.

Рассмотрим два случая: когда нулём является только делитель, и когда делимое и делитель оба нули.

Распределительные свойства деления

Чтобы найти частное от деления суммы на число, нужно поделить каждое слагаемое на это число, и найти сумму полученных частных.
\(\textcolor <(a+b+c)\div d=a\div d+b\div d+c\div d>\).
При этом подразумевается, что все действия деления получаются без остатка.

Чтобы найти частное от деления разности на число, нужно поделить на это число отдельно сперва уменьшаемое, а потом вычитаемое, после чего найти разность первого частного и второго.
\(\textcolor <(a-b)\div c=a\div c-b\div c>\)
При этом также предполагается, что при делениях уменьшаемого и вычитаемого на число не получается остатков.

Например: \[\textcolor <(36-24)\div 6=36\div 6-24\div 6=6-4=2>\] Число 36 состоит из 6 шестерок, а 24 – из 4 шестерок, а забрав у 6 шестерок 4 шестерки, получим 2 шестерки. Такой же итог будет и если мы сперва у 36 отнимем 24 единицы (останется 12 ), а потом найдем, сколько в этой разнице содержится шестерок: \(\textcolor <12\div 6=2>\).

Чтобы найти частное от деления произведения на число, нужно поделить на него только один из сомножителей, а результат умножить на неизмененные остальные.
\(\textcolor <(a\cdot b\cdot c)\div d=a\div d\cdot b\cdot c=b\div d\cdot a\cdot c=c\div d\cdot a\cdot b>\).

Чтобы найти частное от деления числа на произведение, нужно это число поделить на первый сомножитель, результат деления поделить на второй сомножитель, полученное частное – на третий и так далее.
\(\textcolor \).
При этом предполагается, что при всех этих делениях не получается остатков.

Что такое результат деления. Смотреть фото Что такое результат деления. Смотреть картинку Что такое результат деления. Картинка про Что такое результат деления. Фото Что такое результат деления

На рисунке наглядно видно, что в итоге после применения этого правила, число 30 получилось разделенным на 6 равных частей.

Изменение частного при изменении делимого и делителя

При рассмотрении изменений частного в результате изменений делимого и делителя предполагается, что действие деление происходит без остатка. В противном случае изменения могут быть не такими, о которых идет речь ниже.

При увеличении делимого в определенное количество раз, частное увеличится в это же количество раз, а при уменьшенииуменьшится.

Если мы в примере \(\textcolor <24\div 4=6>\) делимое увеличим, к примеру, в 3 раза, то мы можем переписать это выражение в виде \(\textcolor <(24+24+24)\div 4>\). Используя свойство деления суммы на число, мы увидим, что теперь нам нужно сложить три слагаемых, каждое из которых равно начальному выражению: \(\textcolor <24\div 4+24\div 4+24\div4>\). Отсюда очевидно, что результат будет больше начального в 3 раза.

Если мы в этом же примере \(\textcolor <24\div 6>\) уменьшим делимое в 3 раза, то есть, разделим его на три равные части, то очевидно, что результат деления одной части на 6 будет в 3 раза меньше, чем результат деления трех таких же частей. Посмотрите сами. Начальное выражение \(\textcolor <24\div 6>\) можно записать в виде: \(\textcolor <(8+8+8)\div 6=8\div 6+8\div 6+8\div 6>\), а уменьшенное в 3 раза делимое даст нам только одно из трех таких слагаемых: \(\textcolor <8\div 6>\).

При увеличении делителя в определенное количество раз, частное уменьшится в это же количество раз, а при уменьшенииувеличится.

Действительно, изменение делителя означает, что делимое необходимо разделить на большее или меньшее количество равных частей. Соответственно, если нужно разделить на большее число частей, то каждая часть будет меньше, чем изначально, а если делить на меньшее число частей, то каждая часть будет крупнее.

В случае одновременного изменения делимого и делителя, частное может вести себя по-разному, или же вообще оставаться без изменений. Если нужно узнать, станет оно больше или меньше, нужно сперва посмотреть, как частное изменится после изменения делимого, а потом – как изменится после изменения делителя.

При увеличении или уменьшении делимого и делителя в одинаковое количество раз, частное не меняется.

Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось это, или нет.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.7 / 5. Количество оценок: 3

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *