Что такое ртс в теплоэнергетике
ПЕРЕЧЕНЬ СОКРАЩЕНИЙ
АЗ – аварийная защита; активная зона (ядерного реактора)
АСПТ, АСТ – атомная станция промышленного теплоснабжения, атомная
АСУТП – автоматизированная система управления технологическими
АТЭЦ – атомная теплоэлектроцентраль
АЧР – автоматическая частотная разгрузка
АЭС – атомная электрическая станция
БН – бустерный насос
БОУ – блочная обессоливающая установка
БРОУ, БРУ – быстродействующая редукционно-охладительная установка,
БЩУ – блочный щит управления
ВВЭР – водо-водяной энергетический реактор
ВПУ – водоподготовительная установка
ВС – верхняя ступень (сетевого подогревателя)
ВСП – верхний сетевой подогреватель
ВХР – водно-химический режим
ВЭР – вторичные энергоресурсы
ВЭС – ветровая электростанция
ГАВР – гидразин-аммиачный водный режим
ГАЭС – гидроаккумулирующая электростанция
ГеоТЭС – геотермальная теплоэлектростанция
ГеЭС – гелиоэлектростанция (солнечная электростанция)
ГЗЗ – главная запорная задвижка
ГК – генерирующая компания (в энергосистеме)
ГОСТ – государственный стандарт
ГОЭЛРО – государственный план электрификации России (1920 г.)
ГП – генеральный план (электростанции)
ГРП – газораспределительный пункт
ГРЭС – государственная районная электростанция
ГТ, ГТД, ГТУ, ГТУ-ТЭЦ, ГТЭС – газовая турбина, газотурбинный двигатель,
газотурбинная установка, ТЭЦ с ГТУ,
гут – грамм условного топлива
ГЦК – главный циркуляционный контур
ГЦН – главный циркуляционный насос
ГЩУ – главный щит управления
ДВ – дутьевой вентилятор
ДВД – деаэратор высокого давления
ДИ – деаэратор испарителя
ДН – дренажный насос
ДНД – деаэратор низкого давления
ДПТС – деаэратор подпитки теплосети
ДЭС – дизельная электростанция
ЗРУ – закрытое распределительное устройство
ЗШО, ЗШУ – золошлакоотвал, золошлакоудаление
КЗ – короткое замыкание
КИ – конденсатор испарителя
КИА, КИП – контрольно-измерительная аппаратура,
КИУМ – коэффициент использования установленной мощности
КМПЦ – контур многократной принудительной циркуляции
КН – конденсатный насос
КНС – насос конденсата сетевых подогревателей
КО – конденсатоочистка; конденсатоотводчик; компенсатор объема
КПД – коэффициент полезного действия
КПТ – конденсатно-питательный тракт
КПТЭ – комбинированное производство тепловой и электрической энергии
КТ – конденсатный тракт
КТО, КТП, КТПР – коэффициент теплоотдачи, коэффициент теплопередачи,
КТЦ – котлотурбинный цех (электростанции)
КУ – котельная установка; котел-утилизатор
КЦ – котельный цех (электростанции)
КЭН – конденсатный электронасос
КЭС – конденсационная электростанция
ЛЭП – линия электропередачи
МАГАТЭ – Международное агентство по атомной энергии
МБ – материальный баланс
МГДУ – магнитогидродинамическая установка
МИРЭК, МИРЭС – Мировая энергетическая конференция, Мировой
МПА – максимальная проектная авария (на АЭС)
НВИЭ – нетрадиционные и возобновляемые источники энергии
НКВР – нейтрально-кислородный водный режим
НОК – насос обратного конденсата
НС – нижняя ступень (сетевого подогревателя)
НСП – нижний сетевой подогреватель
НСС – начальник смены станции
ОВ – охлаждающая вода; очищенная вода; охладитель выпара (деаэратора)
ОВК – объединенный вспомогательный корпус
ОД – охладитель дренажа
ОДУ – объединенное диспетчерское управление
ОК – обратный конденсат; обратный клапан
ОП – охладитель продувки
ОРУ – открытое распределительное устройство
ОСТ – отраслевой стандарт
ОУ – охладительная установка; охладитель уплотнений
ОЭ – основой эжектор; охладитель эжектора
ПБ – пиковый бойлер; пожарная безопасность
ПВ – питательная вода
ПВД – подогреватель высокого давления
ПВК – пиковый водогрейный котел
ПВТ – пароводяной тракт
ПГ – парогенератор; природный газ
ПГУ – парогазовая установка; парогенерирующая установка
ПДК – предельно допустимая концентрация
ПЕ – перегреватель свежего пара
ПК – паровой котел; пиковый котел; предохранительный клапан
ПКВД, ПКНД – паровой котел высокого, низкого давления
ПН – питательный насос
ПНД – подогреватель низкого давления
ПП – промежуточный пароперегреватель; полупроводник
ППР – паропреобразователь; планово-предупредительный ремонт
ПРК – пускорезервная котельная
ПСВ – подогреватель сетевой воды
ПТ – паровая турбина; паровой тракт; подготовка топлива
ПТС – принципиальная тепловая схема
ПТУ – паротурбинная установка
ПТЭ – правила технической эксплуатации
ПУ – подогреватель уплотнений
ПУЭ – правила устройства электроустановок
ПХ – паровая характеристика
ПЭ – подогреватель эжекторов; пусковой эжектор
ПЭН – питательный электронасос
Р – расширитель; реактор (ядерный)
РАО – радиоактивные отходы
энергетики и электрификации «Единая
электроэнергетическая система России»
РБМК – реактор большой мощности канальный (кипящий)
РБН – реактор на быстрых нейтронах
РВП – регенеративный воздухоподогреватель
РД – руководящий документ
РЗА – релейная защита и автоматика
РОУ – редукционно-охладительная установка
РП – регенеративный подогреватель
РТН – реактор на тепловых нейтронах
РТС – развернутая (полная) тепловая схема
РУ – редукционная установка; реакторная установка; распределительное
РЦ – реакторный цех (атомной электростанции)
РЭК – региональная энергетическая комиссия
РЭС – районные электрические сети
САОЗ – система аварийного охлаждения зоны (ядерного реактора)
САР, САУ – система автоматического регулирования, система
СВО, СГО – спецводоочистка, спецгазоочистка (на АЭС)
СЗЗ – санитарно-защитная зона
СК – стопорный клапан; сетевая компания (в энергосистеме)
СКД, СКП – сверхкритическое давление, сверхкритические параметры
СН – сетевой насос; собственные нужды
СНиП – санитарные нормы и правила
СП – сетевой подогреватель
СТВ – система технического водоснабжения
СУЗ – система управления и защиты (ядерного реактора)
СХТМ – система химико-технологического мониторинга
СЦТ – система централизованного теплоснабжения
СЭС – солнечная электростанция
ТБ – тепловой баланс; топливный баланс; техника безопасности
ТВ – техническая вода
ТВД – турбина высокого давления
ТВС, твэл – тепловыделяющая сборка, тепловыделяющий элемент
ТГВТ – топливно-газо-воздушный тракт
ТГУ – турбогенераторная установка
ТИ – тепловая изоляция
ТК – теплофикационный пучок конденсатора турбины; технологический
канал (ядерного реактора); топливная кассета (для АЭС)
ТНД – турбина низкого давления
ТО – теплообменник; техническое обслуживание
ТП – тепловой потребитель; турбопривод (насоса); технологический процесс
ТПН – питательный насос с турбоприводом (турбопитательный насос)
ТТЦ – топливно-транспортный цех (электростанции)
ТУ – турбоустановка; технические условия
ТХ – топливное хозяйство; тепловая характеристика
ТЦ – турбинный цех (электростанции)
ТЭБ – топливно-энергетический баланс
ТЭК – топливно-энергетический комплекс
ТЭО – технико-экономическое обоснование (проекта)
ТЭР – топливно-энергетические ресурсы
ТЭС – тепловая электрическая станция
ТЭЦ-ЗИГМ – теплоэлектроцентраль заводского изготовления на
ТЭЦ-ЗИТТ – теплоэлектроцентраль заводского изготовления на твердом
ФОРЭМ – федеральный оптовый рынок энергии и мощности (России)
ФЭК – федеральная энергетическая комиссия
ХОВ – химочищенная вода
ХХ – холостой ход (турбины)
ХЦ – химический цех (электростанции)
ЦВ – циркуляционная вода
ЦВД, ЦНД, ЦСД – цилиндр высокого, низкого, среднего давления (турбины)
ЦН – циркуляционный насос
ЦТАИ – цех тепловой автоматики и измерений (электростанции)
ЦЦР – цех централизованного ремонта (электростанции)
ЧВД, ЧНД, ЧСД – часть высокого, низкого, среднего давления (турбины)
ЭДС – электродвижущая сила
ЭС – электрическая станция; электрические сети; Энергетическая стратегия
ЭУ – энергетическая установка; эжектор уплотнений
ЭХ – энергетическая характеристика
ЭЦ – электроцех (электростанции)
ЭЭС – электроэнергетическая система
ЛИТЕРАТУРА
1. Волков Э.П., Ведяев В.А., Обрезков В.И. Энергетические установки электростанций. М.: Энергоатомиздат, 1983.
2. Гиршфельд В.Я., Морозов Г.Н. Тепловые электрические станции. М.: Энергоатомиздат, 1986.
3. Грибков А.М., Гаврилов Е.И., Полтавец В.М. Основы проектирования и эксплуатации тепловых электростанций. Казань: Изд-во КГЭУ, 2004.
4. Дементьев Б.А. Ядерные энергетические реакторы. М.: Энергоатомиздат, 1990.
5. Дэвинс Д. Энергия. М.: Энергоатомиздат, 1985.
6. Елизаров Д.П. Теплоэнергетические установки электростанций. М.: Энергоиздат, 1982.
7. Киселев Г.П. Условные обозначения энергетического оборудования, трубопроводов и арматуры в тепловых схемах. Методические указания по дипломному проектированию для специальности «Тепловые электрические станции». М.: Изд-во МЭИ, 1981.
8. Литвин А.М. Основы теплоэнергетики. М.: Энергия, 1973.
9. Маргулова Т.Х. Атомные электрические станции. М.: Высшая школа, 1974, 1978, 1984.
10. Маргулова Т.Х., Подушко Л.А. Атомные электрические станции. М.: Энергоиздат, 1982.
11. Нигматуллин И.Н., Нигматуллин Б.И. Ядерные энергетические установки. М.: Энергоатомиздат, 1986.
12. Правила технической эксплуатации электрических станций и сетей Российской Федерации. М.: СПО ОРГРЭС, 2003.
13. Проценко А.Н. Покорение атома. М.: Атомиздат, 1964.
14. Проценко А.Н. Энергия будущего. М.: Молодая гвардия, 1985.
15. Проценко А.Н. Энергетика сегодня и завтра. М.: Молодая гвардия, 1987.
16. Рыжкин В.Я. Тепловые электрические станции. М.: Энергоатомиздат, 1976, 1987.
17. Соколов Е.Я. Теплофикация и тепловые сети. М.: Изд-во МЭИ, 2001.
18. Промышленные тепловые электростанции/ Под ред. Е.Я.Соколова. М.: Энергия, 1979.
19. Стерман Л.С., Лавыгин В.М., Тишин С.Г. Тепловые и атомные электрические станции. М.: Изд-во МЭИ, 2004, 2008.
20. Стерман Л.С., Тевлин С.А., Шарков А.Т. Тепловые и атомные электрические станции. М.: Энергоиздат, 1982.
21. Тепловые и атомные электрические станции/ Под ред. А.В. Клименко, В.М. Зорина. М.: Изд-во МЭИ, 2003.
22. Чичирова Н.Д., Шагиев Н.Г., Евгеньев И.В. Химия комплексных соединений. Комплексные соединения в теплоэнергетике. Казань: Изд-во КГЭИ, 1999.
23. Шагиев Н.Г., Мельников В.Н., Дик В.П. Экономика ядерной энергетики и организация производства. М.: Изд-во МЭИ, 1994.
Что такое ртс в теплоэнергетике
Термины и определения
Thermal power. Terms and definitions
Дата введения 1987-01-01
1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17.12.85 N 4071
2. Стандарт соответствует Публикации МЭК 50 (602)
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Настоящий стандарт устанавливает термины и определения понятий в области теплоэнергетики.
Термины, установленные настоящим стандартом, обязательны для применения в документации и литературе всех видов, входящих в сферу действия стандартизации или использующих результаты этой деятельности.
Для каждого понятия установлен один стандартизованный термин.
Применение терминов-синонимов стандартизованного термина не допускается.
Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены «Ндп».
Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.
Приведенные определения можно при необходимости изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.
В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приведено и в графе «Определение» поставлен прочерк.
B стандарте в качестве справочных приведены иноязычные эквиваленты для ряда стандартизованных терминов на немецком (D), английском (Е) и французском (F) языках.
В стандарте приведены алфавитные указатели содержащихся в нем терминов на русском языке и их иноязычных эквивалентов.
Что такое Индекс РТС, какие акции в него входят и как на нем можно заработать
Что такое Индекс РТС
Индекс РТС, как и Индекс МосБиржи (о нем – расскажем в другой статье) сводный индикатор, который рассчитывается по определенному набору ключевых акций и характеризует состояние российского фондового рынка, то есть выступает для него основным бенчмарком, показывая изменение капитализации предприятий, входящих в базу расчета.
Впервые этот показатель был рассчитан в 1995 году по 30 акциям крупнейших эмитентов биржи РТС (Российская торговая система), тогда еще самостоятельной и на тот момент крупнейшей в стране торговой площадки. Начальное значение индекса в момент начала расчетов было принято за 100 пунктов.
Что же входит в индекс РТС
В Индекс РТС входят публичные российские компании, отличающиеся значительным масштабом бизнеса и высокой динамикой развития, ведущие деятельность в ключевых для страны секторах экономики. Количество их периодически изменяется. Если первый расчет был сделан по 30 компаниям, то потом их количество выросло до 50, а в 2020 года – снова снизилось до 38.
В конце каждого квартала состав индекса пересматривается индексным комитетом. Удельные веса акций, входящих в индекс, разные: наибольшие показатели у топовых компаний – преимущественно «голубых фишек». Остальные получают вес пропорционально своей роли в различных секторах экономики на момент пересмотра состава индекса.
Как рассчитывается индекс
Для расчета Индекса РТС есть формула:
В свою очередь, капитализацию находят по формуле:
MCn = Σ (Pi × Qi × FFi × Wi), где:
Расчет производится по каждой компании, входящей в Индекс РТС, затем результаты суммируются.
Коэффициент FF показывает, сколько акций предприятия находятся в свободном обращении. Например, 0,37 означает, что 37 % выпущенных компанией акций свободно торгуются.
Как купить Индекс РТС
Купить сам индекс РТС невозможно. Но можно торговать через производные инструменты.
В общем, инвестору есть из чего выбрать. Довольно эффективной стратегией для инвестирования в индекс является покупка фьючерса, но это потребует знаний и опыта работы на срочном рынке и довольно много свободных денежных средств. Более доступны ETF, хотя их привлекательность, в свою очередь, снижает высокая комиссия. Также можно купить по отдельности акции, которые входят в состав Индекса РТС в соответствующих пропорциях. Однако для этого потребуется еще более значительный объем капитала.
Как инвестору пользоваться индексом РТС на практике
Заключение
Подпишитесь на нашу рассылку, и каждое утро в вашем почтовом ящике будет актуальная информация по всем рынкам.
Применение технологий РТС в производстве «теплых полов»
Технология PTC (Positive Temperature Coefficient) в современных системах теплых полов позволяет достичь значительной экономии электроэнергии, которая составляет порядка 35%! Вероятность перегрева при этом полностью исключена.
Теплые полы, производимые с применением технологии PTC, универсальны, и подойдут для установки как под традиционное напольное покрытие (линолеум, ламинат, паркет), так и для установки в громоздкие промышленные бетонные плиты. Таким образом, вариаций установки великое множество: от простой установки в доме, до установки в промышленное помещение, температура в котором может достигать 160°C.
Пленка, которая изготовлена по технологии PTC, автоматически регулирует потребление электроэнергии при корректировании температуры, так как частицы нагревателя выступают в качестве датчиков температуры.
В статье мы детально рассмотрим пленочный пол марки HeatFlow HFS 0510, произведенный по технологии PTC.
Пленками PTC используется температура фиксированного значения. То есть прохождение электрического тока сопровождается повышением температуры, изменяя при этом температуру нагрева полимера, в связи с чем блокируется углеродный проводящий путь. Когда же все показатели нормализуются – полимером формируется проводящий путь, при этом он имеет низкое сопротивление. При подаче тока на концы PTC температура возрастает, что означает постепенное отключение углеродного пути.
Преимущества использования нагревательных пленок с PTC-технологией
Технология PTC, используемая в пленке, снижает энергопотребление, исключает перегрев и понижает мощность, поэтому сомнений в безопасности ее использования не возникает.
Преимущество технологии PTC наглядно можно проиллюстрировать при помощи графиков, на которых изображено изменение сопротивления и мощности при возрастании температуры.
Согласно данным второго графика можно заметить значительное понижение мощности при повышении температуры.
Применение пленок, изготовленных по PTC-технологии, позволяет значительно сэкономить электроэнергию, что особенно важно при использовании такого обогрева в промышленном масштабе.
Как используется пленка с PTC?
На всем протяжении теста в помещении поддерживалась температура 14°C, при этом были показаны следующие результаты:
Еще одним красноречивым подтверждением экономичности пленки является сравнительная таблица величины зависимости энергопотребления от повышения температуры пленки с технологией PTC и обычных пленок.
Что такое ртс в теплоэнергетике
Компания «Роскер» производит РТС- нагреватели для вентиляционных установок, тепловых завес, отопителей и систем кондиционирования, в том числе для транспорта.
PTC-нагреватели – это позисторы с положительным температурным коэффициентом (Positive temperature coefficient). Они представляют собой полупроводниковые керамические элементы, изготовленные из поликристаллической керамики на основе титаната бария (BaTiO3).
При подаче напряжения PTC-элемент начинает разогреваться до температуры, близкой к температуре переключения. При достижении температуры переключения, сопротивление многократно увеличивается, электрический ток, протекающий через PTC-элемент, снижается, что ведёт за собой снижение потребляемой мощности. При съеме тепла с нагревательного элемента (воздушным потоком, жидкостью и т.д.) температура элемента начинает снижаться, сопротивление уменьшается, что ведёт за собой увеличение тока и рост мощности, тем самым достигается эффект саморегулирования.
Благодаря данному свойству PTC-нагреватели можно использовать без элементов системы управления, стабилизирующих устройств и защитных механизмов от перегрева, поскольку максимальная температура ограничена самим элементом.
В результате максимальная температура поверхности нагревательного элемента, даже в аварийном режиме (при остановке вентилятора), не превышает максимального показателя по температуре, что еще раз доказывает его характерную чувствительность.
К достоинствам PTC-нагревателей относятся:
Керамические элементы сохраняют физическую целостность долгое время, более 20 тыс. часов в беспрерывном режиме эксплуатации.