Что такое саморегуляция у живых организмов
КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ
КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ
Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений не регулярна доступность пищи. Донимают паразиты, хищники и просто конкуренты за среду обитания. Тем не менее, животные и растения выносят эти колебания среды, живут, растут, размножаются. Экологические сообщества долгое время сохраняют некий средний состав.
Основоположник идеи о физиологическом гомеостазе Клод Бернар рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. (слайд 3)
Эта ситуация характеризуется как самоорганизация, развитие, эволюция, и ни о какой стабильности системы говорить не приходится. Это может быть любой рост (клетки, организма, популяции), изменение видового состава в сообществе организмов, изменение концентрации мутаций в генофонде популяции, ведущее через отбор к эволюции видов. Естественно, что обратные положительные связи не только не поддерживают, но, напротив, разрушают гомеостаз.
Обратная отрицательная связь стимулирует изменения в регулируемой системе с противоположным знаком относительно тех первичных изменений, которые породили прямую связь. Первоначальные сдвиги параметров системы устраняются, и она приходит в исходное состояние. Цикличное сочетание прямых положительных и обратных отрицательных связей может быть, теоретически, бесконечно долгим, так как система колеблется около некоторого равновесного состояния (рис. 1б). Таким образом , для поддержания гомеостаза системы используется принцип отрицательной обратной связи.
Далее на конкретных примерах покажем саморегуляцию биологических систем разного уровня сложности.
В клетке для поддержания гомеостаза используются в основном химические (молекулярные) механизмы регуляции. Наиболее важна регуляция генов, от которых зависит производство белков, в том числе многочисленных и разнообразных ферментов.
По своей простоте система регуляции гена концентрацией субстрата похожа на простые технические регуляторы. Однако, у эукариот регуляция генной активности более сложная.
Другой пример простых саморегулирующихся систем, использующих обратную отрицательную связь, представляют ферментативные цепи, ингибируемые конечным продуктом. Суть регуляции состоит в том, что конечный продукт имеет сродство с первым ферментом. Связываясь с ферментом, продукт ингибирует (подавляет) его активность, так как полностью искажает его третичную структуру. Работает следующий регуляторный цикл. При повышении концентрации конечного продукта выше необходимого уровня его избыток ингибирует ферментную цепь (для этого достаточно остановить самый первый фермент). Ферментация прекращается, а свободный продукт расходуется на нужды клетки. Через некоторое время возникает дефицит продукта, блок с ферментов снимается, цепь активируется, и производство продукта снова растет. (слайд 7)
Заметим, однако, что регулируемые параметры не бывают абсолютно постоянными, они поддерживаются в допустимых границах. В каждом случае это свои физиологические границы, позволяющие нормально осуществлять клеточные функции.
САМОРЕГУЛЯЦИЯ МНОГОКЛЕТОЧНОГО ОРГАНИЗМА
У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит усложнение и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза.
Основную роль в поддержании гомеостаза организма играют нервная и гормональная системы регуляции (слайд 9).
Выделяемые эндокринными железами гормоны с током крови (гуморально) распространяются ко всем органам-мишеням и участвуют в регуляции их роста и функционирования. Таким образом, фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогормональная саморегуляция организма. (слайд 10)
Механизм обратной отрицательной связи вовлечен в поддержание постоянства числа клеток в обновляющихся тканях, таких как кровь, кишечный или кожный эпителий. (слайд 12)
В этих тканях имеется резерв недифференцированных клеток (например, красный костный мозг для крови), которые многократно делятся, дифференцируются, работают, стареют и отмирают. Считают, что зрелые клетки выделяют вещества, ингибирующие молодые делящиеся клетки. Выстраивается цепь взаимозависимых реакций: при избытке зрелых клеток продукция ингибитора высока и размножение клеток подавляется; уменьшение числа зрелых клеток в результате их естественной гибели сопровождается снижением концентрации ингибитора в среде; блок клеточных делений снимается; размножение молодых клеток усиливается; число зрелых клеток восстанавливается. Далее вновь возрастает продукция ингибитора и цикл повторяется. Общее число зрелых клеток в ткани колеблется около некоторого среднего уровня, резко не снижается и не повышается. По механизму передачи сигнала здесь мы имеем гуморальную систему, ингибитор работает как внутритканевой «гормон».
САМОРЕГУЛЯЦИЯ В ЭКОСИСТЕМАХ
Концепция гомеостаза экосистемы в экологии была разработана Ф. Клементсом (1949) (слайд 15). Равновесие в экосистемах процессами с обратной связью. Гомеостаз –это способность популяции или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды. В гомеостазе (устойчивости) живых систем выделяют:
Упругость (резистентность, сопротивляемость) –способность быстро самостоятельно возвращаться в нормальное состояние из неустойчивого, которое возникло в результате внешнего неблагоприятного воздействия на систему.
Гомеостаз популяции определяется поддержанием пространственной структуры, плотности и генетического разнообразия. На уровне экосистем гомеостаз проявляется в наиболее устойчивых формах взаимодействия между видами, что выражается в приспособленности к особенностям среды и поддержании циклов круговорота биогенов. Можно рассматривать даже гомеостаз биосферы, в которой взаимодействие разнообразных организмов поддерживает постоянство газового состава атмосферы, состав почв, состава и концентрации солей мирового океана и др.
Гомеостаз обеспечивается работой механизмов регулирования, действующих по принципу отрицательной обратной связи. Резкие изменения характеристик окружающей среды, при которых они (или одна из них) выходят за границы допустимого, называют экологическим стрессом.
В экосистемах в результате взаимодействия круговорота веществ, потоков энергии и сигналов обратной связи от субсистем возникает саморегулирующийся гомеостаз. В число управляющих механизмов на уровне экосистемы входят, например, такие субсистемы, как микробное население, регулирующее накопление и высвобождение биогенных элементов.
Субсистема «хищник-жертва» также регулирует плотность: популяций и хищника, и жертвы. Рассмотрим простейшую экосистему: заяц –рысь, состоящую из двух трофических уровней. (слайд 16) Когда численность зайцев невелика, каждый из них может найти достаточно пищи и удобных укрытий для себя и своих детенышей. Т.е. сопротивление среды невысоко, и численность зайцев увеличивается, несмотря на присутствие хищника. Изобилие зайцев облегчает рыси охоту и выкармливание детенышей. В результате численность хищника также возрастает. В этом проявляется обратная положительная связь. Однако с ростом численности зайцев уменьшается количество корма, убежищ и усиливается хищничество, т.е. усиливается сопротивление среды. В результате численность зайцев снижается. Охотиться хищникам становится труднее, они испытывают нехватку пищи и их численность падает. В этом проявляется обратная отрицательная связь, которая компенсирует отклонения и возвращает экосистему в исходное состояние.
Подобные колебания происходят периодически вокруг некого среднего уровня. Рост, снижение и постоянство популяции зависит от соотношения между биотическим потенциалом и сопротивлением среды. Принцип изменения популяции: это результат нарушения равновесия между биотическим потенциалом и сопротивлением окружающей её среды. Подобное равновесие является динамическим, т.к. факторы сопротивления среды редко подолгу остаются неизменными. (слайд 17)
Равновесие в экосистемах обеспечивается избыточностью организмов, выполняющих одинаковые функции. Например, если в сообществе имеются несколько видов растений, каждое из которых развивается в своем температурном диапазоне, то скорость фотосинтеза экосистемы в течение длительного времени может оставаться почти неизменной. При возрастании стресса система может оказаться неспособной возвратиться на прежний уровень, хотя и остается управляемой. Для экосистем возможно не одно, а несколько состояний равновесия. После стрессовых воздействий они часто возвращаются в другое, новое, состояние равновесия.
По мере увеличения притока СО 2 буферная ёмкость биосферы может оказаться недостаточной, и в атмосфере установится новое равновесие между
СО 2 и О 2. В этом случае даже небольшие изменения могут иметь далеко идущие последствия: должна происходить эволюционная подгонка, чтобы вновь появился надежный гомеостатический контроль. Кроме рассмотренных, имеют место и многие другие механизмы, обеспечивающие стабильность и гомеостаз экосистем. Так, например, способность популяции адаптироваться к новым условиям среды зависит от степени гетерозиготности. Конкуренция тоже является механизмом гомеостаза.
Равновесие –понятие относительное. Равновесие в природных экосистемах зависит от плотности популяции. Если плотность популяции растет –сопротивление среды увеличивается, в связи с чем увеличивается смертность и рост численности прекращается. И, наоборот, с уменьшением плотности популяции сопротивление среды ослабевает и восстанавливается прежняя численность. Воздействие человека на природу часто приводит к вымиранию популяции, т.к. не зависит от плотности популяции.
Стабильность экосистем в экологии означает свойство любой системы возвращаться в исходное состояние после того, как она была выведена из состояния равновесия. Стабильность определяется устойчивостью экосистем к внешним воздействиям. Выделят два типа устойчивости: резистентную и упругую.
Резистентная устойчивость –это способность экосистемы сопротивляться нарушениям, поддерживая неизменными свою структуру и функцию.
Упругая устойчивость –способность системы быстро восстанавливаться после нарушения структуры и функции.
Системе трудно одновременно развивать оба типа устойчивости: они связаны обратной связью, а иногда исключают друг друга. Например, калифорнийский лес из секвойи устойчив к пожарам (высокая резистентная устойчивость), но если сгорит, то восстанавливается очень медленно или вовсе не восстанавливается (низкая упругая устойчивость). Заросли вереска легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (высокая упругая устойчивость)
Человек самое могущественное существо, способное изменять функционирование экосистем. Человеческий мозг до сих пор опирался в основном на положительную обратную связь, управляя природой и властвуя над ней. Это привело к развитию техники и росту эксплуатации ресурсов. Но этот процесс, в конце концов приведет к снижению качества жизни и разрушению окружающей среды, если не будут найдены пути адекватного управления с помощью отрицательной обратной связи.
Существование человечества возможно только при сохранении регулирующих механизмов, которые позволяют биосфере приспособиться к некоторым антропогенным воздействиям. Стремясь снизить уровень загрязнения окружающей среды, человек должен в равной степени стремиться к сохранению механизмов саморегуляции, поддерживающих естественные системы жизнеобеспечения планеты, т.е. к сохранению установившегося в природе экологического равновесия, что не всегда достигается только снижением уровня загрязнения и экономным использованием природных ресурсов.
Заключение (слайд 19)
В то же время живые системы направленно и необратимо изменяются, самоорганизуются, что составляет сущность их развития. Клетки дифференцируются, работают и умирают. Организмы растут, размножаются, стареют и умирают. Биоценозы подвергаются сукцессиям и так же необратимо изменяются с изменением климата на Земле. Направленное изменение биосистемы по сути противоположно гомеостазу, оно происходит на основе обратных положительных связей.
1.А.П.Анисимов Концепция современного естествознания. Биология. Дальневосточный государственный университет, тихоокеанский институт дистанционного образования и технологий, Владивосток, 2000
2 Биологический энциклопедический словарь
3. Гомеостаз в экосистеме /Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям./ http://oplib.ru/random/view/1196532
САМОРЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ
Саморегуляция физиологических функций — один из механизмов поддержания жизнедеятельности организма на относительно постоянном уровне.
Саморегуляция физиологических функций присуща всем формам организации жизнедеятельности и возникла в процессе эволюции как результат приспособления к действию окружающей среды. Таким путем были выработаны общие регуляторные механизмы различной физиологической природы (нейрогуморальные, эндокринные, иммунологические и др.), направленные на достижение и поддержание гомеостаза (см.).
В 1932 г. И. П. Павлов писал, что живой организм является системой, в высочайшей степени саморегулирующейся, саму себя поддерживающей, восстанавливающей, поправляющей и даже совершенствующей. Он предполагал наличие двух уровней Саморегуляции физиологических функций: низшего (на уровне подкорковых структур мозга) и высшего (с определяющим участием коры головного мозга). В 1933—1935 гг. М. М. Завадовский на основании изучения гуморальных механизмов регуляции в растущем организме выдвинул общебиологический принцип регуляции процессов развития и гомеостаза «плюс — минус взаимодействие». По его мнению, развитие осуществляется на основе взаимодействия организма и окружающей среды, причем развитие органов происходит на основе противоречивого взаимодействия по меньшей мере двух органов. Развивающееся животное, по его мнению, представляет собой саморегулирующуюся систему с высокой степенью устойчивости, в к-рой регуляция присуща всему организму и каждому звену в отдельности. Помимо взаимопротиворечивых отношений между органами, М. М. Завадовский подчеркивал наличие взаимоотношений типа «плюс — плюс» и «минус — минус», к-рые обеспечивают гармоничное развитие организма. Исследуя в основном закономерности гуморальной регуляции, он большое значение придавал нервной регуляции и взаимоотношениям организма с внешней средой.
В 1935 г. П. К. Анохин ввел представление о функциональной системе, являющейся, по его мнению, конкретным аппаратом Саморегуляции физиологических функций на всех уровнях жизнедеятельности и для всех приспособительных функций организма и сформулировал ее основные закономерности (см. Функциональные системы). Им было обосновано понятие обратной, или санкционирующей, афферентации, т. е. обязательной при любом действии импульсации, идущей от рецепторов организма в ц. н. с. и информирующей о результате произведенного действия соответствующего или не соответствующего намеченной цели (см. Обратная связь). При дальнейшей разработке механизма сопоставления последний получил название акцептора результата действия (см.).
В ходе исследования роли афферентации в осуществлении локомоторных актов (бег, ходьба, прыжки и т. д.) Н. А. Бернштейн выдвинул идею о сенсорных коррекциях, в соответствии с к-рой непрерывное соучастие потока афферентной сигнализации контрольного или коррекционного значения является необходимым компонентом двигательных реакций. По мнению Н. А. Бернштейна, каждый случай упорядоченного реагирования представляет собой непрерывный циклический процесс взаимодействия организма с переменчивыми условиями окружающей или внутренней среды организма. При этом огромную роль играет контрольно-коррекционная афферентация.
Т. о., уже в 40-х годах 20 в. была выявлена ведущая роль различного рода афферентных влияний в процессах С. ф. ф. организма. Позднее, под влиянием идей кибернетики (см.), более общепринятым стал термин «обратная связь», применяемый вначале при создании технических регулирующих устройств, а затем перенесенный и на биолог, объекты.
Возникновение жизни на Земле было связано с возникновением и поддержанием на молекулярном уровне подвижного равновесия в устойчивой организации, что в итоге, по мнению И. И. Шмальгаузена, привело к приобретению нового качества живого — самовоспроизведения. В основе жизни любой клетки лежат обратимые процессы синтеза и распада веществ, происходящие с участием ферментов. Сохранение подвижного устойчивого состояния и способность к его восстановлению обеспечивается регулирующими механизмами внутри самой клетки (так наз. цитогенетический гомеостаз). Активирующее взаимодействие компонентов в любой функциональной системе, так наз. положительная обратная связь, ведет к согласованному последовательному развитию самой системы. В случае, когда один из компонентов оказывает стимулирующее, а другой тормозящее действие, проявляется отрицательная обратная связь и устанавливается подвижное равновесие. Все процессы формирования зародыша, начиная с момента оплодотворения яйцеклетки, дробления, дифференцировки и т. д., осуществляются при взаимной стимуляции отдельных компонентов, благодаря чему достигается прогрессивное развитие. Результат формообразования контролируется с помощью метаболитов, к-рые являются средством обратной связи от цитоплазмы развивающихся компонентов к специфическим структурам ядра клетки (см.).
Основным условием сохранения жизни многоклеточного организма является устойчивость его основных внутренних констант. К ним относятся показатели гомеостаза, определяющие нормальную жизнедеятельность организма (уровни осмотического и кровяного давления, концентрация сахара и минеральных веществ в крови, соотношение парциального напряжения кислорода и углекислоты, pH крови, температура тела и т. д.). Любое отклонение значений этих констант от исходных уровней является начальным толчком, «запускающим» процессы С. ф. ф. на достижение исходного или близкого к нему уровня того или иного показателя.
В опытах с измерением кровяного давления и регистрацией активности барорецепторов было установлено, что поддержание константного уровня функции всегда является следствием взаимодействия двух сил: нарушающих этот уровень и восстанавливающих его. В результате такого соотношения гомеостатические показатели, как правило, возвращаются к исходному уровню. Так, восстановление постоянного уровня кровяного давления (см.) происходит потому, что депрессорные реакции (см.) в норме оказываются сильнее прессорных реакций (см.).
Практически все константы организма непрерывно колеблются около постоянных уровней. Существуют константы «жесткие» (напр., показатели сахара крови или осмотического давления), допускающие лишь незначительные отклонения от своего уровня, и константы «пластические» (напр., уровень кровяного давления или питательных веществ в крови), варьирующие в довольно большом диапазоне и в течение длительного времени. Значительные вариации уровня кровяного давления, свойственные здоровому человеку в норме, имеют определенный физиологический смысл. Напр., при усиленной мышечной работе подъем кровяного давления обеспечивает снабжение кровью работающих мышц, а в экстремальных условиях — мозга, сердца и т. д. Однако во всех случаях такого рода изменений показателей кровяного давления в результате С. ф. ф. его нормальные значения восстанавливаются.
Установлен еще один принцип С. ф. ф.— принцип многосвязного регулирования, заключающийся в том, что отклонение от нормы какого-либо показателя в многосвязной системе приводит к перераспределению значений всех регулируемых показателей. Иными словами, при действии возмущающего фактора, напр, при вдыхании животным углекислого газа, происходит переход регулируемых показателей (напр., pH, pCO2, pO2 в ликворе, крови и ткани дыхательного центра) на новый уровень, вследствие чего поддерживается минимум сдвига каждого из них, хотя и не происходит возврата к прежним показателям.
Т. о., с позиций теории функциональных систем, конечный результат действия является именно тем фактором, к-рый формирует конкретную функциональную систему. Аппарат ее может быть очень сложным, включающим процессы Саморегуляции физиологических функций как внутри организма, так и в окружающей среде. В частности, при обеднении крови питательными веществами, «голодная» кровь раздражает центры гипоталамуса и приводит в генерализованное возбуждение ряд структур мозга, что выражается в формировании аппетита (см.), а затем и чувства голода (см. Голод, как физиологическое явление). Начинается поиск пищи и утоление голода, в результате чего происходит «сенсорное насыщение», а затем восстановление нарушенных констант крови до нормального уровня.
Первыми в С. ф. ф. в организме начинают участвовать рецепторы тканей и органов, информирующие вначале о сдвигах в уровнях тех или иных жизненных констант, затем о поэтапных результатах действия и, наконец, о параметрах конечного приспособительного эффекта. Характерным свойством всех периферических и внутрицентральных рецепторов различной модальности является их специфическая чувствительность р: изменениям определенных констант, что и обеспечивает их относительное постоянство. Это свойство, выработанное в процессе длительной эволюции и закрепленное наследственностью, сохраняется на протяжении всей жизни. В то же время состав компонентов С. ф. ф. может широко варьировать и взаимозаменяться при изменении путей достижения конечного приспособительного результата. Информация о результатах совершенного действия является заключительным этапом поведенческого акта, сигнализируя в ц. н. с. об эффекте произведенного действия. В случае достижения результата, соответствующего целевой установке, действие прекращается и начинается следующий этап поведения. При несовпадении результата действия с намеченной целью «запускается» ориентировочно-исследовательская реакция (см.), поиск и реализация соответствующих действий для достижения цели.
В С. ф. ф. участвуют все уровни ц. н. с. Так, смена вдоха п выдоха обеспечивается дыхательным центром продолговатого мозга (см. Дыхательный центр). Растяжение альвеол в результате поступления в них воздуха вызывает возбуждение заложенных в их стенках рецепторов, к-рое по блуждающим нервам передается к инспираторным нейронам продолговатого мозга. В процессе расширения альвеол увеличивается частота импульсации; при достижении критической частоты (70— 100 имп/сек.) она тормозит активность инспираторных и вызывает возбуждение экспираторных нейронов. Вдох сменяется выдохом. В свою очередь, активность экспираторных нейронов затормаживается деятельностью инспираторных нейронов. Однако ритмическая активность дыхательного центра определяется вышележащими структурами ствола мозга. Перерезка мозга на уровне ствола приводит к резким нарушениям дыхания и животные быстро погибают от ацидоза; животные с перерезкой мозга выше четверохолмий могут жить значительно дольше без заметных признаков нарушения дыхания, но в условиях полного покоя. Этот факт говорит о том, что непосредственная регуляция газового состава крови осуществляется на уровне ствола мозга. Наконец, процесс приведения объема вдыхаемого воздуха в соответствие с потребностями организма во время какой-либо приспособительной деятельности обеспечивается регулирующими механизмами высших отделов ц. н. с.
Начальным толчком С. ф. ф. является возбуждение периферических или центральных рецепторов, особенно тех, к-рые расположены в сино-каротидной и аортальной областях. Оно происходит в результате нарушения нормального соотношения газов крови (С02 или 02). Возбуждение по аортальным или синокаротидным нервам передается в дыхательный центр и в более высокие отделы ц. н. с. В них происходит афферентный синтез (см.) всей поступающей информации с периферии и из различных отделов мозга и вырабатывается «решение» в виде посылки в дыхательный центр возбуждения. Последнее определяет степень расширения легких для вдоха определенного объема воздуха соответственно потребности организма в данный момент (см. Легочная вентиляция). Импульсация от легочных рецепторов растяжения является основной обратной афферентацией, несущей в ц. н. с. информацию о конечном приспособительном эффекте, т. е. о степени растяжения альвеол, необходимой для удовлетворения потребности организма в кислороде. Рецепция из полости носа и дыхательных путей — гортани, трахеи и бронхов, а также от дыхательных мышц относится к обратной, поэтапной афферентации, к-рая информирует центральные аппараты С. ф. ф. о последовательности совершаемых действий, необходимых для конечного приспособительного результата. Сюда же относится информация о токе воздуха, о его давлении в воздухоносных путях, о степени расширения бронхов, сокращении дыхательных мышц и т. д. Вся хеморецепция дыхательной системы (периферическая и центральная), настроенная на восприятие изменений парциального напряжения кислорода и углекислоты, а также pH в крови и тканях, представляет собой обстановочную, или вне-пусковую, афферентацию. В обычных условиях жизни она относительно-постоянная и, поддерживая определенный уровень возбуждения в центральных аппаратах С. ф. ф., обеспечивает предпусковую интеграцию всех приходящих возбуждений. Окончательный синтез всех факторов, определяющих целенаправленное поведение — т. е. пусковые стимулы, эмоциональное состояние, связанное с доминирующей мотивацией (см.), жизненный опыт и окружающая обстановка — осуществляется корой головного мозга (см.).
Большую роль в С. ф. ф. играют также нейрогуморальные и гормональные влияния (см. Нейрогуморальная регуляция). Медиаторы (см.) — ацетилхолин, катехоламины и другие низкомолекулярные биологически активные вещества — не только принимают участие в гуморальной передаче возбуждения нервных клеток, но и оказывают влияние на метаболизм тех клеток, где они образуются. Являясь местными гормонами, они участвуют во внутриклеточной регуляции обмена; воздействуя на проницаемость мембран, поддерживают определенное значение трансмембранного потенциала и определяют ионные потоки и активность ферментов. В основе связывания гормонов со специфическими рецепторами, расположенными на мембране клетки или в цитоплазме (см. Рецепторы, клеточные рецепторы), лежат механизмы обратной положительной и отрицательной связи. Обладая регуляторной функцией и выделяясь клетками определенной железы, гормоны регулируют обмен веществ в клетках-мишенях, принадлежащих другой ткани. Так, половые стероидные гормоны, вырабатываемые яичниками и семенниками, воздействуют на гипоталамические механизмы, регулирующие гонадотропную функцию передней доли гипофиза и отделы гипоталамуса, связанные с половым поведением. В этом случае гипоталамические клетки являются клетками-мишенями эстрогенов.
Процессы Саморегуляции физиологических функций имеют место на всех уровнях жизни от молекулярного до надвидового. Изучение механизмов С. ф. ф. на молекулярном уровне было начато Умбаргером (H. E. Umbarger) в 1956 г. при изучении синтеза лейцина и пиридиннуклеотидов. Показано, что в биохимическом процессе, происходящем в бес-клеточных экстрактах или в живой клетке, определенная концентрация конечного продукта является угнетающим агентом для всего процесса. Промежуточные продукты биосинтеза подобным действием не обладают. Избирательность такого рода обеспечивает направленность регуляции, т. е. осуществляется саморегуляция процесса образования конечного продукта реакции. Последний, по принципу обратной отрицательной связи, взаимодействует с ферментами и, тормозя их активность, останавливает весь биохим. процесс. Существует большое количество ферментов, взаимодействие к-рых с компонентами клетки ведет к ее прогрессивному развитию и усовершенствованию, что определяется как положительная обратная связь. Т. о., живые клетки имеют чувствительные биохим. механизмы, к-рые выявляют и восполняют сдвиги концентрации веществ, нарушающих их стационарное состояние.
Достаточно хорошо изучена внутриорганная Саморегуляция физиологических функций. Так, изолированное от всех гуморальных и нервных влияний сердце лягушки продолжает длительное время функционировать, т. е. происходит внутриорганная саморегуляция сердечных сокращений. При длительном раздражении блуждающего нерва сердце лягушки или теплокровного животного выходит из состояния торможения (так наз. феномен ускользания). Механизм этого типа саморегуляции состоит в том, что выделяющийся из окончаний блуждающего нерва ацетилхолин взаимодействует с холинорецепторами сердечной мышцы и, изменяя структуру клеточного белка, «запускает» цепь биохим. процессов, в итоге к-рых сердце останавливается. Полагают, что при продолжающемся раздражении нерва в миокарде выделяется физиологически активное вещество макроэргической природы, к-рое, тормозя реакцию ацетилхолина с рецепторами, усиливает сердечные сокращения. В результате сердце выходит из состояния торможения. Подобного типа реакции в сердечной мышце установлены при длительном раздражении сердечной ветви симпатического нерва. Конечный продукт биохим. процесса активирует первичную реакцию между медиатором — адреналином и эффекторной клеткой миокарда, т. е. реакцию взаимодействия адреналина с адренорецептором. В результате сердце останавливается или урежает свои сокращения.
В целом организме С. ф. ф. является наиболее сложной, происходит с участием многочисленных нейро-гуморальных, нервных и гормональных влияний. Важную роль при этом играют физиолог, параметры внутриклеточной среды (см. Внутренняя среда организма). По мнению И. И. Шмальгаузена (1968), весь процесс индивидуального развития особи состоит в «преобразовании наследственной информации в систему жизненных связей фенотипа с внешней средой» и «всякое развитие особи есть по меньшей мере авторегуляция и в большей пли меньшей мере приближается к автономному развитию». В пре- и постнатальном периодах развития особи происходит становление ряда жизненно важных функциональных систем со свойственным им аппаратом саморегуляции, к-рые приспосабливают организм к окружающей его среде (см. Системогенез).
Начиная с 70-х гг. 20 в. усиленно развивается учение о популяциях животных как о биологических системах надорганизменного уровня (см. Популяция). Показано, что у позвоночных животных поддержание популяционного гомеостаза, т. е. состояния динамического равновесия между популяцией и окружающей средой, достигается в результате сложных адаптивных механизмов, действующих по принципу обратных связей. Так, недостаток питания или увеличение численности животных какого-либо вида на определенной территории приводят к снижению темпов размножения или возрастанию смертности среди взрослых особей. Физиол. механизмы этого явления очень сложны: происходит изменение регулирующей роли эндокринных желез, увеличение стрессовых реакций, изменение стереотипов поведения и т. д. В частности, изучена роль хищников как регуляторов численности популяции. Необходимость противостоять хищникам ведет к изменению форм поведения стаи. Известны сезонные изменения основного обмена, температуры тела, двигательной активности, деятельности эндокринных желез и т. д. Во всех этих случаях, по мнению А. Д. Слонима (1971), имеет место механизм С. ф. ф. Следовательно, популяция как элементарная единица эволюционного процесса обладает способностью к регуляции своей численности, структуры генов и фенотипов. С. ф. ф. в популяции ведет к взаимной стимуляции зависимых процессов, в результате чего происходит прогрессивное развитие всей популяции. Установлена обратная направленность процесса саморегуляции, обеспечивающая подвижное равновесие в популяции. По мнению И. И. Шмальгаузена, «регуляция эволюционного процесса осуществляется посредством циклического механизма с обратной связью на основе сопоставления полученных результатов — фенотипов — в реальных условиях существования популяции, т. е. в биогеоценозах». При этом фенотип (т. е. конкретный организм с характерной для него организацией и жизненными проявлениями) рассматривается как носитель обратной информации. Последняя служит для сравнительной оценки фенотнпов в пределах популяции. Эта оценка завершается естественным отбором (см.), что вместе с половым процессом обеспечивает преобразование генетической структуры популяции. Положительная оценка фенотипов ведет к увеличению концентрации определенных генов в популяции и усилению их результата в особях следующих поколений — т. е. к размножению (регуляция с положительной обратной связью). Регуляция с обратной отрицательной связью представляет собой стабилизирующую форму естественного отбора, при к-рой происходит элиминация фенотипа и, следовательно, уменьшение концентрации характеризующих его генов. Результатом является поддержание стационарного состояния данной популяции при определенных условиях существования. Борьба за существование рассматривается как контрольный механизм, в к-ром дается оценка отдельным особям, популяциям или видам.
Т. о., процесс Саморегуляции физиологических функций в клетке, организме, популяции и виде обеспечивается наличием обратных связей, к-рые входят в состав основных узловых механизмов функциональных систем, а сам процесс всегда имеет циклический характер.
В патологии, при перенапряжении механизмов С. ф. ф. происходит нарушение устойчивости тех или иных констант организма и, как следствие, возникновение целого ряда защитных приспособительных реакций (см. Приспособление). К ним, в частности, относятся викарные процессы (см.) и компенсаторные процессы (см.), использующие характерные для нормы способы мобилизации саморегуляторных механизмов. Принцип «плюс — минус взаимодействия» М. М. Завадовского оказался полезным в расшифровке патогенеза ряда эндокринных заболеваний (гипертиреоз, микседема, диабет и т. д.). Накоплен большой материал, показывающий применение и значение этого принципа в клинике. Известны наблюдения, свидетельствующие, что причиной развития дисгормональных опухолей является нарушение осуществления принципа «плюс — минус взаимодействия».
Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; он же, Очерки по физиологии функциональных систем, М., 1975, библиогр.; он же, Философские аспекты теории функциональных систем, М., 1978; он же, Узловые вопросы теории функциональных систем, М., 1980; Бернштейн Н. А. Очерки по физиологии движений и физиологии активности, М., 1966; Завадовский М. М. Противоречивое взаимодействие между органами в теле развивающегося животного, М., 1941; Кафиани К. А. и Костомарова А. А. Информационные макромолекулы в раннем развитии животных, М., 1978; Механизмы гормональных регуляций и роль обратных связей в явлениях развития и гомеостаза, под ред. М. С. Мицкевича, М., 1981; Мецлер Д. Э. Биохимия, Химические реакции в живой клетке, пер. с англ., т. 1—3, М., 1980; Общие вопросы физиологических механизмов, Анализ и моделирование биологических систем, под ред. П. К. Анохина, М., 1970; Прибрам К. Языки мозга, Экспериментальные парадоксы и принципы нейропсихологии, пер. с англ., М., 1975; Слоним А. Д. Экологическая физиология животных, М., 1971; Судаков К. В. Биологические мотивации, М., 1971; Функциональные системы организма, сост. К. В. Судаков, М., 1976; Шмальгаузен Й. И. Кибернетические вопросы биологии, Новосибирск, 1968.