Что такое скада система в асу тп
Промышленное программирование, или Пара слов об АСУ ТП
Есть такая профессия — производство автоматизировать. Аббревиатура АСУ ТП означает «автоматизированная система управления технологическим процессом» — это система, состоящая из персонала и совокупности оборудования с программным обеспечением, использующихся для автоматизации функций этого самого персонала по управлению промышленными объектами: электростанциями, котельными, насосными, водоочистными сооружениями, пищевыми, химическими, металлургическими заводами, нефтегазовыми объектами и т.д. и т.п.
Фактически, каждый человек, живущий не в лесу и пользующийся благами цивилизации, использует результаты труда предприятий, на которых функционируют АСУ ТП.
Иногда на эту тему проскакивают статьи и на хабре. Обычно они не пользуются особой популярностью, но всё же я хочу написать несколько обзорных статей об АСУ ТП в надежде рассказать хабравчанам что-то интересное (а возможно, кому-то даже полезное) и привлечь на хабр больше своих коллег.
Сначала пара слов о себе. Я только начинаю свой жизненный путь в автоматизации, опыт работы без малого два года. За это время побывал на нескольких газовых месторождениях, сейчас работаю на нефтяном.
Поскольку область обширная, несмотря ни на что развивающаяся, местами противоречивая и спорная, буду стараться обобщать не в ущерб достоверности, но не могу избежать перекоса в свою область — то оборудование, софт и сферу, с которыми лично я сталкивался.
Итак, программно-технический комплекс АСУ ТП делится на три уровня: верхний (компьютеры), средний (контроллеры), нижний (полевое оборудование, датчики, исполнительные механизмы). Про нижний уровень рассказывать не буду — слишком уж это далеко от от тематики хабра, да и статья получится слишком большая.
Верхний уровень
Верхний уровень — это серверы и пользовательские ПК (у нас они называются АРМ — автоматизированное рабочее место). Сюда выводится состояние технологического процесса, и отсюда при необходимости оператором подаются команды на изменение его параметров. Для упрощения разработки создано большое количество SCADA-систем (от англ. supervisory control and data acquisition — диспетчерское управление и сбор данных). Это в некотором роде расширенный аналог IDE, в котором скомпилированная «программа» и выполняется.
Системы SCADA
Вообще, если отбросить академизм, то на предприятии для всех кроме асушников скада выглядит вот так:
А если совсем не повезёт, то вот так:
Подразумеваются два режима функционирования: режим разработки и режим выполнения (runtime). Не обязательно эти режимы взаимоисключающи: можно редактировать проект на одном АРМе, инженерном, заливать его, он обновится на пользовательских. Это очень важно — изменять проект без простоев и отключений, потому что технологический процесс прерывать нельзя, и операторы всегда должны иметь возможность его контролировать. В скаде создаются графические интерфейсы, настраиваются источники данных с полевых устройств, она отвечает за взаимодействие пользователя (оператора, диспетчера, технолога) с происходящим на производстве, а также за архивирование всех нужных данных в БД.
Архивирование — одна из обязательных функций, очень важно иметь возможность «вернуться назад во времени» для разбора полётов в случае чего-то непредвиденного либо для глобального анализа при медленных, длительных процессах. Например, недавно геологи попросили меня выгрузить табличкой данные по давлению нефти на скважинах за последний год.
Периодически скада складывает все собранные данные в БД. Их потом можно посмотреть в виде графиков (называем их трендами), а при необходимости, если оговорено в ТЗ на АСУТП, реализуется выгрузка в виде отчётов в эксель или ещё как-нибудь. Архивация сделана по-разному: в MS SQL; MS Access; в ту же MS SQL, но по своему хитрому алгоритму с дополнительной архивацией; а у кого-то вообще в свою собственную бинарную БД.
Особым пунктом в скадах идёт информирование оператора: текущие сообщения и аварийные. Они тоже обязательно архивируются. В общем виде сообщения делятся на текущие и важные (аварийные). Текущие прячут подальше, но журнал аварийных всегда выводится на экране оператора. К текстовым аварийным сообщениям привязываются звуковые, чтобы кто-нибудь не проспал ЧП 🙂
Рынок SCADA
Самыми распространёнными, по-моему, считаются скады производства Invensys Wonderware, Iconics, Siemens, Indusoft, AdAstra, Emerson, Rockwell Automation.
Я лично работал с виндовыми: Invensys Wonderware InTouch и более мощной System Platform, с Iconics Genesis32 — и с (пока ещё?) малоизвестной B&R APROL под SLES (формально, это не совсем скада, а покруче — из-под апрола программируются и сами контроллеры).
По поисковым запросам, например, SCADA, HMI можно посмотреть примеры интерфейсов и мнемосхем.
Внешний вид и юзабилити по приоритету, увы, находятся на последнем месте. Причём, это касается не только рантайма, но и разработки. Для разработки в каждой скаде существуют как минимум дефолтные библиотеки символов — от кнопок и прочих контролов до графических изображений насосов, труб, задвижек, ёмкостей. Здесь-то и могли бы умные разработчики SCADA-пакетов (не путать с нами, асушниками — разработчиками проектов в этих пакетах) добиться принципиального преимущества над конкурентами, сделав продуманные библиотеки, из которых бы даже самый далёкий от дизайна и юзабилити инженер при всём нежелании делал бы гуманные интерфейсы и мнемосхемы. К сожалению, сейчас эта сфера идёт по пути экстенсивного развития, по которому развивалась IT до недавнего времени — наращивание функционала, добавление плюшек, больше, выше, сильнее, harder, better, stronger, и о пользователях пока думают мало.
Средний уровень
Средний уровень — ПЛК, программируемые логические контроллеры. Здесь всё достаточно просто, чаще всего физически ПЛК состоят из отдельных модулей. Для программирования у каждого ПЛК есть своя среда разработки, иногда она объединена со средой для создания SCADA.
Состав ПЛК
Контроллер B&R серии X20
Зачем нужен блок питания — понятно. БП сделан отдельным именно модулем, а не устройством, чтобы гарантировать совместимость с данной линейкой ПЛК. Чаще всего входное напряжение у БП 220 В переменного тока, выходное — 24 В постоянного тока.
Процессорный модуль — это голова ПЛК. Внутри у него, само собой, ЦПУ, ОЗУ и ПЗУ, сервисный порт для прошивки и, возможно, коммуникационный порт (ethernet, RS232/422/485, Profibus, etc). Иногда коммуникационный порт используется и как сервисный. Иногда на модуле есть переключатель (у Allen Bradley ещё круче — там натуральный ключ с замочной скважиной) для перевода ПЛК в различные режимы работы. Отдельной кнопки включения/выключения нет, в лучшем случае — тот переключатель, иначе, если есть питание — ПЛК запускается, а выключается и перезагружается «по-варварски» отключением питания.
Контроллер Allen Bradley серии CompactLogix
Дискретные и аналоговые модули обрабатывают соответствующие сигналы. Входные модули принимают эти сигналы с поля, выходные — формируют их.
Дискретный сигнал — это обычно напряжение цепи 24 вольта. Есть 24 — это «1», нет — «0». Бывают модули на 220В, есть модули с проверкой целостности цепи. Дискретные сигналы, приходящие с поля, могут информировать, например, о состоянии насоса включен/выключен. Управляющие дискретные сигналы могут запускать либо останавливать этот насос. Оптимизация здесь не оправдана, поэтому на запуск будет отдельная цепь, на останов — отдельная.
Модули I/O одного типа могут быть объединены: например, один модуль с 16 дискретными входами и 16 дискретными выходами.
Аналоговые входные сигналы — это приходят показания с датчиков. Здесь чаще всего используется токовая петля 4-20 мА, в соотетствие которой ставятся пределы измерения датчика. Начинается от 4 мА для диагностирования обрыва цепи (если меньше 4 мА, значит где-то что-то не в порядке с проводкой).
Рассмотрим на примере уровня жидкости в резервуаре. Стоит уровнемер, он измеряет уровень от 0 до 2 метров. Тогда: уровень 0 метров — это 4 мА, уровень 2 метра — это 20 мА. Промежуточные значения калибруются по ситуации, не всегда 1 метр соответствует 4+(20-4)/2=12 мА, может быть небольшая погрешность, уровень в 1 метр может быть какие-нибудь 12,7553 мА.
Аналоговые выходные — то же, только на управление. Не встречал чтобы использовалось, т.к. всегда существуют наводки. В измерении это допустимая погрешность, в управлении — нет. Да и неудобно это. Вместо них используется цифровая передача данных по различным протоколам через коммуникационные модули.
Температурные модули замеряют сопротивление в цепи либо термо-ЭДС. Если на них подключаются термометры сопротивления — при нагревании металла его сопротивление, по законам физики, повышается, соответственно определяется температура. Если подключается термопара (два спаянных проводника из разных металлов, при нагревании стыка возникает разность потенциалов между другими концами), замеряется напряжение.
Интерфейсные (или коммуникационные) модули предоставляют нам порты под RJ45, DB9, DB15, просто клеммники или что ещё бог производителю на душу положит. Помимо реализации непосредственно интерфейса (физического разъёма под коннектор, физического уровня модели OSI) они также реализуют протокол обмена через этот разъём.
Протоколы и интерфейсы
Протоколов напридумывали и используют кучу: ModBus (RTU, TCP, ASCII), Profibus, Profinet, CAN, HART, DF1, DH485 и т.д. Некоторые особо хитрые производители реализуют свои протоколы поверх общепринятых.
Я достаточно тесно знаком с интерфейсами RS232/485 и протоколами Modbus. RS232 это всем знакомый COM-порт, с тремя основными линиями: Tx (transmit, передача), Rx (recieve, получение) и GND (ground, земля). RS485 это асинхронный полудуплексный последовательный интерфейс по 2 проводам (совмещённые Tx/Rx+ и Tx/Rx-) или 4 проводам (отдельно Tx+, Tx-, Rx+, Rx-) с разностью потенциалов на каждой паре от 2 до 10 вольт.
А модбас это в общем-то нехитрая штука, с проверкой целостности пакета по чексумме, подтверждением доставки и корректности запроса — или ответом, почему запрос неверен. В сети модбас есть два вида устройств: master — инициирует обмен; slave — выполняет запросы мастера. Пакет от мастера расходится ко всем слейвам, которые сравнивают адрес назначения со своим, если сходится, то смотрят следующие два байта — это команда работы с регистрами памяти — чтение/запись (за исключением нескольких редко используемых служебных команд), потом байты адреса и непосредственно данных, в конце чексумма. Достаточно подробно и понятно расписано на википедии.
Программная начинка
Первое, что нужно сказать, программа в ПЛК выполняется циклически с определённой частотой. Возможности зависят от контроллера, обычно это где-то 20, 50, 250 мс, 1, 2, 3, 4, 5 с. Естественно, это не гарантирует выполнение кода именно за такой промежуток времени, нельзя большие программы пихать в цикл 20 мс, к началу следующего цикла предыдущий должен быть завершён.
Второе, это языки программирования. По идее программируются ПЛК на языках, определённых стандартом МЭК61131:
Это «по идее». Но, например, Siemens придерживается своего наименования языков, а у B&R есть возможность писать на ANSI C.
Самые используемые контроллеры, безоговорочно, у Siemens и Allen Bradley (последним, к слову, принадлежит Rockwell Automation со своей линейкой SCADA-пакетов RSView). За ними по пятам идут Schneider Electric; ОВЕН; General Electric; AutomationDirect; ICP DAS; Advantech; Mitsubishi Electric; B&R.
SCADA: в поисках идеала
По моим наблюдениям, большинство толковых специалистов АСУ, работающих со SCADA, проходят несколько стадий «эмоционального роста»: освоение какой-либо SCADA, поиск чего-то лучшего, идеи и попытки написания своего варианта, выработка философского отношения к проблеме и использование одного из существующих продуктов.
Да, бывают исключения. Например, встречаются сильно увлеченные и упорные энтузиасты, которые создают что-то работающее, но картины они не меняют совершенно.
Попробуем разобраться, почему так происходит и может ли быть выход из этого порочного круга.
Примечание: дальнейшие рассуждения будут касаться преимущественно коммерческих продуктов, но во многом справедливы и для проектов с открытым кодом, о которых будет сказано отдельно.
В первом приближении процесс работы со SCADA-системой сводится к нескольким действиям: выбор параметров обмена данными с ПЛК, разработка мнемосхем в специальном редакторе, настройка логирования событий и состояний параметров. Для обеспечения сложного поведения графических элементов мнемосхем и несложных математических расчетов используется написание скриптов или вообще предполагается, что достаточно средств простейшей анимации, настраиваемой в редакторе.
Такой подход во многом себя оправдывает — легко обучиться, можно быстро реализовать несложные проекты. По большому счету, можно даже не иметь минимальных знаний о программировании для начала работы.
Сегодня существует довольно большое количество SCADA-систем, различающихся по своим возможностям, стоимости, удобству разработки и т.д. Казалось бы, выбирай подходящий вариант и начинай творить доброе, светлое, вечное… Но тут-то и выясняется, что все не так просто.
Теперь, получив представление о трудностях, попробуем сформулировать требования к идеальной SCADA и посмотрим, можно ли решить проблему, если слегка выйти за рамки традиционной парадигмы.
Когда я впервые познакомился с Qt, то был просто поражен внутренней логичностью и богатством этой библиотеки. Как только возникает задача сделать что-нибудь, очень часто выясняется, что это уже практически реализовано в Qt и надо просто адаптировать под свои нужды.
Когда задача правильно сформулирована, остается ее просто реализовать, что я и начал делать некоторое время назад. К текущему моменту удалось реализовать минимальный джентльменский набор компонентов.
Созданный набор можно условно поделить на несколько групп.
Конечно, предстоит пройти еще немалый путь, но уже сейчас просматривается несколько возможных направлений для применения, помимо собственно всех видов классических задач промышленной автоматизации:
Как-то незаметно для меня, мое хобби превратилось во что-то большее, вызывающее интерес у других людей. Появилась мысль превратить это творчество в стартап, но пока все упирается в недостаток людей, готовых разделить со мной эту работу. Если у Вас есть желание принять участие в развитии стартапа, встать у истоков новой компании или попробовать себя в роли сооснователя, напишите мне в личку.
Чуть больше информации можно найти на странице в Facebook.
Также буду очень благодарен за конструктивную критику и новые идеи.
Разработка SCADA систем: программирование АСУТП
Разработка SCADA систем: программирование АСУТП
Разработка SCADA систем
Содержание
Система диспетчерского контроля и сбора данных (Supervisory control and data acquisition – далее «SCADA») объединяет аппаратные и программные элементы управления для автоматизации производственных процессов. Системы SCADA собирают, обрабатывают и классифицируют важные параметры о производительности системы. Эти данные собираются и отображаются на панели управления (мониторе и т.п.), что позволяет оператору принимать точные и быстрые решения на основе данных полученных в реальном времени.
Основываясь на своих широких возможностях, системы SCADA могут быть разработаны и запрограммированы для объекта практически любой сложности, бюджета или отрасли. Это могут быть как крупные производственные и перерабатывающие заводы, так и небольшие системы, такие как светофоры или устройства для наблюдения за домом. В тех случаях, когда требуется контроль и управление данными, SCADA может помочь упростить процесс.
Почему SCADA
При правильной реализации внедрение SCADA-системы приводит к масштабным улучшениям и повышению эффективности процессов, требующих мониторинга. В обрабатывающей промышленности такие системы могут определять достигаются ли поставленные цели по объему выпуска продукта или цели по обеспечению его качества.
Если на одном участке производственного процесса случается отклонение от нормы, то оператор получает информацию о характере и местонахождении неполадки, что позволяет быстро принять необходимые меры для устранения неисправности. Некоторые системы могут выполнять основные задачи без вмешательства человека, при достижении определенных пороговых значений, что позволяет выполнять, например, аварийные отключения или другие аналогичные действия.
SCADA — это система для сбора и обработки данных от установленных промышленных датчиков и компонентов, позволяющая оператору принимать более обоснованные и оперативные решения.
Разработчик обязан рассматривать создание каждой SCADA-системы как часть более крупной промышленной системы управления для облегчения автоматизации на всех уровнях.
Компоненты системы SCADA
Системы SCADA базируются на пяти компонентах, которые в сочетании обеспечивают ее широкое применение в различных отраслях промышленности. Эти элементы работают совместно с датчиками для более глубокой автоматизации производственных процессов.
Архитектура системы
Как можно понять из вышеописанного, невозможно полностью понять программирование SCADA, рассматривая отдельные ее части. Архитектура системы расширяет представление о SCADA, описывая способ взаимодействия компонентов друг с другом и образуя интегрированную сеть управления.
Данные, обрабатываемые программным обеспечением SCADA, поступают автоматически с датчиков, или реже заносятся вручную. Эти данные могут включать в себя измерения температуры, давления, напряжения или другие важные параметры. После каждой записи RTU или PLC передает новую информацию на сервер. Он в свою очередь обрабатывает и отображает данные измененного процесса графически на HMI панели, чтобы оператор мог легко воспринять информацию и предпринять оперативные действия. В некоторых случаях сам RTU или PLC могут быть запрограммированы на выполнение простых действий управления на основе результата измерения. На практике архитектура SCADA может быть довольно сложной, охватывающей сотни или тысячи различных компонентов и различные протоколы связи.
SCADA Программирование
Распространенным заблуждением является то, что SCADA — это то же самое, что распределенная система управления (РСУ или Distributed Control System — DCS). Хотя есть некоторые совпадения, учитывая, что DCS также контролирует производственные процессы, тем не менее, общая настройка систем отличается.
Эта разница также проявляется в разных методах программирования. DCS обычно в большей степени опирается на простые логические элементы для формирования контуров управления. Программирование SCADA сложнее, но в то же время более гибкое. Логические элементы все еще могут играть роль на уровне RTU и PLC, но для программирования SCADA требуется использование специализированного программного обеспечения для управления и отображения входных данных.
Когда используется специальное программное обеспечение, оно обычно разрабатывается на C (C++, WinCC) или аналогичном языке программирования. Как только эта программная разработка передается Заказчику, ему остается только ввести уставки для RTU, PLC и HMI с использованием графических интерфейсов. При этом оператор может изменять и просматривать уставки или настраивать схемы и диаграммы без необходимости написания программного кода.
SCADA-безопасность
Еще один элемент SCADA-системы, к которому следует относиться серьезно — это кибербезопасность. Первоначально системы SCADA разрабатывались с учетом дополнительных взаимодействий с человеком для проверки показаний датчиков и управления контрольными точками. Теперь многие из этих задач были автоматизированы с использованием интернет-протоколов, что резко повышает вероятность отказов за счет повышенной уязвимости к кибератакам. Эти атаки могут иметь форму взлома или вредоносного ПО, предназначенного для нарушения работоспособности технологии.
Для защиты от этих рисков программисты обязаны следовать рекомендациям SCADA по безопасности системы на каждом этапе процесса разработки, а также рекомендуется отдать им на аутсортинг услугу по установке ПО непосредственно на объекте, предотвращая любую возможность вмешательства третьих лиц и предоставляя Заказчику возможность контролировать процесс установки и отладки.
Где используется SCADA
Ряд различных отраслей полагаются на программы SCADA для оптимизации своей повседневной деятельности. К ним, например, относятся:
SCADA
Из Википедии — свободной энциклопедии
SCADA (аббр. от англ. Supervisory Control And Data Acquisition — диспетчерское управление и сбор данных) — программный пакет, предназначенный для разработки или обеспечения работы в реальном времени систем сбора, обработки, отображения и архивирования информации об объекте мониторинга или управления. SCADA может являться частью АСУ ТП, АСКУЭ, системы экологического мониторинга, научного эксперимента, автоматизации здания и т. д. SCADA-системы используются во всех отраслях хозяйства, где требуется обеспечивать операторский контроль за технологическими процессами в реальном времени. Данное программное обеспечение устанавливается на компьютеры и, для связи с объектом, использует драйверы ввода-вывода или OPC/DDE серверы. Программный код может быть как написан на одном из языков программирования, так и сгенерирован в среде проектирования.
Иногда SCADA-системы комплектуются дополнительным ПО для программирования промышленных контроллеров. Такие SCADA-системы называются интегрированными и к ним добавляют термин SoftLogic.
Значение термина SCADA претерпело изменения вместе с развитием технологий автоматизации и управления технологическими процессами. В 80-е годы под SCADA-системами чаще понимали программно-аппаратные комплексы сбора данных в реальном времени. С 90-х годов термин SCADA больше используется для обозначения только программной части человеко-машинного интерфейса АСУ ТП.
Что такое SCADA системы
Наверняка многие слышали термин «автоматизированная система управления», АСК. Слова «автоматизированная система» говорят нам о том что в управлении принимает участие человек, в отличии от автоматической системы управления, где человек не участвует в процессе управления системой. Современные реалии таковы, что на данный момент нет возможности полностью заменить людской труд на машинный. Насколько умной не были бы наши производства, всё равно они требуют присмотра и контроля.
Именно поэтому при разработке АСК используют два уровня управления:
Нижний уровень
Непрерывное регулирование технологических параметров (температуры, давления, и т.д.) и программно-логическое управление разными механизмами (задвижками, клапанами, двигателями, конвейерами и т.д.). Сегодня базой нижнего уровня являются программируемые логические контроллеры ( Programmable Logical controller )
Верхний уровень АСУ
Супервизорный уровень, или SCADA
( Supervisory Control And Data Acquisition ), супервизорный контроль и сбор данных.
Так же его могут называть HMI ( Human-machine interface ), человеко-машинный интерфейс или HMI/SCADA.
Супервизорное управление состоит в идентификации ситуации на объекте и выдачи заданий на нижний уровень.
HMI/SCADA – промышленное программное обеспечение, которое реализует обмен данными с контроллером, а так же взаимодействие между лицом, принимающим решение и непосредственно системой управления.
SCADA-система должна обеспечивать следующие функции:
Немного подробнее о каждой из функций:
Человеко-машинный интерфейс (HMI)
Человеко-машинный интерфейс в SCADA-системах реализуется в виде мнемосхем. На мнемосхемах отображается основное оборудование, сигналы, состояние регулирующих органов и другие части системы. Мнемосхемы могут отражать как общую картину состояния системы, технологического процесса, так и состояние отдельных агрегатов, устройств, значения параметров и т. п. HMI система может иметь несколько десятков окон с мнемосхемами, трендами, алармами и т. д. Оператор может переключаться между ними и работать с тем или иным элементом технологического процесса, то есть с той или иной мнемосхемой. Мнемосхема – основной посредник при передаче информации от системы оператору или инженеру.
Качественно разработанная мнемосхема может сильно повлиять на эффективность работы производства. Грамотная визуализация производственного процесса уменьшает время, необходимое пользователю для реакции на события, происходящие в системе и позволяет получить инструмент для удобного и своевременное управления всей установкой, линией, цехом. Так же глядя на качественную мнемосхему даже незнакомый с производством человек сможет быстро понять и осознать суть происходящих в ней процессов. Таким образом можно с лёгкостью обучать новый персонал и снизить нагрузку на операторов технологических процессов.
Сбор и хранение данных
Одна из важнейших функций SCADA. Обмен данными осуществляется через полевую шину. Полевая шина состоит из интерфейса (аппаратная, физическая часть шины) и протокола (программная часть, логика обмена информацией). Таким образом компьютер с установленной SCADA должен иметь соответствующие порты и поддерживать протоколы обмена данных с помощью которых «общается» контроллер, установленный на нижнем уровне системы.
SCADA собирает данные со всех контроллеров и устройств нижнего уровня и хранит их в одном месте столько времени, сколько необходимо. Такой подход обеспечивает удобный доступ к информации о процессах в системе и возможность её дальнейшего анализа для улучшения эффективности работы производства в целом. Доступ к информации, которую собирает SCADA могут иметь только пользователи, которым такой доступ разрешен. То есть руководитель может видеть всю картину производства, а его подчинённые только то, что необходимо для выполнения их непосредственных обязанностей.
Отображение данных и оповещения
Функция, не менее важная чем Человеко-машинный интерфейс и сбор и хранение данных.
После того как мы собрали все данные в одном месте и сохранили их нам нужно научится выделять из данных непосредственно информацию. Одним из наиболее удобных для восприятия методов подачи информации являются тренды.
Помимо трендов, SCADA должна сообщать о важных событиях, которые происходят в системе: аварии, или предаварийные значения параметров, изменения задания необходимой величины параметров и т.д. Возможно, есть необходимость периодического напоминания о каком-то событии оператору. Для этого существует световая и звуковая сигнализация и возможность оповещения пользователей по смс, e-mail или другими необходимыми способами.
Ведение журнала событий
Как было упомянуто ранее, в системе происходят какие-то события. Это могут быть как непредвиденные аварийные ситуации, так и стандартные, обычные события (вход операторов в систему, изменение заданий и т.п.). Оператор обязан прореагировать на аварийные события согласно инструкции, которая так же может быть сразу же предоставлена SCADA-системой. Все события архивируются системой и в случае необходимости могут быть просмотрены и использованы во время анализа. SCADA- система ведёт учёт всех подобных действий и событий. В случае необходимости можно посмотреть, кто был на смене в тот или иной период времени, какие были совершены действия, когда и как долго длилась авария)
Эта функция системы позволяет увеличить производственную дисциплину и проанализировать эффективность работы персонала и самой системы.
Разграничение прав пользователей
SCADA система предусматривает ее использование несколькими пользователями с разными полномочиями.
Любой пользователь при входе в систему должен пройти авторизацию. Это помогает фиксировать время выхода на смену операторов и защищает систему от несанкционированного доступа.
Соответственно, каждый пользователь должен видеть только ту информацию, которая необходима ему для работы. Например, директору не интересно и не важно какая сейчас температура в котле или давление в конкретному участке трубопровода но его интересует конечный результат и анализ общей эффективности работы котла за последнюю неделю или месяц. А оператору нижнего уровня не нужно знать какой рецепт нового продукта придумали технологи из другого отдела чтобы поддерживать необходимую температуру в своём котле. В случае если всё-таки есть необходимость показывать всю информацию всем пользователям системы, то можно просто запретить персоналу нижнего уровня менять глобальные настройки системы, а оставить это право только руководству.
Все эти функции позволяют избежать неприятных последствий безграмотности либо неосторожности персонала.
Система отчётов
SCADA-система должна формировать отчёты в виде таблиц, графиков, диаграмм и т.д. Некоторые системы имеют встроенную систему отчётности, но зачастую для этого используется MS Excel. На этапе разработки системы пользователь сам может выбрать удобную для него форму предоставления отчётов по необходимым для него параметрам и в последствии получать всю информацию «в один клик». Данные в SCADA на 100% достоверны так как исключают человеческий фактор. Система отчётности позволяет выбирать только самую необходимую информацию и делать на основании неё правильные выводы касательно работы производства что в свою очередь приводит к оптимизации и улучшению эффективности работы.
Скрипты
При разработке SCADA-системы возникает необходимость расширения нестастандартных задач. Для создания пользовательских функций есть возможность написания скриптов.
Для написания пользовательских скриптов в SCADA-системах используются наиболее популярные языки программирования. Возможности таких языков практически безграничны поэтому и уровень задач, решаемых с помощью таких скриптов, может быть абсолютно разный. С помощью скриптов можно создавать уникальные решения для любых объектов управления либо систем. Таким образом базовый функционал системы можно расширять практически неограниченно в зависимости от потребностей заказчика. С использованием скриптов можно модернизировать уже существующую систему в случае необходимости.
Итак, для чего нужна SCADA система:
Для экономии денег и для увеличения эффективности работы.
Благодаря чему это достигается: