Что такое скобки в математике
Скобки в математике
Вы будете перенаправлены на Автор24
Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.
Использование круглых скобок в математике
Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.
Первое применение.
С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.
В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.
Второе применение.
Третье применение.
Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.
$(x+2)^2; \int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$
Четвёртое применение.
Пятое применение.
Готовые работы на аналогичную тему
Пятое применение.
Квадратные скобки в математике
Что же означают квадратные скобки в математике и для чего они используются?
Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.
Первое применение.
Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.
Второе применение.
Третье применение.
С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.
$\left [ \begin
Фигурная скобка в математике
Первое применение.
С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.
Второе применение.
Третье применение.
Треугольные скобки
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 06 03 2021
Скобки
Сюда перенаправляются запросы 🙂 и некоторые другие, начинающиеся с двоеточия. О них см. статью смайлик.
( ) | |
Название символа | Ско́бки — па́рные знаки, используемые в различных областях. Обычно первая в паре скобка называется открывающей, а вторая — закрывающей. Почти всегда (за исключением некоторых математических обозначений) открывающая и закрывающая скобки соответствуют друг другу (квадратная — квадратной и т. д.). Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||. В математике, физике, химии и др. используются при написании формул. Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах (эмотиконах), например, 🙂. В системе вёрстки TEΧ есть возможность автоматически подстраивать размер скобок под вложенный в него текст: это делается с помощью команд \left и \right. Следует заметить, что во избежание синтаксических ошибок эти две команды всегда должны соответствовать друг другу, однако виды скобок в них — не обязательно. Это делает возможным конструкцию вида «\left\< a \\ a \right.» для записи систем уравнений. СодержаниеКруглые (операторные) скобкиИспользуются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение Круглые скобки в математике используются также для выделения аргументов функции: (здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение: Круглые скобки в математике используются также для указания бесконечно повторяющегося периода позиционного представления рационального числа, например При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал. В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия. Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках. В русском языке употребляются для выделения пояснительного слова или вставного предложения. Например: Орловская деревня (мы говорим о восточной части Орловской губернии) обыкновенно расположена среди распаханных полей, близ оврага, кое-как превращённого в грязный пруд (И.Тургенев). Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка. Квадратные скобкиВ лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе. Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек». Квадратными скобками в математике могут обозначаться: В математике помимо обычных квадратных скобок используются также их модификации «пол» В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних. В программировании чаще всего применяются для указания индекса элемента массива, в языке Perl также формируют ссылку на безымянный массив; в BASIC и некоторых других достаточно старых языках не используются. Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура). Фигурные скобкиФигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: В вики-разметке двойные фигурные скобки <<…>> применяются для шаблонов и встроенных функций и переменных, одинарные в определённых случаях формируют таблицы. В программировании фигурные скобки являются или операторными (Си, C++, Java, Perl и PHP), или комментарием (Паскаль), могут также служить для образования списка (в Mathematica), анонимного хеш-массива (в Perl, в иных позициях для доступа к элементу хеша) или множества (Сетл). Угловые скобкиВ математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например: В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracket — скобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — ТипографикаВ типографике же угловые скобки В TEX для записи угловых скобок используются команды «\langle» и «\rangle». ASCII-текстыВ некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги. В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи. В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать, что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере: файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге хранения исходного текста программы). Кроме того, угловые скобки применяются в языках программирования C++, Java и C# при использовании средств обобщённого программирования: шаблонов и дженериков. В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >. Косые скобкиПоявились на пишущих машинках для экономии клавиш. В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария: Прямые скобкиИспользуются в математике для обозначения модуля числа или вектора, определителя матрицы: Двойные прямые скобкиИспользуются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц: ИсторияКруглые скобки появились в 1556 году у Тартальи (для подкоренного выражения) и позднее у Жирара. Одновременно Бомбелли использовал в качестве начальной скобки уголок в виде буквы L, а в качестве конечной — его же в перевёрнутом виде (1550); такая запись стала прародителем квадратных скобок. Фигурные скобки предложил Виет (1593). Всё же большинство математиков тогда предпочитали вместо скобок надчёркивать выделяемое выражение. В общее употребление скобки ввёл Лейбниц. См. такжеЛитератураПолезноеСмотреть что такое "Скобки" в других словарях:СКОБКИ — парный знак препинания для выделения отдельных слов или частей предложения, содержащих пояснения к основному тексту. В математике употребляются для обозначения порядка выполнения математических действий. Бывают круглые ( ), квадратные СКОБЛИКОВА… … Большой Энциклопедический словарь скобки — (Square brackets, Parantheses, Angle brackets, Braces) Парные знаки препинания. Бывают квадратные, круглые, угловые (ломаные), фигурные (парантезы). Применяются в формульном наборе и для выделений в тексте … Шрифтовая терминология скобки — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN parentheses … Справочник технического переводчика скобки — парный знак препинания для выделения отдельных слов или частей предложения, содержащих пояснения к основному тексту. В математике употребляются для обозначения порядка выполнения математических действий. Различают скобки круглые ( ),… … Энциклопедический словарь «СКОБКИ» — En.: Parentheses 1. Гипноз позволяет изолировать отдельные психологические функции, «их как бы удается взять в скобки». Другими словами, можно добиться временного «зависания» определенной психической активности в пользу другого ее вида. Пациенту… … Новый гипноз: глоссарий, принципы и метод. Введение в эриксоновскую гипнотерапию Скобки — 1) парный знак препинания, состоящий из двух вертикальных черт: круглых О, квадратных, или прямых, [ ], фигурных, или парантезов, < >. Употребляется для выделения слов, частей предложения или предложений, содержащих дополнительные… … Большая советская энциклопедия скобки — знак препинания. Взятие фрагмента предложения в скобки означает выделение его в качестве дополнительной информации (вставной конструкции): «И каждый вечер, в час назначенный / (Иль это только снится мне?) / Девичий стан, шелками схваченный, / В… … Литературная энциклопедия Скобки — мн. Письменные или печатные знаки (обычно парные), служащие для обособления какой либо части текста, а в математике для обозначения порядка выполнения действий. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой скобки — скобки, скобок, скобкам, скобки, скобками, скобках (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов Раскрытие скобокПонятие раскрытия скобокВ задачах по математике постоянно встречаются числовые и буквенные выражения, а также выражения с переменными, которые составлены с использованием скобок. Основная функция скобок — менять порядок действий при вычислениях значений числовых выражений. Часто можно перейти от одного выражения со скобками к тождественно равному выражению без скобок. Например: Такой переход от выражения со скобками к тождественно равному выражению без скобок несет в себе основную идею о раскрытии скобок. Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства, как мы это сделали в предыдущем примере. В школе тему раскрытия скобок обычно подходят в 6 классе. На этом этапе раскрытие скобок воспринимают, как избавление от скобок, которые указывают порядок выполнения действий. И изучают раскрытие скобок на примерах выражений, которые содержат: Раскрытие скобок также можно рассматривать шире. Раскрытием скобок можно назвать переход от выражения, которое содержит отрицательные числа в скобках, к выражению без скобок. Например: Или, если в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким способом выражениях тоже можно проводить раскрытие скобок. Например: Раскрытие скобок — это избавление от скобок, которые указывают порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения. Важно отметить еще один момент, который касается особенностей записи решения при раскрытии скобок. При раскрытии скобок в громоздких выражениях можно прописывать промежуточные результаты в виде цепочки равенств. Например, вот так: Первое правило раскрытия скобокЭто выражение равно двум. А теперь раскроем скобки, то есть избавимся от них. Мы ожидаем, что после избавления от скобок значение выражения 8 + (−9 + 3) также должно быть равно 2. Первое правило раскрытия скобок Если перед скобками стоит знак плюс — все числа, которые стоят внутри скобок, сохраняют свой знак. Формула раскрытия скобок Мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Значит плюс нужно опустить вместе со скобками. То, что было в скобках — запишем без изменений, вот так: Так мы получили выражение без скобок 8 − 9 + 3. Снова получаем в результате вычисления два. Поэтому между выражениями 8 + (−9 + 3) и 8 − 9 + 3 можно поставить знак равенства, поскольку они равны одному и тому же значению: Потренируемся применять правило на примерах. Пример 1. Раскрыть скобки в выражении 8 + (−3 − 1) Перед скобками стоит плюс, значит этот плюс опустим вместе со скобками. А то, что было в скобках оставим без изменений: Пример 2. Раскрыть скобки в выражении 6 + (−2) Перед скобками стоит плюс, значит применим то же правило: Раскрытие скобок в предыдущих пример выглядит, как обратная операция замены вычитания сложением. В выражении 6 − 2 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 6 + (−2). Но если в выражении 6 + (−2) раскрыть скобки, то получится снова 6 − 2. Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после любых других преобразований. Идем дальше. Теперь упростим выражение 2a + a − 5b + b. Чтобы упростить такое выражение, нужно привести подобные слагаемые. Для этого нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть: Получили выражение 3a + (−4b). Раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок: опустим скобки вместе с плюсом, который стоит перед этими скобками. Таким образом, выражение 2a + a − 5b + b упрощается до 3a − 4b. После открытия одних скобок, по пути можно найти другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в таком выражении: Здесь нужно раскрыть скобки в двух местах. Снова применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед: Пример 3. Раскрыть скобки 6 + (−3) + (−2) В обоих местах перед скобками стоит плюс. Применяем первое правило раскрытия скобок: Можно встретить такой пример, когда первое слагаемое в скобках записано без знака. Например, в выражении 1 + (2 + 3 − 4) первое слагаемое в скобках 2 записано без знака. Какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ интуитивно понятен — перед двойкой будет стоять плюс. Дело в том, что даже в скобках перед двойкой стоит плюс, просто мы его не видим так как плюс не принято записывать. Полная запись положительных чисел выглядит так: +1, +2, +3, но плюсы по традиции не записывают, поэтому положительные числа мы всегда видим в таком виде: 1, 2, 3. Поэтому, чтобы раскрыть скобки в выражении 1 + (2 + 3 − 4), нужно как обычно опустить скобки вместе с плюсом, который стоит перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс: Пример 4. Раскрыть скобки в выражении (−7) Перед скобками стоит плюс, но мы его не видим так как до него нет других чисел или выражений. Убираем скобки, применив первое правило раскрытия скобок: Пример 5. Раскрыть скобки 9a + (−5b + 6c) + 2a + (−2d) Видим два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишем без изменений: Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart! Второе правило раскрытия скобокЗдесь рассмотрим второе правило раскрытия скобок. Звучит так: Второе правило раскрытия скобок Если перед скобками стоит знак минус — все числа, которые стоят внутри скобок, меняют свой знак на противоположный. Формула раскрытия скобок Например, раскроем скобки в выражении 5 − (−2 − 3) Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный: Так мы получили выражение без скобок 5 + 2 + 3. Это выражение равно десяти, как и предыдущее выражение со скобками было равно 10. Поэтому между выражениями 5 − (−2 − 3) и 5 + 2 + 3 можно поставить знак равенства так как они равны одному и тому же значению: Пример 1. Раскрыть скобки в выражении 18 − (−1 − 5) Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок: 18 − (−1 − 5) = 18 + 1 + 5 Пример 2. Раскрыть скобки −(−6 + 7) Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок: Пример 3. Раскрыть скобки −(−7 − 4) + 15 + (−6 − 2) Здесь мы видим два места, где нужно раскрыть скобки. В первом случае применим второе правило раскрытия скобок, а во втором — первое правило: −(−7 − 4) + 15 + (−6 − 2) = 7 + 4 + 15 − 6 − 2 Пример 4. Раскрыть скобки в выражении a − (3b + 3) + 10 Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок: a − (3b + 3) + 10 = a − 3b − 3 + 10 Другие правила раскрытия скобокПравило раскрытия скобок при делении Если после скобок стоит знак деления — каждое число внутри скобок делится на делитель, который стоит после скобок. Формула раскрытия скобок Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку. Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2/3. Для этого сначала заменим деление умножением на обратное число: Далее умножим скобку на число: Правило раскрытия скобок при умножении: Если перед скобками стоит знак умножения — каждое число, которое стоит внутри скобок, нужно умножить на множитель перед скобками. Формула раскрытия скобок Пример 1. Раскрыть скобки 5(3 − x) В скобке у нас стоят 3 и −x, а перед скобкой — пятерка. Значит, каждый член скобки нужно умножить на 5: Знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей. Пример 2. Упростить выражение: 5(x + y) − 2(x − y) Как решаем: 5(x + y) − 2(x − y) = 5x + 5y − 2x + 2y = 3x + 7y. Таблица с формулами раскрытия скобокЭти таблицы с правилами раскрытия скобок можно распечатать и обращаться к ним, когда возникнут сомнения в ходе решения задачки. Правила раскрытия круглых скобок вида (-a), в которых находится одночлен Правила раскрытия круглых скобок, в которых находится многочлен Скобки убирают, знаки всех слагаемых в скобках не меняют, если: Скобки убирают, знаки всех слагаемых в скобках меняются на противоположные, если: Раскрытие круглых скобок при умножении одночлена на многочлен Раскрытие круглых скобок при умножении многочлена на многочлен Раскрытие круглых скобок при возведении многочлена в степень (a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b)= a2 + ab + ab + b2 = a2 + 2ab + b2 Скобка в скобкеВ 7 классе на алгебре можно встретить задачи со скобками, которые вложены внутрь других скобок. Вот пример такого задания: Чтобы успешно решать подобные задания, нужно: При этом важно при раскрытии одной из скобок не трогать все остальное выражение и просто переписывать его, как есть. Разберем подробнее тот же самый пример. Пример 1. Раскрыть скобки и привести подобные слагаемые 7x + 2(5 − (3x + y)) Начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относится – это сама скобка и минус перед ней. Всё остальное переписываем также как было. Теперь раскроем вторую скобку, внешнюю: Упростим получившееся выражение: Порядок раскрытия скобокТеперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида. То есть в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени. Порядок раскрытия скобок согласован с порядком выполнения действий: Пример 1. Раскрыть скобки и упростить выражение: Значение выражения не зависит от переменной и всегда отрицательно. Что и требовалось доказать. Задачи для самостоятельного решенияНа алгебре в 6 и 7 классе придется решать задачки с раскрытием скобок много и часто. Поэтому лучше запомнить правила и практиковаться уже сейчас. Задание 6. Раскройте скобки: Задание 7. Раскройте скобки:
|
---|