Что такое скобки в математике

Скобки в математике

Вы будете перенаправлены на Автор24

Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.

Использование круглых скобок в математике

Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.

Первое применение.

С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.

В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.

Второе применение.

Третье применение.

Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.

$(x+2)^2; \int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$

Четвёртое применение.

Пятое применение.

Готовые работы на аналогичную тему

Пятое применение.

Квадратные скобки в математике

Что же означают квадратные скобки в математике и для чего они используются?

Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.

Первое применение.

Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.

Второе применение.

Третье применение.

С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.

$\left [ \begin x +32=2y \\ y^2-12=0 \\ \end\right.$

Фигурная скобка в математике

Первое применение.

С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.

Второе применение.

Третье применение.

Треугольные скобки

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 06 03 2021

Источник

Скобки

Сюда перенаправляются запросы 🙂 и некоторые другие, начинающиеся с двоеточия. О них см. статью смайлик.

( )
Название символа

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Ско́бки — па́рные знаки, используемые в различных областях.

Обычно первая в паре скобка называется открывающей, а вторая — закрывающей. Почти всегда (за исключением некоторых математических обозначений) открывающая и закрывающая скобки соответствуют друг другу (квадратная — квадратной и т. д.).

Используются также скобки, в которых открывающий и закрывающий знак не различаются, например, косые скобки /…/, прямые скобки |…|, двойные прямые скобки ||…||.

В математике, физике, химии и др. используются при написании формул.

Различные скобки (как и другие, непарные символы ASCII) применяются в смайликах (эмотиконах), например, 🙂.

В системе вёрстки TEΧ есть возможность автоматически подстраивать размер скобок под вложенный в него текст: это делается с помощью команд \left и \right. Следует заметить, что во избежание синтаксических ошибок эти две команды всегда должны соответствовать друг другу, однако виды скобок в них — не обязательно. Это делает возможным конструкцию вида «\left\< a \\ a \right.» для записи систем уравнений.

Содержание

Круглые (операторные) скобки

Используются в математике для задания приоритета математических и логических операций. Например, (2+3)·4 означает, что надо сначала сложить 2 и 3, а затем сумму умножить на 4; аналогично выражение Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеозначает, что сначала выполняется логическое сложение Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеа затем — логическое умножение Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеНаряду с квадратными скобками используются также для записи компонент векторов:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Круглые скобки в математике используются также для выделения аргументов функции: Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикедля обозначения открытого сегмента и в некоторых других контекстах. Иногда круглыми скобками обозначается скалярное произведение векторов:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

(здесь приведены три различных варианта написания, встречающиеся в литературе) и смешанное (тройное скалярное) произведение:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Круглые скобки в математике используются также для указания бесконечно повторяющегося периода позиционного представления рационального числа, например

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

При обозначении диапазона чисел круглые скобки обозначают, что числа, которые находятся по краям множества не включаются в это множество. То есть запись А = (1;3) означает, что в множество включены числа, которые 1(открытый) интервал.

В химических формулах круглые скобки применяются для выделения повторяющихся функциональных групп, например, (NH4)2CO4, Fe2(SO4)3, (C2H5)2O. Также скобки используются в названиях неорганических соединений для обозначения степени окисления элемента, например, хлорид железа(II), гексацианоферрат(III) калия.

Скобки (обычно круглые, как в этом предложении) употребляются в качестве знаков препинания в естественных языках. В русском языке употребляются для выделения пояснительного слова или вставного предложения. Например: Орловская деревня (мы говорим о восточной части Орловской губернии) обыкновенно расположена среди распаханных полей, близ оврага, кое-как превращённого в грязный пруд (И.Тургенев).

Во многих языках программирования используются круглые скобки для выделения конструкций. Например, в языках Паскаль и Си в скобках указываются параметры вызова процедур и функций, а в Лиспе — для описания списка.

Квадратные скобки

В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.

Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их [заложников] было около 100 человек».

Квадратными скобками в математике могут обозначаться:

В математике помимо обычных квадратных скобок используются также их модификации «пол» Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеи «потолок» Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикедля обозначения ближайшего целого, не превосходящего Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике, и ближайшего целого, не меньшего Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике, соответственно.

В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.

В программировании чаще всего применяются для указания индекса элемента массива, в языке Perl также формируют ссылку на безымянный массив; в BASIC и некоторых других достаточно старых языках не используются.

Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).

Фигурные скобки

Фигурными скобками в одних математических текстах обозначается операция взятия дробной части, в других — они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. Одинарная фигурная скобка объединяет системы уравнений или неравенств. В математике и классической механике фигурными скобками обозначается оператор специального вида, называемый скобками Пуассона: Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеКак уже было сказано выше, иногда фигурными скобками обозначают антикоммутатор.

В вики-разметке двойные фигурные скобки <<…>> применяются для шаблонов и встроенных функций и переменных, одинарные в определённых случаях формируют таблицы.

В программировании фигурные скобки являются или операторными (Си, C++, Java, Perl и PHP), или комментарием (Паскаль), могут также служить для образования списка (в Mathematica), анонимного хеш-массива (в Perl, в иных позициях для доступа к элементу хеша) или множества (Сетл).

Угловые скобки

В математике угловыми скобками обозначают кортеж, реже — скалярное произведение в предгильбертовом пространстве, например:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

В квантовой механике угловые скобки используются в качестве так называемых бра и кет (от англ. bracketскобка), введённых П. А. М. Дираком для обозначения квантовых состояний (векторов) и матричных элементов. При этом квантовые состояния обозначаются как Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике(кет-вектор) и Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике(бра-вектор), их скалярное произведение как Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикематричный элемент оператора А в определённом базисе как Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Кроме того, в физике угловыми скобками обозначают усреднение (по времени или другому непрерывному аргументу), например, Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике— среднее значение по времени от величины f.

В текстологии и издании литературных памятников угловыми скобками обозначают лакуны в тексте — Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике.

Типографика

В типографике же угловые скобки Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеявляются самостоятельными символами. От « » их можно отличить по бо́льшему углу между сторонами — Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математикеи Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике" border="0" />.

В TEX для записи угловых скобок используются команды «\langle» и «\rangle».

ASCII-тексты

В некоторых языках разметки, напр., HTML, XML угловыми скобками выделяют теги.

В вики-разметке также можно использовать HTML-разметку, например комментарии — « », которые видны только при редактировании статьи.

В программировании угловые скобки используются редко, чтобы не создавать путаницы между ними и знаками отношений (« »). Например в Си угловые скобки используются в директиве препроцессора #include вместо кавычек, чтобы показать, что включаемый заголовочный файл необходимо искать в одном из стандартных каталогов для заголовочных файлов, например в следующем примере:

файл stdio.h находится в стандартном каталоге, а myheader.h — в текущем каталоге (каталоге хранения исходного текста программы).

Кроме того, угловые скобки применяются в языках программирования C++, Java и C# при использовании средств обобщённого программирования: шаблонов и дженериков.

В некоторых текстах, сдвоенные парные « » используются для записи кавычек-ёлочек, например — >.

Косые скобки

Появились на пишущих машинках для экономии клавиш.

В программировании на языке Си косые скобки вместе с дополнительным знаком «*» обозначают начало и конец комментария:

Прямые скобки

Используются в математике для обозначения модуля числа или вектора, определителя матрицы:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Двойные прямые скобки

Используются в математике для обозначения нормы элемента линейного пространства: ||x||; иногда — для матриц:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

История

Круглые скобки появились в 1556 году у Тартальи (для подкоренного выражения) и позднее у Жирара. Одновременно Бомбелли использовал в качестве начальной скобки уголок в виде буквы L, а в качестве конечной — его же в перевёрнутом виде (1550); такая запись стала прародителем квадратных скобок. Фигурные скобки предложил Виет (1593). Всё же большинство математиков тогда предпочитали вместо скобок надчёркивать выделяемое выражение. В общее употребление скобки ввёл Лейбниц.

См. также

Литература

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Полезное

Смотреть что такое "Скобки" в других словарях:

СКОБКИ — парный знак препинания для выделения отдельных слов или частей предложения, содержащих пояснения к основному тексту. В математике употребляются для обозначения порядка выполнения математических действий. Бывают круглые ( ), квадратные СКОБЛИКОВА… … Большой Энциклопедический словарь

скобки — (Square brackets, Parantheses, Angle brackets, Braces) Парные знаки препинания. Бывают квадратные, круглые, угловые (ломаные), фигурные (парантезы). Применяются в формульном наборе и для выделений в тексте … Шрифтовая терминология

скобки — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN parentheses … Справочник технического переводчика

скобки — парный знак препинания для выделения отдельных слов или частей предложения, содержащих пояснения к основному тексту. В математике употребляются для обозначения порядка выполнения математических действий. Различают скобки круглые ( ),… … Энциклопедический словарь

«СКОБКИ» — En.: Parentheses 1. Гипноз позволяет изолировать отдельные психологические функции, «их как бы удается взять в скобки». Другими словами, можно добиться временного «зависания» определенной психической активности в пользу другого ее вида. Пациенту… … Новый гипноз: глоссарий, принципы и метод. Введение в эриксоновскую гипнотерапию

Скобки — 1) парный знак препинания, состоящий из двух вертикальных черт: круглых О, квадратных, или прямых, [ ], фигурных, или парантезов, < >. Употребляется для выделения слов, частей предложения или предложений, содержащих дополнительные… … Большая советская энциклопедия

скобки — знак препинания. Взятие фрагмента предложения в скобки означает выделение его в качестве дополнительной информации (вставной конструкции): «И каждый вечер, в час назначенный / (Иль это только снится мне?) / Девичий стан, шелками схваченный, / В… … Литературная энциклопедия

Скобки — мн. Письменные или печатные знаки (обычно парные), служащие для обособления какой либо части текста, а в математике для обозначения порядка выполнения действий. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

скобки — скобки, скобок, скобкам, скобки, скобками, скобках (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

Источник

Раскрытие скобок

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Понятие раскрытия скобок

В задачах по математике постоянно встречаются числовые и буквенные выражения, а также выражения с переменными, которые составлены с использованием скобок.

Основная функция скобок — менять порядок действий при вычислениях значений числовых выражений.

Часто можно перейти от одного выражения со скобками к тождественно равному выражению без скобок. Например:

Такой переход от выражения со скобками к тождественно равному выражению без скобок несет в себе основную идею о раскрытии скобок.

Начальное выражение со скобками и результат, полученный после раскрытия скобок, удобно записывать в виде равенства, как мы это сделали в предыдущем примере.

В школе тему раскрытия скобок обычно подходят в 6 классе. На этом этапе раскрытие скобок воспринимают, как избавление от скобок, которые указывают порядок выполнения действий. И изучают раскрытие скобок на примерах выражений, которые содержат:

Раскрытие скобок также можно рассматривать шире.

Раскрытием скобок можно назвать переход от выражения, которое содержит отрицательные числа в скобках, к выражению без скобок. Например:

Или, если в описанных выше выражениях вместо чисел и переменных могут быть любые выражения. В полученных таким способом выражениях тоже можно проводить раскрытие скобок. Например:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Раскрытие скобок — это избавление от скобок, которые указывают порядок выполнения действий, а также избавление от скобок, в которые заключены отдельные числа и выражения.

Важно отметить еще один момент, который касается особенностей записи решения при раскрытии скобок. При раскрытии скобок в громоздких выражениях можно прописывать промежуточные результаты в виде цепочки равенств. Например, вот так:

Первое правило раскрытия скобок

Это выражение равно двум. А теперь раскроем скобки, то есть избавимся от них. Мы ожидаем, что после избавления от скобок значение выражения 8 + (−9 + 3) также должно быть равно 2.

Первое правило раскрытия скобок

Если перед скобками стоит знак плюс — все числа, которые стоят внутри скобок, сохраняют свой знак.

Формула раскрытия скобок

Мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Значит плюс нужно опустить вместе со скобками. То, что было в скобках — запишем без изменений, вот так:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Так мы получили выражение без скобок 8 − 9 + 3. Снова получаем в результате вычисления два.

Поэтому между выражениями 8 + (−9 + 3) и 8 − 9 + 3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

Потренируемся применять правило на примерах.

Пример 1. Раскрыть скобки в выражении 8 + (−3 − 1)

Перед скобками стоит плюс, значит этот плюс опустим вместе со скобками. А то, что было в скобках оставим без изменений:

Пример 2. Раскрыть скобки в выражении 6 + (−2)

Перед скобками стоит плюс, значит применим то же правило:

Раскрытие скобок в предыдущих пример выглядит, как обратная операция замены вычитания сложением.

В выражении 6 − 2 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 6 + (−2). Но если в выражении 6 + (−2) раскрыть скобки, то получится снова 6 − 2.

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после любых других преобразований.

Идем дальше. Теперь упростим выражение 2a + a − 5b + b.

Чтобы упростить такое выражение, нужно привести подобные слагаемые. Для этого нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:

Получили выражение 3a + (−4b). Раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок: опустим скобки вместе с плюсом, который стоит перед этими скобками.

Таким образом, выражение 2a + a − 5b + b упрощается до 3a − 4b.

После открытия одних скобок, по пути можно найти другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в таком выражении:

Здесь нужно раскрыть скобки в двух местах. Снова применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед:

Пример 3. Раскрыть скобки 6 + (−3) + (−2)

В обоих местах перед скобками стоит плюс. Применяем первое правило раскрытия скобок:

Можно встретить такой пример, когда первое слагаемое в скобках записано без знака. Например, в выражении 1 + (2 + 3 − 4) первое слагаемое в скобках 2 записано без знака. Какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ интуитивно понятен — перед двойкой будет стоять плюс.

Дело в том, что даже в скобках перед двойкой стоит плюс, просто мы его не видим так как плюс не принято записывать. Полная запись положительных чисел выглядит так: +1, +2, +3, но плюсы по традиции не записывают, поэтому положительные числа мы всегда видим в таком виде: 1, 2, 3.

Поэтому, чтобы раскрыть скобки в выражении 1 + (2 + 3 − 4), нужно как обычно опустить скобки вместе с плюсом, который стоит перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

Пример 4. Раскрыть скобки в выражении (−7)

Перед скобками стоит плюс, но мы его не видим так как до него нет других чисел или выражений. Убираем скобки, применив первое правило раскрытия скобок:

Пример 5. Раскрыть скобки 9a + (−5b + 6c) + 2a + (−2d)

Видим два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишем без изменений:

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Второе правило раскрытия скобок

Здесь рассмотрим второе правило раскрытия скобок. Звучит так:

Второе правило раскрытия скобок

Если перед скобками стоит знак минус — все числа, которые стоят внутри скобок, меняют свой знак на противоположный.

Формула раскрытия скобок

Например, раскроем скобки в выражении 5 − (−2 − 3)

Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Так мы получили выражение без скобок 5 + 2 + 3. Это выражение равно десяти, как и предыдущее выражение со скобками было равно 10.

Поэтому между выражениями 5 − (−2 − 3) и 5 + 2 + 3 можно поставить знак равенства так как они равны одному и тому же значению:

Пример 1. Раскрыть скобки в выражении 18 − (−1 − 5)

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

18 − (−1 − 5) = 18 + 1 + 5

Пример 2. Раскрыть скобки −(−6 + 7)

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

Пример 3. Раскрыть скобки −(−7 − 4) + 15 + (−6 − 2)

Здесь мы видим два места, где нужно раскрыть скобки. В первом случае применим второе правило раскрытия скобок, а во втором — первое правило:

−(−7 − 4) + 15 + (−6 − 2) = 7 + 4 + 15 − 6 − 2

Пример 4. Раскрыть скобки в выражении a − (3b + 3) + 10

Перед скобками стоит минус, поэтому применим второе правило раскрытия скобок:

a − (3b + 3) + 10 = a − 3b − 3 + 10

Другие правила раскрытия скобок

Правило раскрытия скобок при делении

Если после скобок стоит знак деления — каждое число внутри скобок делится на делитель, который стоит после скобок.

Формула раскрытия скобок

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые.

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2/3. Для этого сначала заменим деление умножением на обратное число:

Далее умножим скобку на число:

Правило раскрытия скобок при умножении:

Если перед скобками стоит знак умножения — каждое число, которое стоит внутри скобок, нужно умножить на множитель перед скобками.

Формула раскрытия скобок

Пример 1. Раскрыть скобки 5(3 − x)

В скобке у нас стоят 3 и −x, а перед скобкой — пятерка. Значит, каждый член скобки нужно умножить на 5:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей.

Пример 2. Упростить выражение: 5(x + y) − 2(x − y)

Как решаем: 5(x + y) − 2(x − y) = 5x + 5y − 2x + 2y = 3x + 7y.

Таблица с формулами раскрытия скобок

Эти таблицы с правилами раскрытия скобок можно распечатать и обращаться к ним, когда возникнут сомнения в ходе решения задачки.

Правила раскрытия круглых скобок вида (-a), в которых находится одночлен

Правила раскрытия круглых скобок, в которых находится многочлен

Скобки убирают, знаки всех слагаемых в скобках не меняют, если:

Скобки убирают, знаки всех слагаемых в скобках меняются на противоположные, если:

Раскрытие круглых скобок при умножении одночлена на многочлен

Раскрытие круглых скобок при умножении многочлена на многочлен

Раскрытие круглых скобок при возведении многочлена в степень

(a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b)= a2 + ab + ab + b2 = a2 + 2ab + b2

Скобка в скобке

В 7 классе на алгебре можно встретить задачи со скобками, которые вложены внутрь других скобок. Вот пример такого задания:

Чтобы успешно решать подобные задания, нужно:

При этом важно при раскрытии одной из скобок не трогать все остальное выражение и просто переписывать его, как есть. Разберем подробнее тот же самый пример.

Пример 1. Раскрыть скобки и привести подобные слагаемые 7x + 2(5 − (3x + y))

Начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относится – это сама скобка и минус перед ней. Всё остальное переписываем также как было.

Теперь раскроем вторую скобку, внешнюю:

Упростим получившееся выражение:

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида. То есть в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок раскрытия скобок согласован с порядком выполнения действий:

Пример 1. Раскрыть скобки и упростить выражение:

Значение выражения не зависит от переменной и всегда отрицательно. Что и требовалось доказать.

Задачи для самостоятельного решения

На алгебре в 6 и 7 классе придется решать задачки с раскрытием скобок много и часто. Поэтому лучше запомнить правила и практиковаться уже сейчас.

Задание 6. Раскройте скобки:

Что такое скобки в математике. Смотреть фото Что такое скобки в математике. Смотреть картинку Что такое скобки в математике. Картинка про Что такое скобки в математике. Фото Что такое скобки в математике

Задание 7. Раскройте скобки:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *