Что такое смеситель в электронике

Принцип работы смесителя (преобразователя частоты)

Как уже мы рассматривали ранее для переноса частоты принимаемого сигнала на промежуточную частоту необходимо осуществить умножение входного сигнала на синусоидальное напряжение местного генератора (гетеродина). Устройства, умножающие два аналоговых сигнала, в радиоприемных и радиопередающих устройствах получили название смесители. Обычно операция умножения двух аналоговых сигналов осуществляется за счет вольтамперной характеристики нелинейного элемента. Пример вольтамперной характеристики нелинейного элемента приведен на рисунке 1.

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

Рисунок 1 Умножение двух аналоговых сигналов за счет вольтамперной характеристики нелинейного элемента

В реальных схемах смесителей амплитуда сигнала местного генератора (гетеродина) многократно превышает амплитуду входного сигнала. Поэтому динамическое сопротивление (или коэффициент передачи) нелинейного элемента можно рассматривать как функцию от напряжения гетеродина. Коэффициент передачи нелинейного элемента определяется по формуле:

поэтому крутизну можно рассматривать как производную от вольтамперной характеристики нелинейного элемента. Тогда напряжение на выходе смесителя будет записано следующим образом:

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

Эта формула показывает, что описанное изменение режима работы нелинейного элемента под действием напряжения гетеродина эквивалентно умножению входного сигнала на это напряжение. Если вольтамперная характеристика будет представлять собой квадратичную зависимость тока от напряжения, то производная от нее будет являться линейной функцией, и в этом случае крутизна нелинейного элемента будет линейно зависеть от напряжения гетеродина, а значит, в смесителе не будут проявляться нелинейные искажения полезного сигнала.

Теперь определим коэффициент передачи смесителя (преобразователя частоты). Для этого воспользуемся зависимостью крутизны нелинейного элемента с квадратичной характеристикой от входного напряжения. График зависимости крутизны от входного напряжения для нелинейного элемента с квадратичной характеристикой приведен на рисунке 2.

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

Рисунок 2. График зависимости крутизны от входного напряжения для нелинейного элемента с квадратичной характеристикой

К сожалению, кроме описанного полезного преобразования, на выходе нелинейного элемента будут присутствовать и дополнительные компоненты спектра. Прежде всего, это напряжение самого гетеродина и его гармоник. Ведь нелинейный элемент обладает и статическим коэффициентом передачи. То же самое можно сказать и по отношению к входному сигналу. В случае квадратичной характеристики нелинейного элемента на его выходе будет присутствовать напряжение первой и второй гармоник, как гетеродина, так и входного сигнала.

При обсуждении принципов работы супергетеродинного приемника мы уже обсуждали, что для переноса спектра полезного сигнала на промежуточную частоту используется формула:

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

Однако в рассматриваемой ситуации на нелинейном элементе присутствуют сигналы гармоник входного сигнала и гетеродина. Промежуточная частота может образовываться не только первыми гармониками, но и гармониками более высоких порядков. В результате данная формула видоизменяется к следующему виду:

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

В результате в приемнике образуются дополнительные побочные каналы приема. Где находятся эти каналы и механизм их возникновения иллюстрируется рисунком 2.

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

Рисунок 2. Механизм образования побочных каналов за счет продуктов нелинейности второго и третьего порядков

Наиболее близким побочным каналом является канал fс‘, отстоящий на половину промежуточной частоты. Он образуется при перемножении его второй гармоники и второй гармоники гетеродина. Разность частот между ними точно соответствует промежуточной частоте. В результате преобразования сигнал этого канала проходит на выход фильтра промежуточной частоты без ослабления. Появление этого побочного канала оборачивается ужесточением требований к фильтру радиочастоты.

Для борьбы с этим побочным каналом приема применяются симметричные схемы смесителей, такие как балансный и кольцевой смесители. Кроме того, существенную роль играет уровень сигнала гетеродина. При увеличении уровня сигнала гетеродина уровень гармоник принимаемого сигнала уменьшается. Это связано с тем обстоятельством, что нелинейный элемент фактически переходит в ключевой режим работы.

Точно таким же образом образуется побочный канал за счет перемножения третьей гармоники побочного канала fс» и гетеродина. Обычно в смесителе уровень продуктов преобразования третьего порядка выше, чем уровень продуктов преобразования второго порядка, однако этот побочный канал приема отстоит от полезного сигнала дальше (на 2/3fпч), а, следовательно, его легче можно подавлять при помощи полосового фильтра преселектора.

При проектировании смесителя количество учитываемых гармоник сигнала и гетеродина зависит от вида вольтамперной характеристики нелинейного элемента и формы сигнала гетеродина. Наименьшим количеством гармоник, а, следовательно, и наименьшим количеством побочных каналов обладают смесители, построенные на нелинейных элементах с квадратичными вольтамперными характеристиками.

Дата последнего обновления файла 29.12.2010

Понравился материал? Поделись с друзьями!

Вместе со статьей «Принцип работы смесителя (преобразователя частоты)» читают:

Параметры смесителя Реальные смесители сложны для анализа, и поэтому их эксплуатационные характеристики определяются множеством параметров.
https://digteh.ru/WLL/ParSmes.php

Диодный смеситель В диодном преобразователе на вход нелинейного элемента, в качестве которого выступает диод, одновременно подаются два сигнала.
https://digteh.ru/WLL/DiodSmes.php

Балансные смесители Для того чтобы убрать из выходного сигнала напряжение гетеродина обычно применяют двухтактную схему, называемую балансным смесителем.
https://digteh.ru/WLL/BalSmes.php

Кольцевые смесители Уменьшить уровень радиосигнала на выходе преобразователя частоты позволяет схема кольцевого смесителя.
https://digteh.ru/WLL/KolSmes.php

Смесители с подавлением зеркального канала В ряде случаев в супергетеродинном приемнике очень трудно обеспечить удовлетворение требований по подавлению частоты зеркального канала и соседнего канала одновременно.
https://digteh.ru/WLL/kvSmes.php

Источник

Смеситель (электроника)

Смесители являются ключевым элементом преобразователей частоты в современных радиоприёмных устройствах. Смесители подразделяются на два основных типа:

В обоих случаях смесители могут быть активными, то есть представлять собой каскад усиления, работающий в нелинейном режиме и обеспечивающий помимо преобразования частоты ещё и усиление сигнала, и пассивными. В пассивных смесителях могут использоваться диоды или полевые транзисторы, работающие в режиме управляемых резисторов. Пассивные смесители обладают большим динамическим диапазоном, так как менее подвержены перегрузкам сильными сигналами.

Простейшим смесителем может являться один нелинейный электрический элемент, например, диод. Более сложные, балансные схемы, содержат несколько диодов и симметрирующие трансформаторы.

Смеситель чаще всего имеет два входа и один выход:

На выходе смесителя получается смешанный сигнал, состоящий из ниже перечисленных частот:

При работе реального смесителя, помимо основного сигнала, на выходе присутствуют также множество побочных составляющих, образованных гармониками сигнала и гетеродина, которые должны быть отфильтрованы полосовым фильтром или ФНЧ.

Важным свойством смесителя является то, что преобразование выполняется с сохранением спектра сигнала, то есть его модуляции и прочих параметров.

Существуют цифровые смесители. Например, логический элемент XOR, имеющий два входа и один выход: если подать на его входы достаточно сильные сигналы (например гетеродин 65 МГц и ЧМ сигнал

70 МГц), то на выходе после ФНЧ можно наблюдать сильный разностный сигнал (ЧМ

5 МГц), пригодный для дальнейшей непосредственной обработки цифровой схемой.

Рассмотрим балансные смесители.

Смесители, которые выполняют функцию перемножения напрямую, обладают превосходными характеристиками, потому что они идеально воспроизводят только гармоники с комбинационными частотами. Одно, достаточно общее свойство таких смесителей то, что они сначала преобразуют входное напряжение (t) в ток, а затем осуществляют перемножение токов. Реальные смесители сложны для анализа, и поэтому их эксплуатационные качества определяются множеством характеристик. Ниже приводится список главных технических требований, предъявляемых к смесителям, в порядке убывания их важности.

Чрезмерно сложный проект приводит к значительному удорожанию оборудования, поэтому разработчики должны стремиться к получению максимальных характеристик при минимуме используемых компонентов.

Источник

Смеситель (электроника)

Из Википедии — свободной энциклопедии

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электронике

Смесители ( англ. mixer ) являются частью преобразователей частоты в радиоприёмных, радиопередающих и других устройствах, в которых осуществляется генерирование и формирование сигнала.

Смесители подразделяются на два основных типа:

В обоих случаях смесители могут быть активными, то есть представлять собой каскад усиления, работающий в нелинейном режиме и обеспечивающий помимо преобразования частоты ещё и усиление сигнала, и пассивными. В пассивных смесителях могут использоваться диоды или полевые транзисторы, работающие в режиме управляемых резисторов. Пассивные смесители обладают большим динамическим диапазоном, так как менее подвержены перегрузкам сильными сигналами.

Простейшим смесителем может являться один нелинейный электрический элемент, например, диод. Более сложные, балансные схемы, содержат несколько диодов и симметрирующие трансформаторы.

Смеситель чаще всего имеет два входа и один выход:

В идеальном перемножающем смесителе при подаче на его входы спектрально чистых синусоидальных сигналов постоянных амплитуд на выходе его формируется сигнал, являющийся суммой следующих синусоидальных сигналов:

В реальном смесителе, из-за его нелинейности для операции перемножения помимо двух сигналов суммы и разности, как у идеального смесителя, на выходе образуются суммы и разности всех частот кратных частотам входных сигналов и гармоники входных частот. Эти паразитные спектральные составляющие в выходном сигнале реального смесителя обычно нежелательны, и должны быть отфильтрованы полосовыми фильтрами или фильтрами нижних частот.

Важным свойством смесителя является то, что преобразование выполняется с сохранением спектра сигнала, то есть его модуляции и прочих параметров с переносом спектра в иную полосу частот.

Существуют цифровые смесители. Например, логический элемент XOR, имеющий два входа и один выход: если подать на его входы достаточно сильные сигналы (например гетеродин 65 МГц и ЧМ сигнал

70 МГц), то на выходе после ФНЧ можно наблюдать сильный разностный сигнал (ЧМ

5 МГц), пригодный для дальнейшей непосредственной обработки цифровой схемой.

Источник

О смесителях. Теория смешения сигналов двух частот для получения продуктов объясняется с помощью анализатора спектра и тригонометрических тождеств

Автор: Lloyd Butler (VK5BR)

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электроникеВсе статьи на CQHAM.RU
Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электроникеВсе статьи категории «В помощь радиолюбителю»

(Из австралийского журнала «AmateurRadio» за апрель 1988 г)
Lloyd Butler, VK5BR

Стоит только взглянуть на выход смесителя с помощью анализатора спектра, чтобы понять, чтосмеситель является сложным устройством. Ниже будут рассмотрены некоторые принципы смешения и смесительные устройства.

В современной аппаратуре можно обнаружить множество смесительных каскадов. Они известны как устройства, которые, при подаче на них сигналов двух частот, дают дополнительные сигналы, равные по частотам сумме и разности подаваемых на смеситель сигналов. Одна из вновь образованных компонент выделяется настроенным полосовым фильтром (резонансным контуром) и подаётся для обработки далее. Не следует забывать, что остальные компоненты, как входные, так и полученные, также, присутствуют в той или иной степени в выходном сигнале смесителя, они никуда не девались, а просто были уменьшены по амплитуде при селекции. (Следует отметить, что входные сигналы, будучи поданными на нелинейное устройство, каким является смеситель, образуют собственные гармоники, которые тоже взаимодействуют, как между собой, так и с исходными сигналами, подаваемыми на смеситель, получаемые суммарные и разностные сигналы, взаимодействуют как друг с другом, так и с исходными сигналами, их гармониками и комбинационными сигналами, полученными в результате взаимодействия уже вторичных сигналов: каждый сигнал взаимодействует с каждым, давая всё новые и новые частоты, так что на выходе нелинейного смесителя присутствует целый спектр частот с разными амплитудами, задача конструктора заключается в подавлении входных сигналов (балансное смешение по входу), двухбалансные схемы с резонансными элементами на выходе способствуют той или иной степени подавления и нежелательных выходных сигналов смесителя – UA9LAQ).

Все виды встречающихся проблем могут быть заключены в самом процессе смешения и, если Вы занимаетесь конструированием собственной аппаратуры, глубокое изучение процесса смешения Вам не помешает. Ниже делается попытка исследования основных принципов смешения.

Рис. 1
Характеристика нелинейной зависимости выходного напряжения от входного

Рис. 2
F1 промодулирована (или помножена на) fo

Вернёмся к обсуждению Рис. 2, процесс смешения есть математически частный случай перемножения. Действующая амплитуда сигнала fi перемножается на действующую амплитуду сигнала fo, отсюда результирующие компоненты называются продуктами. Всё, конечно, выглядит конфузно, поскольку мы знаем, что получаемые на выходе смесителя частоты равны сумме и разности частот подводимых к смесителю сигналов. Но нужно понимать, что перемножаются только действующие амплитуды, а не частоты, а само явление может быть объяснено одним из хорошо известных тригонометрических тождеств:

Мы можем выразить действующую амплитуду f1 и foследующим образом:

Ai.sin(2π.fi.t) и Ao.sin(2π.fo.t),

где Aiи Ao- их соответствующие амплитуды и t = время.

Перемножая их с заменой в тождестве (1), мы получаем следующее:

На выходе смесителя присутствуют намного больше компонентов, чем просто суммарная и разностная от входных. Чтобы проиллюстрировать это на спектроанализаторе, соберём простую смесительную схему на германиевом диоде (Рис. 3.) Сигнал fo напряжением 1 Врр подан параллельно диоду, что достаточно, чтобы сдвинуть его рабочую точку по кривой вольт-амперной характеристики диода, а сигнал fi имеет уровень менее 0,1 Врр. Выбор частот в 150 и 200 кГц для fi и fo, соответственно, не имеет какого-либо значения, кроме демонстрационного.

Рис. 3. Простой диодный смеситель

Рис. 4 в трёх частях показывает выход смесителя, когда на него поданы сигналы с частотами или foили fi и когда эти сигналы поданы одновременно для смешения. Отметьте высокий уровень гармоник от сигнала fo, по сравнению с сигналом fi. Гармоника 2foсоставляет величину лишь на 20 дБ меньшую, чем fo, тогда как гармоника 2f1 на 45 дБ ниже f1, а более высокие гармоники fi ещё менее заметны. Отметьте также, что на выходе смесителя, при смешении, образуются не только суммарные и разностные частоты от fi и fo, но и суммарные и разностные продукты от fo. (если быть более строгим, то тоже самое образуется и от частоты fi, но уровень этих продуктов намного ниже и зачастую относится к шуму – UA9LAQ).

На Рис. 5 показано, что произойдёт, если мы увеличим уровень сигнала fi до уровня fo. Уровни получаемых суммарной и разностной компонент подрастут, как и уровни других продуктов, плюс (теперь уже с заметным уровнем) появятся суммарные и разностные продукты гармоник частоты fi.

Рис. 6. Простой диодный смеситель.
(Напряжения на диоде: fo = 1 Вpp, fi = 1 Вpp)
fi изменена на 115 кГц
Ось Y– 10 дБ на деление.

Если взять проблему присутствия сигнала foна выходе смесителя с уровнем 35 дБ выше необходимой комбинационной компоненты, например, суммарной: (fo + fi), то можно применить балансный смеситель и нивелировать эту входную компоненту. Для демонстрации этого блок промышленного двухбалансного смесителя типа СМ1 (Рис. 1) был установлен на испытательный стенд, и на него были поданы сигналы с теми же частотами 200 кГц (fo) и 150 кГц (f1). Полученный спектр показан на Рис. 8. Видно, что теперь уровень обоих сигналов и f1 и fo находится ниже уровня комбинационной суммарной компоненты (fo + fi) на 35 дБ. Балансные смесители рассмотрены ниже.

Рис. 7. Двойной балансный кольцевой смеситель типа CM1.

Рис. 8. Частотный спектр двойного балансного смесителя.

Смесители можно классифицировать на работающие в непрерывном нелинейном режиме (Рис. 2) и ключевые.

Типичным смесителем первого типа является схема на двухзатворном полевом транзисторе, показанная на Рис. 9. У ПТ – квадратичная характеристика, которая с успехом может быть применена для смешения. Из-за высоких входных импедансов ПТ требуют небольшой входной мощности, отдельные затворы обеспечивают хорошую развязку между двумя смешиваемыми сигналами.

Рис. 9. Смеситель на двухзатворном полевом транзисторе с изолированными затворами в непрерывном нелинейном режиме.

Большинство смесителей на биполярных транзисторах и лампах работают в непрерывном нелинейном режиме. По сравнению с квадратичной характеристикой ПТ, биполярные транзисторы и полупроводниковые диоды имеют экспоненциальные характеристики, а вакуумные лампы подчиняются закону степени 3/2 (Для ясности оставляю предложение из оригинала полностью: By comparison to the square law of the MosFET, the bipolar transistor and the semiconductor diode have an exponential characteristic and the vacuum tube a 3/2 power law. – UA9LAQ).

Квадратичная характеристика ПТ больше приемлема потому, что генерация гармоник, при ней, теоретически, ограничена вторым порядком. Этоможетбытьустановленодругимизвестнымтригонометрическимтождеством:

cos(2A) = 1- 2sin 2 A и

sin 2 A = (1/2) (1 + cos(2A))

Отсюда, если возвести в квадрат входную компоненту f, выраженнуюкак Af.sin(2π.f.t), то мы получим:

[Af.sin(2π.f.t)] 2 = (1/2)Af 2 [1 + cos(2π.2f.t)]

Чтобы сравнить с этим экспоненциальный закон характеристики биполярного транзистора или диода, мы можем продлить экспоненциальную функцию, используя последовательность Тейлора (Taylor series):

e x = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! etc.

Подставим x = sin (2π.f.t) и мы получим следующее:

sin(2π.f.t), sin 2 (2π.f.t), sin 3 (2π.f.t), sin 4 (2π.f.t), и в действительности, все мощности, равные sin(2π.f.t).

Мы видели, что синусоидальный, возведённый в квадрат, сигнал даёт вторую гармонику, теперь исследуем компоненту синусоидальный сигнала, возведённого в куб (у кубической характеристики – экспоненциальный вид – UA9LAQ). Для этого используем третье тригонометрическое тождество:

Не вдаваясь в другие математические подробности, мы можем предсказать, что складывается закономерность, в которой каждая прибавляемая мощность sin(2π.f.t) даёт соответствующее приращение порядка гармоник. Приняв это за истину, можно сделать вывод, что экспоненциальная характеристика биполярного транзистора или полупроводникового диода, способствует генерации гармоник всех порядков, в сравнении с квадратичной характеристикой ПТ с изолированным затвором, которая способствует появлению только второй гармоники.

Это означает, что fi перемножается с основной частотой fo и всеми её нечётными гармониками. (Отметьте, что идеальные прямоугольные импульсы не содержат чётных гармоник).

Ситуация упрощается, так как прямоугольные импульсы имеют только два состояния (по амплитуде, и в идеале – UA9LAQ), единица и минус единица (логические уровни – UA9LAQ), так что, чтобы умножить на fi, необходимо перемножить fiи на единицу и на минус единицу, что означает переворот фазы fi, при каждой смене полярности fo.

Смеситель определяется как двухбалансный, поскольку оба входных сигнала сбалансированы (взаимно уничтожены – UA9LAQ) относительно выхода. Подавление уровня входных сигналов предварительно упомянуто и проиллюстрировано на Рис. 8.

Рис. 10.
Двойной балансный смеситель. Коммутация сигнала с частотой f1 сигналом с частотой fo ( fi выше fo).

Рис. 11.
Двойной балансный диодный смеситель. Коммутация сигнала с частотой fi сигналом с частотой fo (fiниже fo).

Другим типом диодного ключевого смесителя является однобалансный полукольцевой, показанный на Рис. 12. В этой схеме диоды включаются и выключаются во время противоположных полуволн сигнала (напряжения) частотой fo, как показано на Рис. 13. В этом случае, мы не можем сделать заключение, что сигнал частотой fi ( и амплитудой Ai) перемножается на прямоугольные импульсы с частотой следования fo и с амплитудой в единицу, речь пойдёт о сдвиге по постоянному току с амплитудой в единицу. Однако, перемножаявходныесоставляющие, получимследующийрезультат:

Ai.sin(2π.fi.t).(1 + [последовательность прямоугольных импульсов (2)])

Рис. 12. Однобалансный смеситель (полукольцо).

Рис. 13. Однобалансный диодный смеситель.
(fi перемножается переключающим напряжением fo, амплитуда сигнала равна амплитуде переключающего напряжения).

Степень изоляции входного сигнала в балансном смесителе определяется тщательностью балансировки трансформатора и согласованием диодов. На заре эры полупроводников, некоторые телефонные системы использовали купруксные выпрямители. Современные же сбалансированные смесительные модули, которые подходят и для применения на УКВ и СВЧ, включают в себя быстродействующие диоды, характеризующиеся малым напряжением на них в проводящем состоянии, малым обратным током, малой величиной собственной ёмкости и очень высоким значением максимально применимой частоты.

Диоды всех типов имеют “изогнутую” характеристику включения (начальный участок) и, тем не менее, могут, жёстко управляемые сигналом fo, работать в частично непрерывном нелинейном режиме. В спектре балансного смесителя, показанном на Рис. 8, чётные гармоники fo ясно показывают, что отсутствует идеальное переключение по закону прямоугольных импульсов.

Диодные балансные смесители работают очень хорошо, но обладают скорее потерями преобразования, чем усилением. Они также являются устройствами с низким импедансом и требуют для работы с ними низкого импеданса источника схем “привязанных” к ним. Из-за этих характеристик диодов, часто используются активные смесители на биполярных или полевых транзисторах. Эти смесители имеют усиление при преобразовании и могут работать со схемами “обвязки”, имеющими более высокий импеданс.

Схема активного балансного смесителя, построенного автором для использования в трансивере, показана на Рис. 14. В этом случае, SSB сигнал смешивался с несущей, имеющей частоту 21 МГц для получения ПЧ в 17 МГц (преобразование вверх). Спектр этого смесителя показан на Рис. 15. Этот смеситель работает в непрерывном нелинейном режиме, сигнал fo заставляет напряжение на затворах изменять ток стока в большой части характеристики зависимости тока стока от напряжения на затворе. Точный баланс усилений транзисторов достигается дифференциальной регулировкой (подстройкой) токов стоков потенциометром, регулирующим смещение в цепи истоков.

Рис. 15.
Спектральный анализ балансного смесителя на ПТ.

Активные балансные смесители могут работать также в ключевом режиме, в который их можно перевести увеличением уровня сигнала fo до точки, где выходной ток переключается между двумя уровнями: нулевым (выключено) и током насыщения (включено). В каком режиме работать смесителю определяется уровнем напряжения foи в некоторой степени установкой начального смещения входа.

Смешение при преобразовании вверх и вниз

Такое же частотное преобразование, наоборот, требуется, когда 17 МГц преобразуется в ПЧ 4 МГц с использованием напряжения гетеродина той же частоты 21 МГц. В этом случае, однако, частота 21 МГц отстоит далеко от ПЧ 4 МГц и может быть легко отфильтрована, а в качестве смесителя можно использовать обычную схему смесителя на двухзатворном ПТ, показанную на Рис. 9.

Следует сделать особое ударение на том, что балансный смеситель желателен во всех случаях с преобразованием вверх, как это обычно делается в SSB передатчиках, преобразование вниз, которое встречается большей частью в приёмниках, менее критично к этому требованию. Другим примером применения балансного смесителя является амплитудный модулятор, который даёт на выходе двухполосный сигнал с подавленной несущей. Сигнал f1 является здесь звуковым (от микрофонного усилителя), а сигнал несущей (опорной частоты) fo балансируется (подавляется). В этом случае, смеситель обычно называется балансным модулятором. Вспомните, мы уже упоминали ранее, что смешение и амплитудная модуляция являются одним и тем же процессом. Балансный модулятор является первым каскадом в SSB – передатчике, где получаются две боковые полосы сигнала, одна из которых позднее удаляется избирательным фильтром.

Интерференционные помехи могут составлять серьёзную проблему и поэтому одним из параметров смесителя является уровень его продуктов третьего порядка на выходе относительно уровня необходимой суммарной или разностной компоненты.

Точка пересечения по продуктам интермодуляции третьего порядка

Выше было упомянуто, что для уменьшения уровня интермодуляционных составляющих, необходимо иметь входной сигнал fiна низком уровне. Исследуем это утверждение:

Предположим, что мы подвели два синусоидальных сигнала с одинаковой амплитудой ко входу нелинейного устройства. Заметим уровни и увеличим их в 3,16 раза (или на 10 дБ). Из-за нелинейности увеличение на выходе будет не таким, как на входе, однако, выходной спектр может быть пересчитан в компоненты, состоящие из двух основных частот f1 andf2, и другие компоненты, которые можно анализировать отдельно. Сигналы основных частот должны возрастать линейно, иначе, они не будут основными, отсюда их выходные напряжения должны возрастать на строго предложенную относительно входа величину (т. е., 3.16). Другие компоненты будут описаны иными уравнениями.

Изменение выходного уровня продуктов третьего порядка = 20 log 3.16**3 = 30 dB

(Знаки привожу как в оригинале – UA9LAQ).

Поскольку интермодуляционные продукты возрастают по кубическому закону изменения входных уровней, в противоположность линейному для основных сигналов, то чем выше уровень входных сигналов, тем больше будет соотношение между уровнем продуктов интермодуляции и основных сигналов. Теоретически существует точка, где уровень продуктов интермодуляции сравняется с выходным уровнем основных сигналов. Эта точка называется точкой пересечения по продуктам интермодуляции третьего порядка и часто приводится в характеристиках на смесители.

Рис. 16.
Испытательный стенд для исследования смесителей.

Рис. 17. Характеристика работы смесителя на 3N140. Показана точка пересечения по продуктам интермодуляции третьего порядка.
DR = динамический диапазон по уровню неразличимых продуктов интермодуляции.

На Рис. 17 показаны кривые смесителя на 3N140, вытекающие из исследования с Рис. 16. Чтобы выполнить его, пришлось входные уровни установить таковыми, что продукты интермодуляции третьего порядка сравнялись с уровнем шумов. Анализатор спектра использовался для того, чтобы отделить различные компоненты визуально друг от друга и измерить их уровни. Всё что нужно учесть, так это уровни входных и выходных необходимых сигналов и уровень интермодуляционных продуктов. Довольно просто продолжить кривые, основанные на линейной и кубической зависимости (до пересечения). В децибельной форме формируется две линии с разным наклоном. Нужный сигнал возрастает на выходе на 10 дБ, при увеличении входного на 10 дБ. Интермодуляционные продукты (IMD) третьего порядка возрастают на 30 дБ при увеличении на 10 дБ по входу. Для подтверждения результатов исследования можно несколько раз повторить опыт с различными уровнями сигналов.

В некоторой точке линии сойдутся, обозначая точку пересечения по интермодуляции третьего порядка. Следует особо отметить, что эта точка – теоретическая и никогда не может быть достигнута на практике, поскольку смеситель войдёт в режим компрессии сигнала раньше, чем эта точка будет достигнута. Определение этой точки полезно, поскольку обе характеристики и линейная и кубическая могут быть восстановлены с помощью соответствующих закономерностей: линейной и кубической зависимости.

Уровень шума и динамический диапазон

На Рис. 17 уровень шума обозначен как 0 дБ на выходе и эта информация, вместе с уровнями сигнала и интермодуляционных продуктов, переведена в другую форму, представленную наРис. 18. Здесь мы показываем отношение сигнал/шум, как функцию от уровня входного сигнала на одной кривой, а отношение уровня сигнала к уровню продуктов интермодуляции как функцию входного сигнала – на другой. Отметьте, что здесь имеется оптимальный уровень, там, где пересекаются кривые, и, где уровень выходного сигнала на 50 дБ выше как уровня шумов, так и продуктов интермодуляции.

Рис. 18. Смеситель на 3N140.
Сравнение сигнал/шум и сигнал/продукты интермодуляции.

Для уровней сигналов ниже точки пересечения IMD продукты находятся ниже шумового порога. Это показано также пунктирной линией на Рис. 17.Длина этой линии является также динамическим диапазоном (DR) смесителя, при котором мы не обнаруживаем продуктов интермодуляции. Отметьте, что эта цифра составляет 50 дБ и две трети разности между точкой пересечения по продуктам интермодуляции третьего порядка и шумовым порогом (75 дБ). По линейному и кубическому законам двух кривых, соответственно, динамический диапазон (в дБ) может быть всегда определён как 2/3 между точкой пересечения и порогом шума.

Другим фактором, который следует упомянуть, является также тот, что уровень шума зависит от полосы пропускания: пропорционален ей, отсюда: уровень шумового порога и динамический диапазон являются также функциями полосы пропускания системы. Относительно Рис. 17 и 18, измерения были выполнены на базе ЧМ полосы пропускания равной 15 кГц. Если бы полоса пропускания была 3 кГц – SSB, то уровень шумового порога был бы на 7 дБ ниже, а динамический диапазон на столько же бы подрос.

Смесители можно классифицировать следующим образом:

1. Работающие в непрерывном нелинейном режиме, или работающие в ключевом режиме.

2. Несбалансированные или сбалансированные, в которых один или оба входных сигнала сбалансированы относительно выхода (подавлены и не присутствуют на выходе смесителя – UA9LAQ).

3. Смесители, которые имеют усиление при преобразовании и смесители, которые имеют при преобразовании потери.

Смесители, обычно, работают при смещении рабочей точки путём опорного сигнала fo по всему нелинейному участку характеристики смесителя, при низком уровне входного сигнала f1, достаточном, чтобы, с одной стороны, обеспечить низкий уровень шума, с другой – минимизировать продукты интермодуляции.

Уровень продуктов смешения третьего порядка возрастает в пропорции к кубу уровня входного сигнала (и выходного). Работу смесителя как функцию уровня входного сигнала можно определить точкой пересечения по продуктам интермодуляции третьего порядка и уровнем шумового порога.

То, что представлено в настоящей статье, является исследованием работы смесителей и изложением некоторых идей по поводу, как нужно их эксплуатировать. Дальнейшую информацию по практическому применению этих устройств можно найти в справочниках, например, публикуемых ARRL (AmericanRadioRelayLeague).

Свободный перевод с английского с разрешения автора: Виктор Беседин (UA9LAQ) ua9laq@mail.ru г. Тюмень март, 2005 г

Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электроникеВсе статьи на CQHAM.RU
Что такое смеситель в электронике. Смотреть фото Что такое смеситель в электронике. Смотреть картинку Что такое смеситель в электронике. Картинка про Что такое смеситель в электронике. Фото Что такое смеситель в электроникеЭкспорт статей с сервера CQHAM.RU

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *