Что такое смежные треугольники
math4school.ru
Треугольники
Основные свойства
Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).
Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.
Сумма углов треугольника равна 180°:
Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:
Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:
В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:
Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.
Средняя линия треугольника параллельна одной из его сторон и равна её половине:
Равенство треугольников
Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:
У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)
В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.
Первый признак равенства треугольников.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:
Второй признак равенства треугольников.
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:
Третий признак равенства треугольников.
Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:
Подобие треугольников
Подобными называются треугольники, у которых соответствующие стороны пропорциональны.
Коэффициент пропорциональности называется коэффициентом подобия:
Два треугольника подобны, если:
У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:
Отношение периметров подобных треугольников равно коэффициенту подобия.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:
Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:
Медианы треугольника
Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:
Длины медиан, проведённых к соответствующим сторонам треугольника, равны:
Биссектрисы треугольника
Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.
Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.
Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:
Длина биссектрисы угла А :
Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.
Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
BL – биссектриса угла В ;
ВЕ – биссектриса внешнего угла СВК :
Высоты треугольника
Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.
Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.
Высоты треугольника обратно пропорциональны его сторонам:
Длина высоты, проведённой к стороне а :
Серединные перпендикуляры
Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.
Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.
Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.
Окружность, вписанная в треугольник
Окружность называется вписанной в треугольник, если она касается всех его сторон.
Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:
Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:
Окружность, описанная около треугольника
Окружность называется описанной около треугольника, если она проходит через все его вершины.
Радиус описанной окружности:
Расположение центра описанной окружности
Равнобедренный треугольник
Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.
В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.
Основные формулы для равнобедренного треугольника:
Равносторонний треугольник
Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.
Центры вписанной и описанной окружностей правильного треугольника совпадают.
Все углы равностороннего треугольника равны:
Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:
Основные соотношения для элементов равностороннего треугольника
Прямоугольный треугольник
Треугольник называется прямоугольным, если у него есть прямой угол.
Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.
Прямоугольные треугольники равны если у них равны:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:
Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:
Площадь прямоугольного треугольника можно определить
через катеты:
через катет и острый угол:
через гипотенузу и острый угол:
Центр описанной окружности совпадает с серединой гипотенузы.
Радиус описанной окружности:
Радиус вписанной окружности:
Вневписанные окружности
Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.
Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.
Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.
для r –
для R –
для S –
Теоремы синусов, косинусов, тангенсов; формулы Мольвейде
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:
Теорема тангенсов (формула Региомонтана):
Смежные углы и их свойства
Смежные углы и их свойства.
Смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными и лежат на одной прямой.
Смежные углы (понятие и определение):
Рис. 1. Смежные углы
В свою очередь, развернутый угол – это угол, градусная мера которого равна 180°.
Поэтому сумма величин смежных углов составляет 180 градусов.
Из этого следует, что величина угла β, являющимся смежным для угла величиной α градусов, будет (180° – α) градусов.
Свойства смежных углов:
1. Сумма величин смежных углов равна 180 градусам.
2. При пересечении двух прямых образуются две пары смежных углов.
Рис. 2. Смежные углы
Рис. 3. Смежные углы
4. В паре смежных углов один угол всегда тупой, а другой – острый либо оба угла являются прямыми.
5. Синусы смежных углов равны.
6. Косинусы и тангенсы смежных углов равны по величине, но имеют противоположные знаки.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
- Что такое справедливая война
- Что такое бэклог проекта