Что такое смежный отрезок
Многоугольник
Существуют разные точки зрения на то, что считать многоугольником. В школьном курсе геометрии используют одно из следующих определений.
Многоугольник
— это фигура, составленная из отрезков
так, что смежные отрезки (то есть соседние отрезки с общей вершиной, например, A1A2 и A2A3) не лежат на одной прямой, а несмежные отрезки не имеют общих точек.
Многоугольником называется простая замкнутая ломаная.
Точки
называются вершинами многоугольника, отрезки
Сумма длин всех сторон называется периметром многоугольника.
Многоугольник, который имеет n вершин (а значит, и n сторон) называется n — угольником.
Многоугольник, который лежит в одной плоскости, называется плоским. Когда говорят о многоугольнике, если не сказано иначе, подразумевается, что речь идёт о плоском многоугольнике.
Две вершины, принадлежащие одной стороне многоугольника, называются соседними. Например, A1 и A2, A5 и A6 — соседние вершины.
Отрезок, который соединяет две несоседние вершины, называется диагональю многоугольника.
Выясним, сколько диагоналей имеет многоугольник.
Из каждой из n вершин многоугольника исходит n-3 диагонали
(всего вершин n. Не считаем саму вершину и две соседние, которые не образуют с данной вершиной диагонали. Для вершины A1, например, не учитываем саму A1 и соседние вершины A2 и A3).
Таким образом, каждой из n вершин соответствует n-3 диагонали. Поскольку одна диагональ относится сразу к двум вершинам, чтобы найти количество диагоналей многоугольника, надо произведение n(n-3) разделить пополам.
Следовательно, n — угольник имеет
Любой многоугольник делит плоскость на две части — внутреннюю и внешнюю области многоугольника. Фигуру, состоящую из многоугольника и его внутренней области, также называют многоугольником.
Теория Геометрия 8 класс
1. Многоугольник — это фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек.
3.Две вершины многоугольника, принадлежащие одной стороне, называются соседними.
4.Отрезок, соединяющий любые две несоседние вершины, называется диагональю многоугольника.
5.Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.
6.Сумма углов выпуклого n-угольника равна (n–2) ·180°.
7. Четырёхугольник– это многоугольник у которого четыре вершины и четыре стороны.
8.Две несмежные стороны четырёхугольника называются противоположными.
9.Две вершины, не являющиеся соседними, называются противоположными.
10. Сумма углов выпуклого четырехугольника равна 360°.
11. Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.
12. Свойства параллелограмма:
· В параллелограмме противоположные стороны равны и противоположные углы равны.
· Диагонали параллелограмма точкой пересечения делятся пополам.
13. Признаки параллелограмма:
· Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.
· Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
· Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
14. Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются ее основаниями, а две другие стороны — боковыми сторонами.
15.Трапеция называется равнобедренной, если её боковые стороны равны.
16.Трапеция называется прямоугольной, если один из её углов прямой.
· Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
18. Прямоугольником называется параллелограмм, у которого все углы прямые.
19. Особое свойство прямоугольника:
· Диагонали прямоугольника равны.
20. Признак прямоугольника:
· Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
21. Ромбом называется параллелограмм, у которого все стороны равны.
22. Особое свойство ромба:
· Диагонали ромба взаимно перпендикулярны и делят его углы пополам.
23. Квадратомназывается прямоугольник, у которого все стороны равны.
24. Основные свойства квадрата:
· Все углы квадрата прямые.
· Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
25.Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему.
26.Две точки А и А1 называются симметричными относительно точки О, если О – середина отрезка АА1.
27. Основные свойства площадей:
· Равные многоугольники имеют равные площади.
· Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.
29.Площадь прямоугольника равна произведению его смежных сторон S=ab.
30.Площадь параллелограмма равна произведению его основания на высоту S=ah.
31.Площадь треугольника равна половине произведения его основания на высоту S= 0,5ah.
32.Площадь прямоугольного треугольника равна половине произведения его катетов S= 0,5ab.
33. Если высоты двух треугольников равны, то их площади относятся как основания.
34. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
35.Площадь трапеции равна произведению полусуммы её оснований на высоту S= 0,5(а+b) · h.
36. Теорема Пифагора:
· В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. с 2 =a 2 +b 2
37. Теорема, обратная теореме Пифагора:
· Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
38.Треугольник со сторонами 3, 4, 5 называют египетским треугольником.
40. Говорят, что отрезки AB и CD пропорциональны отрезкам A1B1 и C1D1, если =
.
41.Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
42.Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия.
43. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
44. Признаки подобия треугольников:
· Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
· Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
· Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.
45. Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.
46. Т. о средней линии треугольника:
· Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
47. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.
48. Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.
49.Отрезок XY называется средним пропорциональным (или средним геометрическим) для отрезков АВ и CD, если XY=
50. Средняя линия трапеции — это отрезок, соединяющий середины ее боковых сторон.
51. Т. о средней линии трапеции:
· Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме.
52. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
53. Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
54. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
α | 30 0 | 45 0 | 60 0 |
Синус α | 0,5 | | |
Косинус α | | | 0,5 |
Тангенс α | | | |
Котангенс α | | |
55. Тангенс угла равен отношению синуса к косинусу этого угла.
56. sin 2 A+cos 2 A=1 – основное тригонометрическое тождество.
57. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.
58. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.
59. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
60.Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
61. Т. о свойстве касательной к окружности:
· Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.
62. Свойство отрезков касательных, проведённых из одной точки:
· Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
63. Признак касательной:
· Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.
64.Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром окружности.
65.Угол с вершиной в центре окружности называется её центральным углом.
66. Центральный угол измеряется дугой, на которую он опирается.
67. Сумма градусных мер двух дуг окружности с общими концами равна 360°.
68.Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.
69. Вписанный угол измеряется половиной дуги, на которую он опирается.
70. Вписанные углы, опирающиеся на одну и ту же дугу, равны.
71. Вписанный угол, опирающийся на полуокружность – прямой.
72. Теорема о произведении отрезков пересекающихся хорд:
· Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
73. Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе.
74. Биссектрисы треугольника пересекаются в одной точке.
75. Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.
76. Теорема о серединном перпендикуляре к отрезку:
· Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
· Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.
77. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
78. Высоты треугольника (или их продолжения) пересекаются в одной точке.
79. Четыре замечательные точки треугольника:
· Точка пересечения медиан.
· Точка пересечения биссектрис.
· Точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений).
80.Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник – описанным около этой окружности.
81. Теорема об окружности, вписанной в треугольник:
· В любой треугольник можно вписать окружность.
· В треугольник можно вписать только одну окружность.
82. Не во всякий четырёхугольник можно вписать окружность.
83. В любом описанном четырёхугольнике суммы противоположных сторон равны.
84. Если суммы противоположных сторон выпуклого четырёхугольника равны то в него можно вписать окружность.
85.Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность.
86. Теорема об окружности, описанной около треугольника:
· Около любого треугольника можно описать окружность.
· Около треугольника можно описать только одну окружность.
87. Около четырёхугольника не всегда можно описать окружность.
88. В любом вписанном четырёхугольнике сумма противоположных углов равна 180°.
89. Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность.
Отрезок. Ломаная линия
Отрезок представляет собой часть прямой линии, которая находится между двумя точками. Эти точки называют концы отрезка.
Иными словами, отрезок – это множество точек прямой линии, находящиеся между двух известных точек, которые называют концами отрезка.
Рис. 1 Отрезок на прямой
Рис. 2 Несколько отрезков на прямой
Отрезок делит прямую линию на три объекта (смотри рисунок 3):
То есть, два конца отрезка прямой являются соответственно началами двух лучей этой же прямой.
Рис. 3 Отрезок и лучи прямой
Рис. 4 Отрезок без прямой
Рис. 5 Отрезок и принадлежащие ему точки
Так, на рисунке 5 видно, что:
В последнем случае точка F хотя и лежит на одной прямой линии с отрезком AB (если вы мысленно продлите линию от точки B дальше, то увидите это), но не принадлежит ему, потому что находится не между его концами, а справа от отрезка.
Рис. 6 Отрезок и части отрезка
Построение и измерение отрезка
Произвольный отрезок можно построить двумя способами:
Рис. 7 Построение произвольного отрезка
Измерить отрезок можно:
Сравнить отрезки между собой можно при помощи циркуля или циркуля-измерителя. Для этого нужно сперва поставить иглу на один конец отрезка, а затем вторую иглу или грифельный стержень (если используется обычный чертежный циркуль) совместить со вторым концом отрезка (рисунок 8).
Рис. 8 Сравнение отрезков
На рисунке 8 видно, что:
Длину отрезка измеряют линейкой с делениями или другим измерительным инструментом.
Длина отрезка – это расстояние между концами этого отрезка.
Равные отрезки — это такие отрезки, которые имеют одинаковую длину.
На рисунке 9 измерены длины отрезков предыдущего рисунка. Проверьте, правильно ли мы сравнили эти отрезки при помощи циркуля?
Рис. 9 Измерение длины отрезка
Для этого на плоскости обозначают один конец отрезка (ставят точку), а затем при помощи линейки отмеряют необходимую длину отрезка (к примеру, 9 см), ставят точку второго конца отрезка и соединяют оба конца линией.
Рис. 10 Построение отрезка заданной длины
Отрезок — это самое короткое расстояние между двумя точками.
В этом вы можете убедиться самостоятельно на практике. Возьмите любой твердый длинный предмет, например, линейку, и шнурок. Линейка будет играть роль отрезка, а из шнурка сделайте кривую и ломаную линию, наподобие таких, какие показаны на рисунке 11, и соедините ими два конца линейки. После чего выпрямите шнурок и сравните его длину с длиной линейки.
Рис. 11 Кривая, ломаная, отрезок
Ломаная линия
Ломаная линия – это линия, которая состоит из отрезков, принадлежащих разным прямым, и эти отрезки последовательно соединены друг с другом.
Рис. 12 Ломаная линия
На рисунке 12 видно, что:
Количество звеньев у ломаной линии может быть каким угодно, бесконечным, но самое меньшее – это два звена.
Замкнутая ломаная линия – это такая ломаная, у которой совпадают точки начала и конца, то есть, которая начинается и заканчивается в одной точке.
Разомкнутая (не замкнутая) ломаная линия начинается и заканчивается в разных точках.
Рис. 12. Замкнутая и разомкнутая ломаные линии
Самопересекающаяся ломаная линия – это такая ломаная, у которой есть хотя бы два пересекающихся звена.
Самопересекающимися могут быть как замкнутые, так и разомкнутые ломаные.
Рис. 13. Самопересекающиеся ломаные линии
Основы геометрии
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Идеальные объекты
Геометрия — раздел математики, который изучает пространственные структуры и отношения, а также их обобщения.
Основные геометрические объекты: окружность, квадрат, ромб, прямоугольник, равносторонний треугольник, равнобедренный треугольник, правильный многоугольник, эллипс и другие.
Все эти фигуры обладают двумя свойствами:
Равенство частей можно заметить у квадрата, ромба или равностороннего треугольника — равенство сторон. Также у них есть одна или несколько линий симметрии.
У шара бесконечное количество осей симметрии и плоскостей симметрии, но отсутствует равенство или подобие составных частей.
Все типы правильных многогранников обладают симметрией, при этом составлены из некоторого количества одинаковых фигур (треугольников, квадратов, пятиугольников).
Из всего этого можно сделать вывод, что отличить правильную геометрическую фигуру от произвольной совсем не сложно. Достаточно выяснить, имеет ли данная фигура оси или плоскости симметрии, а также из каких повторяющихся частей она состоит.
Таким образом, именно по наличию или отсутствию симметрии и равенства или подобия составных частей можно оценивать различные объекты окружающего мира на соответствие правильному геометрическому виду.
Например, возьмем два треугольника. На первый взгляд, они похожи, но у одного из них одна сторона вогнутая, вторая — выпуклая. А у другого наоборот.
Математика занимается идеальными объектами и делает о них некие заключения, которые называют теоремами. Эти треугольники похожи, и о них можно сделать близкое заключение, которое будет описывать свойства обоих.
Например, теорема Пифагора звучит так: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. А затем это свойство можно применять при решении задач и составлении чертежей.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Базовые геометрические объекты
Базовые геометрические фигуры — это точки, отрезки, лучи, прямые, плоскости.
Точка — это идеальный математический объект, у которого нет длины и ширины.
Отрезок — это часть прямой, у которого есть начало и конец.
Смежные отрезки — это отрезки, которые не лежат на одной прямой и имеют один общий конец. На рисунке изобразили смежные отрезки АВ и АС, где точка А — общий конец.
Прямая — это «не кривая». Более точное определение вряд ли можно сформулировать.
Когда мы рисуем прямую на листе бумаги, мы изображаем только ее часть, потому что прямая не имеет начала и конца.
Обозначать прямые принято малыми латинскими буквами (a, b,c), но можно и большими латинскими буквами (АВ, CD, MN). Точки всегда обозначают большими латинскими буквами (А, В, С).
Два варианта расположения точек относительно прямой:
Если рассмотреть две прямые, то возможны два варианта их расположения:
Для записи не пересекающихся прямых используют специальный знак — ,
то есть m n (читают: прямая m не пересекает прямую n).
Луч — это часть прямой, ограниченная с одной стороны. Луч имеет начало, но не имеет конца.
На рисунке точка О разбивает прямую АВ на две части:
Каждая из этих частей называется лучом, а точка О является началом одного и другого луча.
Назовем получившиеся лучи:
Лучи ОА и ОВ принадлежат одной прямой АВ. Лучи ОА и ОВ имеют общее начало (точка О). Лучи ОА и ОВ противоположно направлены. При таких условиях лучи ОА и ОВ называются дополнительными.
Плоскость — это бесконечная поверхность, к которой принадлежат все прямые, которые проходят через какие-либо две точки плоскости
Комбинации простейших объектов
Поговорим про комбинации простейших объектов. Например, две прямые, которые мы уже разглядели — либо пересекаются на плоскости, либо нет (тогда они параллельны).
Когда прямые пересекаются, можно ввести понятие отношения между двумя прямыми. Аналогично мы поступали с числами: ввели натуральные числа — количество предметов в множестве. А после этого изучали отношения между этими числами: дроби, возведение в степень.
Точно так же мы изучали множества, а после — отношения между множествами, функции.
Две прямые образуют углы. По сути, угол — это отношение между прямыми. Если один из них нулевой, то прямые параллельны. Если нет — прямые пересекаются.
Максимальный угол – это полный оборот, он составляет 360 градусов.
Угол — это часть плоскости, ограниченная двумя лучами, которые выходят из одной точки. Углы измеряются в градусах. Углов бесконечно много, так как от 0° до 360° угол может принимать бесконечное множество значений.
Есть разные виды углов, выделим самые часто встречающиеся:
Точка называется вершиной угла, а лучи — сторонами угла.
Два угла называются вертикальными, если их стороны являются дополнительными лучами. Свойство вертикальных углов звучит так: вертикальные углы равны.
Два угла называются смежными, если одна сторона у них общая, а две другие являются дополнительными лучами. Свойство смежных углов: сумма смежных углов равна 180°.
Биссектриса угла — это луч с началом в вершине угла, который делит угол на две равные части.
А теперь посмотрим на взаимное расположение трех прямых.
Первый случай: все три прямые параллельны.
Второй случай: две прямые параллельны, а третья их пересекает.
Третий случай: если провести три прямые на плоскости случайным образом, велика вероятность образования треугольника. Поэтому этой фигуре мы уделяем так много времени в школе на уроках геометрии.
Треугольник
Треугольник образуют три прямые. Но на треугольник также можно посмотреть, как на фигуру, которая состоит из трех отрезков.
Из треугольников можно получить остальные многоугольники и к треугольникам можно приближать другие фигуры. Например, пятиугольник состоит из трех треугольников.
Треугольник можно использовать для измерения расстояний. А еще треугольник можно рассматривать в отношениях с окружностью, которая тоже является элементарной конструкцией. Читайте про вписанные и описанные углы.
Треугольник можно легко вычислить, то есть найти его площадь по трем элементам:
Приходи на наши онлайн уроки по математике с лучшими препадавателями! Для учеников с 1 по 11 классы!
Свойства треугольников
Раз треугольник можно задать тремя элементами, значит их можно классифицировать. Если два треугольника похожи, значит у них есть общие свойства.
Треугольник можно составить совсем не из любых трех отрезков: они должны удовлетворять важному свойству — неравенству треугольника.
Кратчайшее расстояние между двумя точками — это длина отрезка, который их соединяет. Из этого следует, что любой другой путь между двумя точками будет длиннее, чем этот отрезок.
Сумма любых двух сторон треугольника больше его третьей стороны.
Еще одно свойство верное для всех треугольников: сумма всех углов треугольника составляет половину полного оборота. Или по-другому: сумма углов треугольника — два прямых угла.
Мы знаем, что две геометрические фигуры считают равными, если их можно совместить наложением. Это справедливо и для треугольников. Равные фигуры имеют равные размеры и формы. Значит, если два треугольника равны — элементы одного треугольника соответственно равны элементам другого треугольника.
Равенство треугольников ABC и A1B1C1 обозначается так: ΔABC = ΔA1B1C1.
Есть даже специальные теоремы про равенство треугольников.
Первый признак равенства треугольников звучит так:
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны
Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Из теоремы следует, что треугольник — жесткая фигура, то есть фигура, которую невозможно деформировать.
Подобные треугольники
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.
Треугольники АВС и A1B1C1 будут подобны, если
Число k, которое равно отношению сходственных сторон подобных треугольников, называется коэффициентом подобия.
Подобие треугольников обозначают специальным символом — ∾. На рисунке треугольники АВС и A1B1C1 подобны, это можно записать так: ΔАВС ∾ ΔA1B1C1.
Теорема о первом признаке подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такое треугольники подобны.
Второй признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны — такие треугольники подобны.
Третий признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Средняя линия треугольника — это отрезок, который соединяет середины двух его сторон. В каждом треугольнике можно провести три средних линии, при пересечении которых получается четыре равных треугольника, подобных исходному с коэффициентом подобия 1/2.
На рисунке изображен треугольник АВС. Отрезки МЕ, МК и КЕ — средние линии данного треугольника, ΔВМЕ = ΔАМК = ΔСЕК = ΔМЕК.
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
Важно понимать, что подобие в математике — это то, что в обычной жизни мы называем схожестью. Нарисовали треугольники или прямоугольники и говорим, что они похожи потому, что их стороны пропорциональны.
Пример подобия — карта. Она подобна местности, которую отражает. А масштаб — это и есть коэффициент подобия. С треугольниками или другими фигурами точно также.
Классификация треугольников по их сторонам
Для классификации треугольников можно использовать их типологию.
Один из распространенных типов — прямоугольный треугольник. Если один из углов прямой, то это накладывает определенные свойства на треугольник. Прямоугольный треугольник — это также половина прямоугольника.
Свойства прямоугольного треугольника
С прямоугольных треугольников начинается изучение тригонометрии. Можно измерять углы с помощью отношений, использовать понятия синуса, косинуса. Помним, что угол можно задать двумя числами, их отношением.
Если две стороны треугольника равны, то это равнобедренный треугольник — и тогда у него есть ось симметрии. Если нарисовать такой треугольник и сложить лист пополам, то две части треугольника совпадут. Эта особенность дает треугольнику определенные свойства.
Симметричный треугольник, у которого все углы и стороны равны — это равносторонний треугольник. У таких треугольников три оси симметрии. Это значит, что если мы повернем треугольник на 60 градусов, то получим точно такой же треугольник.
Такой треугольник задается одним параметром — длиной стороны. Она полностью определяет все другие значения и размеры в этом треугольнике.
От правильного треугольника может плавно перейти к правильным многоугольникам. У треугольника 3 угла, у четырехугольника — 4, а у пятиугольника — 5 углов. У многоугольника много углов🙃
Четырехугольники
Про четырехугольники мы много говорим на уроках в школе: прямоугольник, квадрат, ромб.
Но говорим о них не в общем случае, как для треугольников (такие вещи, как теорема синусов, косинусов), а можем формулировать только какие-то свойства для определенных видов четырехугольников.
Четырехугольникам лучше уделить побольше времени — у каждого из них есть особые свойства, которые не пригодятся для других фигур. Поэтому каждый четырехугольник лучше внимательно изучить на уроке или почитать в наших материалах:
Окружность
Окружность — это еще один объект, который полезно изучить. Ее легко описать, она задается одним параметром — радиусом. А еще часто встречается в физике и в обычной жизни. Например, когда капля падает в воду, от нее остаются следы — маленткие окружности.
Взаимодействие объектов
Следующий уровень — это взаимодействие всех-всех объектов, о которых мы говорили раньше.
Например, окружность и прямая. Прямая может находиться где-то в стороне от окружности, может ее пересекать, а может касаться, то есть пересекать в одной точке.
Если прямая проходит через центр окружности, то она пересекает окружность в двух точках — концах диаметра, который лежит на на этой прямой.
На рисунке прямая a проходит через центр окружности (точку О) и пересекает ее в двух точках А и В, которые являются концами диаметра АВ данной окружности.
Если прямая a не проходит через центр О окружности радиуса r, то возможны три случая взаимного расположения прямой и окружности — в зависимости от соотношения между радиусом r этой окружности и расстоянием d от центра окружности до прямой a. Вот эти случаи:
Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность.
На рисунке четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.
В любой треугольник можно вписать только одну окружность, и вокруг любого ее можно описать.
Все это верно только для треугольников. Не в любой четырехугольник можно вписать окружность, и не вокруг любого можно описать. Более подробно эту тему можно изучить на уроках математики: признаки, теоремы и правила.
Практическая сторона геометрии
Название «геометрия» переводится с греческого, как «гео» — земля и «метрео» — мерить. Изначально геометрию использовали для разметки земли и других работ с землей. Но, оказалось, что сфера ее влияния безгранична.
Чтобы понять, зачем нам нужны знания по геометрии, просто оглянитесь вокруг: геометрия окружает нас в предметах разных форм. Взять хотя бы круг: его используют в искусстве, строительстве, технике. То же самое и с другими фигурами: чтобы сконструировать автомобиль или айфон, сшить одежду или построить дом — не обойтись без геометрии.
А еще геометрия помогает научиться рассуждать логически, искать связи и противоречия — полезный навык в диджитал-мире, когда информация окружает нас повсюду.
Вот, в каких профессиях пригодится геометрия: архитектор, айтишник, дизайнер, инженер, конструктор, строитель, smm-менеджер, декоратор, летчик, водитель, художник, проектировщик, астроном, спортсмен, музыкант и другие.
Почему изучать геометрию просто: мы видим объемный мир каждый день и регулярно прикасаемся к предметам, строим планы, размышляем и считаем в уме. В геометрии все знания подкреплены научными теориями — это помогает взаимодействовать с пространством по-другому, более осознанно.
Почему изучать геометрию сложно: некоторые правила придется учить наизусть.
Чтобы понять геометрию, двигайтесь от простого к сложному. Многие теоремы могут показаться очевидными. Но эта видимость может быть верной только для одного рисунка. Невозможно нарисовать все ситуации, ведь их их бесконечное множество. Именно поэтому важно доказать истину, чтобы никогда не сомневаться в ней.