Что такое солнечная правда
Топ-25: ложь про космос, в которую мы верили с самого детства
А вам нравится, когда собеседник откровенно врет или говорит о вещах, о которых не имеет ни малейшего понятия? К сожалению, большинство людей давно стало жертвами ошибочных или намеренно лживых стереотипов о космосе. Вдобавок наши знания о Вселенной постоянно меняются, и разобраться в новой информации бывает непросто даже самим ученым. Но какие именно из распространенных убеждений на самом деле не имеют ничего общего с реальностью? Узнай об этом прямо сейчас из подборки 25 самых ярких заблуждений о космосе!
25. Астронавты на орбите пребывают в условиях полной невесомости
Ну почти, но не совсем… На записях с видеокамер на орбитальных станциях мы часто наблюдаем за тем, как по кабине плавают предметы, а сами астронавты кажутся легче пушинки. Специалисты из НАСА попробовали объяснить это самым простым образом, чтобы не загружать вас сложными терминами. Внутри орбитального шаттла все незакрепленные предметы словно не имеют веса потому, что сам космический корабль находится в свободном падении, а астронавты внутри него испытывают пониженную гравитацию. Почему же тогда МКС никак не упадет на Землю? Дело в том, что аппарат движется так быстро, что все время промахивается. Другими словами, космонавты все время падают за горизонт.
Вообще-то оно белое. Нам оно кажется желтым из-за искажения солнечного излучения во время его прохождения через нашу атмосферу.
23. Ваш мобильный телефон работает благодаря спутникам
Обычно 99% всех сигналов проходит по обычным кабелям. Только очень небольшая часть коммуникаций связана со спутниками.
22. Полет через пояс астероидов смертельно опасен
Если вы смотрели Звездные войны, вы уже успели представить себе эту страшную картину. Однако правда заключается в том, что если бы вы на самом деле пролетели сквозь пояс астероидов, вы бы этого даже не заметили. Плотность небесных тел в этой зоне настолько низка, что не представляет почти никакой опасности для космических путешественников, но Голливуд был вынужден лгать, чтобы снять как можно более зрелищное кино.
21. Великая Китайская стена – единственное видимое из космоса рукотворное строение
И снова мимо, потому что Великая Китайская стена не такая уж и уникальная. С МКС на расстоянии примерно 400 километров можно рассмотреть и другие здания и строения, причем некоторые из них намного заметнее, чем легендарное китайское укрепление.
20. Земля – это идеально круглая сфера
Из-за постоянного вращения наша планета в районе экватора немного выпуклая, и она представляет собой скорее эллипс, чем идеально округлый шар.
19. Меркурий – самая жаркая планета Солнечной системы
Вы, наверное, думали, что раз уж Меркурий ближе остальных планет к Солнцу, то там наверняка жарче всего. Однако такое мнение – очередное заблуждение. Благодаря атмосферным условиям вторая планета Солнечной системы, Венера, может похвастать средней температурой в 480 °C, в то время как на Меркурии этот показатель находится в районе 167 °C.
18. Солнце – это огромный огненный шар
Нет там никакого огня. Для огня в привычном для нас понимании необходим кислород, а Солнце состоит в основном из гелия и водорода. Источник солнечного жара кроется в процессе термоядерной реакции. Давление и температура внутри солнечного ядра так велики, что атомы водорода вступают в реакцию и преобразуются в атомы гелия. Этот процесс и обеспечивает нас столь необходимым теплом и светом.
17. У Луны есть «темная сторона»
Существуют легенды о той стороне Луны, которая якобы вечно объята тьмой и хранит какие-то жуткие секреты. Знайте, на самом деле не существует ничего подобного. Зато есть обратная (или дальняя) сторона Луны, которую с Земли обычно не видно из-за вращения и нашей планеты, и нашего естественного спутника. Чтобы увидеть эту сторону надо просто облететь Луну вокруг. Всего лишь.
16. Плутон – планета Солнечной системы
В школе нас учили, что в Солнечной системе есть 9 планет, и что Плутон – одна из них. Но наука не стоит на месте, и терминология постоянно меняется. С 2006 года по постановлению Международного астрономического союза (МАС) Плутон разжалован и признан карликовой планетой. Но почему? Все дело в том, что в 2006 году тот самый МАС дал новое определение термину «планета», и Плутон, как оказалось, не обладает всеми необходимыми качествами. Вы наверняка слышали, что дальше Нептуна находится пояс Койпера. По сути это огромный астероидный пояс, и Плутон – не самый крупный объект в его пределах.
15. Загадочная девятая планета (или планета 9)
Плутон больше не считается девятой планетой Солнечной системы, но ученые все же полагают, что некая девятая планета существует. Это гипотетическое транснептуновое небесное тело вполне может оказаться реальным. Ученые пришли к такому выводу на основании наблюдений за орбитами нескольких других космических объектов из пояса Койпера, на которые явно оказывается некое постороннее гравитационное влияние. Вероятно, планета 9 находится очень далеко от нас, и она намного крупнее Земли.
14.Черные дыры – это воронки
В кино и мультфильмах черные дыры обычно изображают в виде огромных воронок, засасывающих все вокруг себя. В реальности черные дыры больше похожи на гигантские сферы. По сути это скорее невероятно плотные звезды с мощнейшей гравитацией.
13. В Средневековье люди думали, что Земля плоская
Почти любой ученый тех лет знал, что наша родная планета шарообразная. Именно по этой причине европейцы и принялись совершать героические плавания – чтобы добраться до Запада через Восток и найти новый морской путь. Вдобавок о форме Земли знали еще древние греки. Упоминание об этом есть в записях 300 года до нашей эры.
12. Космос холодный
Не совсем. Измерить температуру космоса не так уж и легко. Наверное, потому что измерять просто нечего. Высокие температуры обычно значат, что атомы субстанции находятся в возбужденном состоянии. Однако космический вакуум явно не отличается подвижностью атомов. Правильнее было бы сказать, что в космосе нет никакой температуры.
11. В открытом космосе вы замерзнете до смерти
10. В космосе человеческая кровь вскипает
Это утверждение тоже ошибочно. Да, при условии более низкого давления жидкости вскипают на более низких температурах (если это давление не позволяет жидкости преобразоваться в газ), но с вашей кровью такого не произойдет. Почему? Потому что ваша кровь находится в закрытой системе, и эффект нулевого давления не окажет такого скоротечного влияния. Конечно, жидкости, открытые для внешней среды (слюна, внешняя оболочка глаз) вскипят почти тотчас. А вот кровь – нет. Вдобавок, не путайте кипение с нагревом. Слюна не станет горячей, из-за пониженного давления она просто перейдет в газообразное состояние.
9. В открытом космосе ваше тело взорвется
Эта яркая картинка не раз представала перед взором любителей научно-фантастических фильмов. И да, это очередная ложь, придуманная для драматизации и кассовых сборов. Человеческое тело слегка распухнет, но уж точно не разлетится на части. В 1966 году один ученый из Хьюстона испытывал скафандр в условиях искусственного вакуума, эквивалентного пребыванию на высоте 37 километров. Защитный костюм оказался неисправен, и техник пережил опаснейшую декомпрессию. Давление было восстановлено в течение 30 секунд, поэтому мужчина не испытал никаких губительных для здоровья последствий, и позже ученый даже вспоминал, что перед потерей сознания он почувствовал, как у него вскипела слюна.
8. Хвост кометы зависит от траектории пути этого небесного тела
Нет, все опять не так, ведь хвост кометы образуется под воздействием тепла и солнечного ветра, а не от трения или какого-то другого механического влияния. Это значит, что хвост всегда направлен от солнца, вне зависимости от направления движения кометы.
7. В космосе можно услышать взрывы
В космосе невозможно услышать ровным счетом ничего, потому там нет среды, по которой могли бы передаваться звуковые сигналы.
6. Мы не можем летать слишком быстро, потому что современные двигатели недостаточно мощные
В космосе нет практически никакого сопротивления, так что даже самый скромный двигатель может разогнать огромный корабль до невероятных скоростей. НАСА сейчас как раз экспериментирует над ионными двигателями малой тяги. Однако главная проблема заключается в запасах топлива. Чтобы длительное время разгонять столь крупный объект, двигателю необходим серьезный источник питания. Когда космолет все же достигнет своей максимальной скорости, его двигатель можно будет отключить, ведь теперь судно достигнет другого конца Вселенной без каких-либо проблем. Другое дело, что когда-то вам захочется и остановить корабль, а для этого нужна будет уже обратная тяга. На остановку судна пригодится столько же топлива, сколько и на разгон, так что ученым есть еще над чем поломать свои светлые умы.
5. Взрывы в космосе сопровождаются пламенем
Звездные войны – все же плохой источник информации. Как мы уже выяснили на примере Солнца, огню необходим кислород. Поскольку в космосе нет воздуха, взрывы там будут выглядеть совсем иначе, то есть далеко не как в голливудских фильмах. Что касается ракетных двигателей, они производят пламя, но только лишь потому, что в танкере с топливом есть заодно и запас кислорода.
4. Астронавты в открытом космосе летают с помощью маленьких реактивных моторчиков
Почти, но не совсем. Скафандры, действительно, оснащены чем-то похожим, но только на всякий случай, и в таких системах недостаточно топлива для полетов в стиле голливудских фильмов.
3. Нет ничего быстрее скорости света
Это относительно верно, но ученые стали все чаще приходить к выводу, что квантовая механика не всегда следует собственным же правилам. Например, квантовая запутанность и другие подобные феномены могут привести к открытию возможности путешествовать на скоростях, превышающих скорость света. Это станет чрезвычайно важным прорывом не только для космических полетов, но и для сферы вычислительных устройств.
2. НАСА потратило миллионы долларов на разработку ручки, которая бы писала в космосе
Этот миф часто рассказывают, когда вспоминают про космическую гонку 60-х годов, разгоревшуюся между агентствами США и СССР. Народ посмеивался, что НАСА потратило миллионы долларов на разработку шариковой ручки, которая писала бы в условиях относительной невесомости, в то время как советские космонавты проявили знаменитую русскую смекалку и взяли с собой обычные карандаши. Однако правда заключается в том, что оба государства использовали сначала карандаши и фломастеры, а потом перешли на специальную ручку, но ее разработка не стоила никому никаких миллионов долларов. Письменная принадлежность для космонавтов была создана по собственной инициативе частной компании Fisher Pen Company, которая потом стала продавать свои ручки по 6 долларов за штуку.
1. Земля вращается вокруг Солнца
А вот и самая невероятная ложь! Теперь вам будет, чем щегольнуть перед друзьями в праздной беседе, и удивить всех не на шутку. Каждый объект воздействует на любое другое тело, и это значит, что не только гравитация Солнца влияет на Землю, но и гравитация нашей планеты влияет на движение Солнца. Технически оба этих небесных тела вращаются вокруг так называемого барицентра. В случае Земли эта условная точка так близка к центру Солнца, что ее стали попросту игнорировать. Однако в случае Юпитера барицентр находится в 48 280 километрах от поверхности Солнца. В каком-то смысле все мы вращаемся вокруг друг друга…
Все фотографии: pixabay (public domain)
Когда погаснет свет: страшные предсказания о гибели Солнца оказались правдой
Солнце — важный источник космической энергии, который даёт свет и тепло для жизни на нашей планете. С древних времён светилу предсказывали страшное будущее. Лайф разбирался, что для нас Солнце и сможем ли мы без него.
Недавно был День Солнца — праздник, призванный объяснить всем жителям планеты ценность и необычность звезды.
Внутри Солнца температура 15 миллионов градусов по Цельсию
В основном Солнце состоит из водорода (около 73%) и гелия (около 25%), на долю других элементов приходится примерно 2%. У светила нет твёрдой поверхности.
Астроном, старший научный сотрудник Института Штернберга Владимир Сурдин объясняет, что сейчас на Солнце происходят ядерные реакции синтеза: лёгкий водород превращается в гелий и при этом выделяется большая энергия, как в непрерывной водородной бомбе.
На Солнце есть вода
По словам астронома, на Солнце даже есть немного воды.
— В верхних слоях Солнца не так жарко, как внутри, — это пять с половиной тысяч градусов. Но некоторое количество воды там есть. Она не жидкая, а в виде пара, отдельных атомов, — объясняет Владимир Сурдин.
Солнце уже на середине своего жизненного пути
Общий возраст Вселенной — примерно десять миллиардов лет, а возраст Солнца — четыре с половиной миллиарда лет.
Чтобы подсчитать время жизни Солнца, астрономы учли его массу, скорость реакций и выделения ядерной энергии и определили, на сколько хватит солнечного топлива при такой скорости выделения энергии.
Солнце скоро погаснет
— Конечно, Солнце погаснет. Любой костёр догорает, а Солнце — это тоже костёр, только термоядерный — более долгого горения. Но топливо всё же закончится. Правда, не так скоро. Примерно через пять миллиардов лет, — говорит астроном.
Солнце изменит Солнечную систему
— В конце жизни, через пять миллиардов лет, Солнце раздуется раз в 200. На нашем небе оно займёт место в полнебосвода, — рассказывает Владимир Сурдин. — При этом сначала светило съест Меркурий, так как он ближе всех к Солнцу, потом Венеру и вплотную подберётся к Земле.
Солнце проглотит Землю
За четыре с половиной миллиарда лет в центре светила выгорела почти половина запаса водорода. После того как водород окажется на исходе, оно увеличится в размерах и станет красным гигантом. Его горение будет продолжаться в перемещающемся наружу слое.
— Последние расчёты говорят, что оно и Землю проглотит. Сначала жители Земли, конечно, сгорят. Потом Земля нырнёт в недра Солнца. После этого Солнце погаснет, но это для нас уже будет неважно, — рассуждает астроном.
Как устроено Солнце и когда погаснет. Вспышки, пятна и загадки
Астрономы иногда говорят, что звезда — самый простой объект во Вселенной. Что может быть примитивнее газового шара? Это не чёрные дыры и не загадочная тёмная энергия. Но в действительности ближайшая к нам звезда, Солнце, до сих пор хранит немало тайн. Светило существует одновременно и по законам космогонии, и по законам микромира. И те, и другие в наше время хорошо изучены, но это не мешает им конфликтовать между собой. С нашим светилом вообще связано немало загадок. И оно способно преподнести неприятные сюрпризы.
С чего начиналось?
Началось всё 4,6 миллиарда лет назад в «звёздной колыбели» — облаке газа размером 300 на 50 световых лет. Некогда этот газ входил в состав массивных звёзд, взорвавшихся как сверхновые. Потом газ остыл и гравитация преодолела внутреннее давление тучи, в результате чего газопылевая туманность начала распадаться на отдельные фрагменты, каждый из которых, закручиваясь, сжимался к собственному центру. Одному из этих клочьев предстояло стать Солнцем.
Молодые звёзды не имеют твёрдого ядра. На раннем этапе эволюции плотность светила ещё невелика и конвективная зона занимает весь объём
Сжимаясь, газ нагревается, но, поскольку часть энергии уносится излучением, дальнейшему уплотнению это не препятствует. Представляя собой приплюснутую сферу размером с орбиту Марса, протосолнце уже ярко светило. Правда, лишь в тепловом диапазоне. Сияние раскалённых внутренних областей ещё не пробивалось через тучи пыли. Чуть позже в центре диска вспух тусклый багровый шар. В недрах рождающейся звезды температура достигла миллиона кельвинов, и начались термоядерные реакции. Но только начались. Поначалу их интенсивность была невелика, и остановить сжатие они не могли.
Молодое Солнце было огромно — до современной орбиты Меркурия. Основным источником энергии оставалось гравитационное сжатие. Быстро «сдуваясь» и твердея, взрослеющее светило выбрасывало мощные потоки солнечного ветра, разгоняющего к границам системы невостребованные остатки газа.
Пекло
Описание звезды как шара, состоящего из сжатого, раскалённого, ионизированного газа, даёт ошибочное представление о внутренней структуре Солнца. Ничего подобного тому, что мы обычно понимаем под «газом», в недрах светила нет. Сердцевина звезды представляет собой твёрдое — даже сверхтвёрдое! — вещество, аналогов которому в мире планет не найти.
В «холодной» твёрдой материи молекулы сцеплены электронными оболочками. Солнечное же вещество — масса ядер водорода и гелия, распираемая изнутри кулоновской силой (отталкиванием одноимённых зарядов) и скреплённая лишь наружным давлением. Скреплённая так надёжно, что плотность вещества достигает 150 тонн на кубический метр. В результате частицы, набитые в тысячу раз плотнее, чем это дозволяется классической физикой, даже при температуре 14 миллионов градусов куда менее подвижны, чем молекулы в составе кристалла.
Обладая диаметром примерно в 1 миллион 400 тысяч километров, Солнце состоит преимущественно из водорода (73% массы и 92% объёма) и гелия. На все прочие элементы приходится только 1,5% массы. Солнце вращается вокруг центра Галактики с периодом 200 миллионов лет
Если бы звёздная материя могла существовать при нормальных давлении и температуре, мы наблюдали бы слиток необычного материала, похожего на те, из которых в фантастике изготовлены инопланетные артефакты. Очень тяжёлого — всемеро тяжелее такого же объёма золота — и непроницаемо чёрного, поглощающего даже излучения, для которых не станет преградой аналогичная толща свинца. На Земле не нашлось бы ни инструмента, способного его оцарапать, ни машин, которые смогли бы его деформировать.
Твёрдый водород, химически оставаясь неметаллом, приобретает многие свойства металла. В частности, отлично проводит электрический ток (ведь электроны не связаны с протонами). Но электропроводность — единственная слабость «чёрного водорода». Материал солнечных недр фактически не проводит тепло! Силы электростатического отталкивания прочно удерживают на своих местах частицы, не позволяя им обмениваться кинетической энергией «традиционным способом».
Единственный способ передачи энергии в «чёрном водороде» — эстафета фотонов. Квант, излучённый одним ядром, немедленно поглощается соседним, а затем переизлучается. Бесконечными «рикошетами» фотон пробивается к внешним слоям звезды со скоростью всего два километра в год. Лишь одна форма движения возможна в «чёрном водороде». Не выдерживая сжатия, материя звезды постепенно проседает, «складываясь в себя». Четыре ядра водорода сливаются в занимающее значительно меньший объём ядро гелия. Это и есть реакция термоядерного синтеза.
Структура Солнца (Kelvinsong / Wikimedia Commons)
Твёрдая сердцевина занимает половину объёма Солнца и условно делится на две не имеющие чёткого разграничения зоны: ядро, имеющее радиус 20-25% солнечного (только в этой зоне давление достаточно для протекания термоядерных реакций), и зону лучистого переноса. Через последнюю родившиеся в ядре фотоны медленно и мучительно протискиваются к границе конвективной зоны — аналогу мантии планет.
Материя солнечной мантии представляет собой столь же экзотическую субстанцию, как и «чёрный водород» недр. Её можно назвать «жидким пламенем» — причём термин окажется удивительно точным. Ведь пламя — струи раскалённого, ионизированного газа. В недрах Солнца он просто сжат до состояния жидкости — в глубинах плотной и вязкой, как ртуть, выше же подобной расплавленному камню.
В конвективной зоне энергия переносится за счёт перемешивания породы. Нагретый жаром ядра «жидкий огонь» течёт вверх, навстречу ему опускаются охлаждённые массы. Это движение упорядочено по колоннам конвекции — шестигранным призмам шириной 20 тысяч и высотой 200 тысяч километров. Каждая из больших колонн — «супергранул» — разделяется на меньшие столбы по 5 тысяч километров в ширину. А внутри них, в свою очередь, различимы «гранулы» с поперечником от 500 до 1200 километров. По оси гранул водород поднимается, а по граням стекает вниз.
У поверхности конвективная зона переходит в фотосферу — трёхсоткилометровую толщу уже вполне обычного по своим физическим свойствам жидкого водорода. Это — зона охлаждения солнечной материи. Выделившаяся в твёрдом ядре энергия уносится излучением. Обычно указывается, что температура фотосферы Солнца — 5800 К. В действительности же поверхность Солнца нагрета лишь до 4000 градусов, но сквозь верхние слои водорода пробивается свет от глубинных, куда более раскалённых.
На Солнце не может быть «извержений», так как там нет твёрдой коры, сопротивляющейся перемещению расплавленного вещества и накапливающей разрушительную энергию. За катастрофические вспышки ответственны электромагнитные силы
Если земной океан подёрнут лишь лёгкой рябью волн, с высоты незаметных, то солнечная фотосфера кипит. Хлещущий из гранул со скоростью один-два километра в секунду водород вздымается буграми высотой в десятки километров. Над морем жидкого пламени ползут сияющие облака-флоккулы и танцуют спикулы — огненные смерчи шириной 500 и высотой 10 000 километров.
О солнечной атмосфере — хромосфере — достаточно сказать, что её плотность позволяет водороду оставаться жидким даже при температуре 4000 К. Но если в отдалённом будущем эту зону удастся увидеть изнутри объективами жаропрочной автоматической станции, то отнюдь не циклопические столбы спикул более всего поразят наблюдателя. Даже буйство пламени померкнет перед разрушительной силой звука, сотрясающего хромосферу. Над бурлящей поверхностью звезды стоит гул громовых раскатов и царит хаос ударных волн.
Вероятно, именно звук (точного ответа пока не существует) разогревает до миллиона градусов солнечную корону — окружающее светило облако плазмы. Вытягивающиеся на миллион и более километров протуберанцы, наблюдаемые в этой области, иногда ошибочно считаются «султанами взрывов». На самом деле это лишь плотные сгустки водорода, захваченные магнитным полем.
Космическая погода
В старину монархов нередко сравнивали с Солнцем. Ведь власть Солнца над нами беспредельна. Оно практически монопольно поставляет энергию. Тепло, необходимое для сохранения воды в жидкой форме, а значит, и для поддержания жизни; свет, без которого невозможен фотосинтез; кислород, пища, нефть, уголь, газ, появившиеся благодаря фотосинтезу, — всё это даруется нам светилом… Это прекрасно, но порождает некоторое беспокойство. Своей властью Солнце может распорядиться и нам во вред.
Чтобы обосновать довольно нереалистичный сюжет, создателям фильма «Пекло» пришлось выдумать новый вид частиц
Вблизи полюсов, не прикрытых геомагнитным полем планеты, заряды солнечного ветра достигают верхних слоёв земной атмосферы, вызывая ионизацию газа. Благодаря чему мы любуемся полярным сиянием
Повторение события полуторавековой давности и даже вдесятеро более мощная атака, конечно, не ввергнет цивилизацию в хаос, но материальный урон будет огромен, а человеческие жертвы могут исчисляться десятками тысяч: упавшие самолёты, техногенные катастрофы, вызванные выходом из строя оборудования, отказавшая медицинская аппаратура. Именно катастрофическая солнечная вспышка стала первой причиной упадка цивилизации в цикле «Бегущий в лабиринте» Джеймса Дэшнера. Впрочем, люди постарались, чтобы ухудшить ситуацию на Земле…
Сминая первую линию защиты Земли, потоки солнечных частиц могут достигать ионосферы. У нашей планеты тоже есть своя «плазменная корона» — разреженная оболочка из ионизированного газа, простирающаяся до высоты 400 километров. Фактически это глубокий вакуум, уже почти не препятствующий движению космических аппаратов. Но после того, как солнечный ветер ударяет по верхним слоям земной атмосферы, раскаляя их, этот вакуум становится куда менее глубоким. Так в 1979 году солнечная вспышка «сбила» американскую орбитальную станцию «Скайлэб». Кроме того, ионосфера может быть «зеркалом», отражающим обратно к Земле радиоволны, вследствие чего магнитные бури способны нарушать связь.
Механизм воздействия магнитных бурь на самочувствие человека пока не до конца понятен. Геоиндукционные поля очень слабы, однако некоторые люди способны ощущать тончайшие изменения магнитного поля. Как и чем? Загадка. Возможно, физический дискомфорт, связанный с магнитными бурями, имеет психосоматическую природу.
Солнечный парус позволяет ускорять корабль давлением солнечного света. Возможен также электрический парус, использующий силу солнечного ветра — потока испускаемых светилом заряженных частиц
Солнечные циклы
В телефильме «Сверхновая» (2005) Земле угрожает гибель в результате взрыва светила. Но такого развития событий не стоит опасаться — масса Солнца для этого недостаточна. Тем не менее многие встречающиеся в фантастике сценарии катастрофы наука не может отвергнуть с такой же уверенностью, ведь наши знания о Солнце всё ещё очень ограничены. Что именно там происходит, мы уже знаем. Но почему это происходит именно таким образом, в данный момент и с наблюдаемой интенсивностью — увы, нет.
Равновесие, в котором пребывают недра Солнца, устойчиво, но не статично. Звезда «дышит», циклически меняя свою активность. Гравитация приводит к сжатию — крошечному, но наблюдаемому. Сжатие повышает интенсивность термоядерных реакций, которые, в свою очередь, приводят к нагреву и расширению. В результате светимость колеблется в пределах 0,1%. Но почему-то неравномерно. Кратчайший, 11-летний цикл, несмотря на название, длится от 9 до 14 лет. И это очень странно. Более странно, чем если бы продолжительность года на Земле непредсказуемо менялась от 9 до 14 месяцев. Ведь Солнце, в отличие от Земли, внешним воздействиям не подвержено.
В периоды минимальной активности Солнце краснеет. Спектр сдвигается в длинноволновую область
Помимо 11-летних циклов, светимость Солнца колеблется с периодами 70-100, 200-300 и 2000 лет — тоже нерегулярными. И возникает вопрос, какие процессы в столь гигантской системе (тепло от ядра к фотосфере проходит за 200 тысяч лет) вообще могут протекать с высокой и непостоянной скоростью? Очевидно, это могут быть лишь электромагнитные процессы. Это наверняка как-то связано с циклами активности. Знать бы ещё, как именно.
Время от времени наше светило берёт отпуск — светимость снижается на 0,2-0,6%. Что происходит в таком случае, нам вскоре предстоит узнать. С учётом непредсказуемости нашего светила подобного развития событий можно ожидать в любой момент. Прошлый длительный период низкой активности, получивший название «минимум Маундера» или «малый ледниковый период», продолжался с 1645 по 1715 год. Реки в средней полосе России тогда сковывались льдом на полгода.
Изменения климата, как и колебания солнечной активности, за последние тысячи лет хорошо изучены. И связь между похолоданиями и периодами «спокойного Солнца» достаточно очевидна. Казалось бы, всё просто, но… механизм этой зависимости остаётся загадкой. Само по себе изменение светимости на доли процента значимых последствий иметь не может. Среди выдвигаемых гипотез есть даже такая, согласно которой Землю на самом деле замораживают излучения галактического ядра. Если долго нет вспышек и плазменных атак, радиационные пояса Земли слабеют и космические частицы достигают атмосферы, вызывая конденсацию пара и образование отражающих свет облаков.
Когда погаснет Солнце?
По мере превращение водорода в гелий ядро звезды уплотняется. Это приводит к росту давления и ускоряет термоядерные реакции. С возрастом, расходуя горючее, звезда не тускнеет, а разгорается всё сильнее. В случае Солнца это означает увеличение светимости на 10% за миллиард лет. И даже дополнительные 10% будут для Земли лишними — выживут только термофильные организмы в закипающих у поверхности океанах. А ещё через 2,5 миллиарда лет, полностью потеряв воду, наша планета превратится в подобие Венеры.
Зато от увеличения светимости Солнца в выигрыше окажется Марс. Через миллиард лет на Марсе растают ледники, потекут реки и появится плотная атмосфера. Это будет засушливый, но вполне пригодный для жизни мир. Последними эстафету примут спутники Сатурна — когда лучи умирающего Солнца на короткое время растопят льды.
Благоприятные условия на Марсе будут сохраняться 6 миллиардов лет. Столько же, сколько и на Земле
Через 7 миллиардов лет в сжимающемся ядре Солнца закончится водород. Но температура в недрах светила к этому времени уже будет так велика, что реакция синтеза станет возможной в конвективной зоне. Ненадолго. «Жидкий огонь» способен расширяться при нагреве. Выделение энергии в «мантии» звезды приведёт к тому, что её размеры увеличатся в сотни раз, давление упадёт и синтез прекратится. Солнце превратится в красный гигант светимостью в 3-5 тысяч раз выше современной. Затем в ядре вспыхнет гелий, и резко возросший поток излучения вытолкнет раздувшуюся газовую оболочку за пределы гравитационной ямы.
Меркурий и Венера будут поглощены фотосферой Солнца. Уран и Нептун покинут теряющее гравитационную хватку светило. Но Земля, перейдя на орбиту с вдвое большим радиусом, вероятно, уцелеет. Агония звезды продлится ещё 100 миллионов лет — после чего догорит и гелий. Звезда превратится в белый карлик — крошечный шар из углерода и кислорода, заливающий руины солнечной системы яростными потоками рентгеновского излучения.
Дальнейший синтез станет невозможным. Ведь чем тяжелее элемент, тем больше электрический заряд ядер и выше силы кулоновского отталкивания. Превращение белого карлика в чёрный — холодный, не излучающий, — займёт ещё четыре миллиарда лет.
Хотя при синтезе кислорода из гелия выделяется на порядок меньше энергии, чем при синтезе гелия из водорода, красный гигант будет распирать термоядерный жар. Гелий выгорает в 100 раз интенсивнее водорода
Прогнозировать события на Солнце пока можно только на основе опыта наблюдений. Но именно этот опыт свидетельствует, что за весь период существования человечества светило ещё ни разу нас не уничтожило.