Что такое соматическая гибридизация
Что такое соматическая гибридизация?
Первое слияние протопластов было получено Пауэром и др. в 1970 году. Соматическая гибридизация растений включает четыре отдельных этапа:
а) выделение протопластов
б) слияние протопластов
в) отбор и регенерация растений
г) анализ растений – регенерантов
Ю.Ю. Глеба, К.Н.Сытник (1982,1984) отмечают, что соматическая гибридизация открывает перед исследователем возможность:
1) скрещивать филогенетически отдаленные виды растений ( организмов), которые невозможно скрестить половым путем;
2) получить асимметричные гибриды, несущие весь генный набор одного из родителей наряду с несколькими хромосомами ( или несколькими генами, или только органеллами и цитоплазмой) другого;
3) создать систему гибридизации, включающую одновременное слияние трех и более родительских клеток;
4) получить растения, гетезиготные по внеядерным генам( генам пластид и митохондрий)
В результате слияния протопластов можно получить после регенерации растения, создание которых невозможно половым путем:
1)растения, ядро которых происходит от одного родителя, а цитоплазма от другого ( цибриды);
2) растения, гетерозиготные по внеядерным генам ( цитогеты):
3) растения, часть внеядерных генов которых происходит от одного родителя, а часть от другого.
Слияние протопластов. Методы выделения протопластов описаны нами ранее. Для слияния протопластов используют два основных подхода:
1. Использование полиэтиленгликоля (ПЭГ) в сочетании с высоким рН (9-11) среды и повышенным содержанием ионов кальция Са2+(100-300мМ). Полиэтиленгликоль выполняет роль индуктора слияния, который обеспечивает агглютинацию (слипание). Высокое значение рН и высокая концентрация ионов кальция необходимы для нейтрализации отрицательного поверхностного заряда, который имеют протопласты. В местах слипания происходит разрыв плазмалемм протопластов, приводящий к их слиянию. На этот процесс оказывают влияние, помимо внешних факторов, особенности тканевой принадлежности клеток. Легко сливаются меристемные и каллусные протопласты, менее эффективно сливаются сильно вакуолизированные клетки и клетки с развитыми хлоропластами ( например, мезофильные протопласты )
2. Электрослияние протопластов. В этом случае протопласты помещают в неоднородное переменное электрическое поле. В этих условиях протопласты образуют мостик из нескольких клеток между электродами. После пропускания единичных импульсов тока происходит слияние протопластов в результате разрыва их плазмалемм. Эффективность метода слияния протопластов определяют по частоте слившихся протопластов, частоте клеточных клонов, образовавшихся из гибридных клеток, а также частоте образования гибридных проростков. В результате слияния протопластов образуются гомокарионы- продукты слияния генетически идентичных клеток, и гетерокарионы –продукты слияния генетически неидентичных клеток. Какова судьба слившихся протопластов? Возможны следующие варианты (Першина, 2000):
— синхронное деление двух ядер без их слияния и образование в результате исходных делений двуядерных дочерних клеток;
— слияние ядер во время митотического деления и формирование в дальнейшем одноядерных гибридных дочерних клеток.
Стабильность ядерных и цитоплазматических носителей генетической информации зависит от степени филогенетического родства родителей. При филогенетической отдаленности в процессе последующего деления клеток может происходить элиминация хромосом одного из родителей с последующим однородительским наследованием генов. Степень элиминации может быть различной. При этом соматические гибриды, сохраняющие оба ядерных генома, называются симметрическими, а соматические гибриды, несущие хромосомы преимущественно одного родителя – асимметрическими. Элиминацию хромосом одного из видов можно индуцировать путем обработки протопластов этого вида радиацией или химическими агентами. Таким образом, при соматической гибридизации возникает источник генетической изменчивости в результате реконструкции ядерных геномов и переноса генов от одного родителя другому.
Так, в результате слияния протопластов культурного вида картофеля Solanum tuberosum и дикорастущего вида томата Lycopersiсon pimpinellifolium получены растения с реконструированным ядерным геномом картофеля и интрогрессией генов томата, контролирующих устойчивость к болезням.
Вторым источником генетической изменчивости при соматической гибридизации является сегрегация ( разделение между дочерними клетками) митохондрий и пластид, полученных от обоих родителей. Такая сегрегация происходит независимо от событий, происходящих в ядре, причем митохондрии сегрегируют независимо от пластид. Такое неменделевское расщепление по генам цитоплазмы обеспечивает варианты как однородительского, так и двуродительского их наследования и различные варианты сочетания органелл в цитоплазме дочерних клеток (Рис.6.5). Дополнительным источником изменчивости по цитоплазматическим генам является процесс рекомбинации генов митохондрий или пластид. Учитывая, что цитоплазматические гены во многом определяют продуктивность и устойчивость культурных растений (Давыденко, 2001), использование изменчивости по этим генам, создаваемой при соматической гибридизации – важный ресурс в селекции растений.
В целом следует отметить, что расширение возможного спектра изменчивости как по ядерным, так и по цитоплазматическим генам при соматической гибридизации в сравнении с половой, а также возможность вовлечения в гибридизацию филогенетически отдаленных видов создает перспективы для создания принципиально новых генотипов растений, несущих различные комбинации ядерных и цитоплазматических генов родителей.
Отбор и регенерация гибридных растений. Важной задачей является идентификация и отбор гетерокарионов в смешанной популяции протопластов после их слияния. Отбор гибридов может производиться как на клеточном, так и на организменном уровне. Наиболее употребимы следующие методы отбора продуктов слияния протопластов:
Механическая изоляция – применение морфологически контрастных типов родительских протопластов, после слияния которых гетерокарионы обнаруживают визуально под микроскопом, изолируют микропипеткой и переносят на среду для культивирования. Примером могут служить такие визуальные маркеры, как зеленые протопласты мезофила листа, которые комбинируют с бесхлорофилльными протопластов из клеток каллуса. Гибридные протопласты в этом случае отличаются от родительских по содержанию хлорофилла.
Метод генетической комплектации предполагает использование в качестве родителей двух мутантов, несущих неаллельные рецессивные летальные гены, вызывающие гибель организма при определенных условиях культивирования. Примером могут служить хлорофиллдефектные мутанты, каждый из которых гомозиготен по одному гену, вызывающему гибель растения на свету. При соматической гибридизации двух мутантов происходит генетическая комлементация, в результате которой гибриды, гетерозисные по двум аллелям хлорофиллдефектности, приобретают способность к образованию хлорофилла.
При межцарственной соматической гибридизации растительных и животных клеток ( клетки человека + бобовые, клетки человека + морковь, клетки человека + табак, клетки крысы + дрожжей) гибридные клетки не делятся.
В результате межсемейственной соматической гибридизации ( соя + табак, табак +бобы) гетерокарионы при делении образуют клеточные линии, неспособные к регенерации растений.
При межтрибной соматической гибридизации ( арабидопсис + турнепс, картофель + табак) получаются клеточные линии, способные к регенерации растений, имеющих аномалии в развитии. При этом могут образовываться как симметрические, так и асимметрические гибриды.
Межродовые соматические гибриды могут быть как симметрическими ( Сitrus sinensis + Poncirus trifoliata), так и асимметрическими ( картофель + томат).
Таким образом, гибридизация соматических клеток позволяет преодолеть созданные эволюцией барьеры несовместимости и скрещивать между собой растения, принадлежащие к различным видам, родам, семействам и трибам. При этом обычно наблюдается элиминация хромосом одного из родителей. Чаще всего гибриды между отдаленными видами аномальные и не дают потомства. Однако большой практический интерес представляет создание асимметрических гибридов, несущих полный геном одного из родителей и лишь несколько хромосом или генов другого.
Соматическая гибридизация
Разработка способов индукции слияния протопластов вместе с развитием экспериментальной техники культивирования клеток in vitro, дающей возможность получения изолированных протопластов, их культивирования и образования каллуса и в дальнейшем целого растения, сформировало новый очень интересный и перспективный метод гибридизации растений — парасексуальную, или соматическую, гибридизацию.
Сущность этого способа гибридизации заключается в том, что в качестве родительских используются не половые клетки (гаметы), а клетки тела (сомы) растений, из которых изолируют протопласты.
Соматическая гибридизация — это метод создания неполовых гибридов путем слияния изолированных протопластов, полученных из соматических клеток. Гибридизация соматических клеток дает возможность не только соединить в одном ядре гены далеких видов (родов, семейств) растений, между которыми невозможно половое скрещивание, но и сочетать в гибридной клетке цитоплазматические гены партнеров.
Другим способом получения соматических гибридов является электрослияние. Слияние, индуцируемое электрическими импульсами, можно объяснить следующим образом. Импульс короткой продолжительности вызывает диэлектрическое разрушение соприкасающихся мембран протопластов. Вокруг дырки возможен обмен липидными молекулами, образование липидных мостов, что в конце концов приводит к слиянию мембран. Это энергетически более выгодное состояние, чем существование двух поврежденных мембран. Процессы, сопровождающиеся обменом липидов, отражают особенности жидкой мозаичной структуры клеточной мембраны и могут быть связаны с ее текучестью.
В отличие от полового скрещивания, где имеет место передача цитоплазмы только от материнского организма, при соматической гибридизации в образовавшемся гибриде оба партнера имеют более или менее равный цитоплазматический статус. Слияние протопластов способствует объединению двух различных цитоплазм. В большинстве исследований слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, ядро — одного. Образование растения с гибридной цитоплазмой и органеллами обоих партнеров, но содержащее в своих клетках ядро только одного вида, возможно в том случае, если после слияния протопластов не происходит соединения ядер и одно ядро дегенерирует.
Важным моментом в изучении индуцированного слияния двух неродственных протопластов является селективный маркер, используемый для идентификации продукта гетероплазматического слияния, так как эффект индуктора не специфичен и вызывает агрегацию и слияния протопластов как одного и того же вида, так и различных видов. Для идентификации гетероплазматического продукта могут служить пластиды. Например, в случае индуцируемого ПЭГ слияния протопластов сои и капусты гетерокарион получал хлоропласты от капусты и плотную цитоплазму и неокрашенные пластиды от протопластов сои.
При межродовом слиянии протопластов табака и моркови как селективные маркеры использовались зеленые хлоропласты табака и красные, содержащие антоциан, протопласты моркови. Четко различимы были продукты слияния при межвидовой гибридизации между протопластами двух видов Torenia. Протопласты Т. fournieri, содержащие антоциан, комбинировались с протопластами Т. baitlonii, содержащими только хромопласты или только хлоропласты. Кроме пластид могут быть использованы биохимические и генетические маркеры, такие, как изоферментный состав, структура нуклеиновых кислот, устойчивость к антибиотикам, число хромосом, кариотипы.
Основной недостаток метода соматической гибридизации — низкая частота регенерации соматических гибридов, особенно межвидовых и межродовых. В связи с этим соматическую гибридизацию широко применяют у видов с высоким регенерационным потенциалом in vitro, прежде всего семейств Пасленовые, Капустные, Сельдерейные, Лилейные.
С помощью соматической гибридизации между культурными растениями и дикими видами были получены: сорта картофеля, устойчивые к вирусным заболеваниям, фитофторозу, колорадскому жуку; томаты, устойчивые к вирусу табачной мозаики.
Впервые зрелый межвидовой гибрид, полученный в результате парасексуальной гибридизации протопластов 2 сортов табака (Nicotiana glauca c 24 хромосомами и N.langsdorfii c 18 хромосомами), описан Карлсоном в 1972 г. Каллус амфиплоидного гибрида мог расти на безгормональной среде. Гибридное растение цвело. С тех пор были получены жизнеспособные внутривидовые, межвидовые, межродовые гибриды.
Осуществлено слияние протопластов культурного картофеля сорта Приекульский ранний (Solanum tuberosum) с протопластами дикого картофеля (S. chacoense). Известно, что у дикого картофеля клубни очень мелкие. Вместе с тем, растение устойчиво ко многим заболеваниям. Картофель сорта Приекульский ранний образует крупные клубни, но растения этого сорта восприимчивы к болезням. Размеры протопластов у этих растений разные. Соматические гибриды по форме листьев и кустов, размеру клубней занимали промежуточное положение между культурными и дикими растениями. Вместе с тем гибрид, полученный в результате соматической гибридизации, оказался устойчивым к вирусу «У», чем отличался от полового гибрида.
Первая попытка по созданию межродовых гибридов принадлежит Г. Мельхерсу, создавшему в 1978 году гибрид картофель + томат, так называемый томатофель. Гибрид был стерилен, морфологически аномален: толстые корни, отсутствие типичных столонов, махровые цветки. Было еще несколько попыток получения таких гибридов, но все растения стерильны. Эти эксперименты показали ограниченность применения парасексуальной гибридизации для прикладной селекции. Японскими исследователями (Х. Кисака с соавт., 1997) путем электрослияния протопластов ячменя и риса был получен межродовой соматический гибрид.
Протопласты риса получали из суспензионной культуры, а протопласты ячменя были изолированы из молодых листьев. Часть полученных каллусов сформировали зеленые участки и побеги. Только один побег сформировал корни, и это растение было успешно перенесено в почву. По морфологии было близко к растениям риса. Цитологический анализ показал, что растение имело и маленькие хромосомы от риса, и большие от ячменя. Были проанализированы также митохондриальная и хлоропластная ДНК. Растение содержало новые последовательности и в митохондриальной, и в хлоропластной ДНК, которые не обнаруживались ни в одном из родителей.
Была осуществлена гибридизация 2-х родов пасленовых дурмана и красавки. Удалось регенерировать растения. Во всех случаях выявлены хромосомы обоих родительских видов. Регенерировавшие растения были стерильны, похожи на дурман, но содержали небольшое количество хромосом красавки.
В других экспериментах сливали протопласты красавки с каллусными клетками китайского табака. Получили 12 клонов. В клетках всех клонов обнаружили хромосомные типы обоих родителей, через год только у двух клонов происходила полная элиминация хромосом красавки.
Морковь + сныть: из образовавшейся каллусной ткани через полгода регенерировали аномальные растения. Одно из них цвело, но у цветка отсутствовали пыльники и пестик.
Первые работы по получению межсемейственных гибридов проведены К.Као и В.Веттером в 1976-77 гг. (соя + табак). Позднее в лаборатории Ю.Ю.Глебы провели аналогичные эксперименты пасленовые + бобовые и лилейные (горошек + табак и лук + табак). И.Ф.Каневскому удалось индуцировать морфогенез стеблеподобных тератом в культуре межсемейственных гибридов N.tabacum + Vicia faba.
Практически во всех случаях наблюдалась видоспецифичная элиминация хромосом одного из родителей. В культурах межсемейственных гибридов наблюдалось много многоядерных клеток, клеток с мини ядрами, в метафазах делений встречались гигантские хромосомы. Отмечена асинхронность в расхождении родительских хромосом в анафазе. Морфогенез у такого материала отмечен не был.
Для отдаленных гибридов характерно:
1. Относительная стабильность гибридного состояния, при котором не наблюдается полной элиминации генетического материала одного из родителей.
2. Генетические перестройки (реконструкция и частичная элиминация хромосом).
3. Генетическая разнокачественность клонов гибридных клеток.
4. Ограниченная морфогенетическая способность.
Изучение межцарственных гибридов клеток «животное + растение» показало, что на этапе слияния видоспецифичность не проявляется, поэтому можно слить даже животную и растительную клетки. На более поздних этапах онтогенеза эти различия сказываются, что было установлено в экспериментах по слиянию протопластов арабидопсиса и табака с лимфоцитами человека. При этом происходило слияние цитоплазмы, ядра не сливались. Эдвард Коккинг параллельно проводил изучение ультраструктуры таких гибридов, работая с клетками амфибий и протопластами моркови. После объединения клеток ядра амфибии были окружены тонким слоем собственной цитоплазмы, но уже через 48 часов отмечалось полное смешивание цитоплазмы и регенерация клеточной стенки вокруг гетерокариона.
Соматическая гибридизация
Разработка способов индукции слияния протопластов вместе с развитием экспериментальной техники культивирования клеток in vitro, дающей возможность получения изолированных протопластов, их культивирования и образования каллуса и в дальнейшем целого растения, сформировало новый очень интересный и перспективный метод гибридизации растений — парасексуальную, или соматическую, гибридизацию.
Сущность этого способа гибридизации заключается в том, что в качестве родительских используются не половые клетки (гаметы), а клетки тела (сомы) растений, из которых изолируют протопласты.
Соматическая гибридизация — это метод создания неполовых гибридов путем слияния изолированных протопластов, полученных из соматических клеток. Гибридизация соматических клеток дает возможность не только соединить в одном ядре гены далеких видов (родов, семейств) растений, между которыми невозможно половое скрещивание, но и сочетать в гибридной клетке цитоплазматические гены партнеров.
Другим способом получения соматических гибридов является электрослияние. Слияние, индуцируемое электрическими импульсами, можно объяснить следующим образом. Импульс короткой продолжительности вызывает диэлектрическое разрушение соприкасающихся мембран протопластов. Вокруг дырки возможен обмен липидными молекулами, образование липидных мостов, что в конце концов приводит к слиянию мембран. Это энергетически более выгодное состояние, чем существование двух поврежденных мембран. Процессы, сопровождающиеся обменом липидов, отражают особенности жидкой мозаичной структуры клеточной мембраны и могут быть связаны с ее текучестью.
В отличие от полового скрещивания, где имеет место передача цитоплазмы только от материнского организма, при соматической гибридизации в образовавшемся гибриде оба партнера имеют более или менее равный цитоплазматический статус. Слияние протопластов способствует объединению двух различных цитоплазм. В большинстве исследований слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, ядро — одного. Образование растения с гибридной цитоплазмой и органеллами обоих партнеров, но содержащее в своих клетках ядро только одного вида, возможно в том случае, если после слияния протопластов не происходит соединения ядер и одно ядро дегенерирует.
Важным моментом в изучении индуцированного слияния двух неродственных протопластов является селективный маркер, используемый для идентификации продукта гетероплазматического слияния, так как эффект индуктора не специфичен и вызывает агрегацию и слияния протопластов как одного и того же вида, так и различных видов. Для идентификации гетероплазматического продукта могут служить пластиды. Например, в случае индуцируемого ПЭГ слияния протопластов сои и капусты гетерокарион получал хлоропласты от капусты и плотную цитоплазму и неокрашенные пластиды от протопластов сои. При межродовом слиянии протопластов табака и моркови как селективные маркеры использовались зеленые хлоропласты табака и красные, содержащие антоциан, протопласты моркови. Четко различимы были продукты слияния при межвидовой гибридизации между протопластами двух видов Torenia. Протопласты Т. fournieri, содержащие антоциан, комбинировались с протопластами Т. baitlonii, содержащими только хромопласты или только хлоропласты. Кроме пластид могут быть использованы биохимические и генетические маркеры, такие, как изоферментный состав, структура нуклеиновых кислот, устойчивость к антибиотикам, число хромосом, кариотипы.
Основной недостаток метода соматической гибридизации — низкая частота регенерации соматических гибридов, особенно межвидовых и межродовых. В связи с этим соматическую гибридизацию широко применяют у видов с высоким регенерационным потенциалом in vitro, прежде всего семейств Пасленовые, Капустные, Сельдерейные, Лилейные.
С помощью соматической гибридизации между культурными растениями и дикими видами были получены: сорта картофеля, устойчивые к вирусным заболеваниям, фитофторозу, колорадскому жуку; томаты, устойчивые к вирусу табачной мозаики.
Впервые зрелый межвидовой гибрид, полученный в результате парасексуальной гибридизации протопластов 2 сортов табака (Nicotiana glauca c 24 хромосомами и N.langsdorfii c 18 хромосомами), описан Карлсоном в 1972 г. Каллус амфиплоидного гибрида мог расти на безгормональной среде. Гибридное растение цвело. С тех пор были получены жизнеспособные внутривидовые, межвидовые, межродовые гибриды.
Осуществлено слияние протопластов культурного картофеля сорта Приекульский ранний (Solanum tuberosum) с протопластами дикого картофеля (S. chacoense). Известно, что у дикого картофеля клубни очень мелкие. Вместе с тем, растение устойчиво ко многим заболеваниям. Картофель сорта Приекульский ранний образует крупные клубни, но растения этого сорта восприимчивы к болезням. Размеры протопластов у этих растений разные. Соматические гибриды по форме листьев и кустов, размеру клубней занимали промежуточное положение между культурными и дикими растениями. Вместе с тем гибрид, полученный в результате соматической гибридизации, оказался устойчивым к вирусу «У», чем отличался от полового гибрида.
Первая попытка по созданию межродовых гибридов принадлежит Г. Мельхерсу, создавшему в 1978 году гибрид картофель + томат, так называемый томатофель. Гибрид был стерилен, морфологически аномален: толстые корни, отсутствие типичных столонов, махровые цветки. Было еще несколько попыток получения таких гибридов, но все растения стерильны. Эти эксперименты показали ограниченность применения парасексуальной гибридизации для прикладной селекции. Японскими исследователями (Х. Кисака с соавт., 1997) путем электрослияния протопластов ячменя и риса был получен межродовой соматический гибрид. Протопласты риса получали из суспензионной культуры, а протопласты ячменя были изолированы из молодых листьев. Часть полученных каллусов сформировали зеленые участки и побеги. Только один побег сформировал корни, и это растение было успешно перенесено в почву. По морфологии было близко к растениям риса. Цитологический анализ показал, что растение имело и маленькие хромосомы от риса, и большие от ячменя. Были проанализированы также митохондриальная и хлоропластная ДНК. Растение содержало новые последовательности и в митохондриальной, и в хлоропластной ДНК, которые не обнаруживались ни в одном из родителей.
Была осуществлена гибридизация 2-х родов пасленовых дурмана и красавки. Удалось регенерировать растения. Во всех случаях выявлены хромосомы обоих родительских видов. Регенерировавшие растения были стерильны, похожи на дурман, но содержали небольшое количество хромосом красавки.
В других экспериментах сливали протопласты красавки с каллусными клетками китайского табака. Получили 12 клонов. В клетках всех клонов обнаружили хромосомные типы обоих родителей, через год только у двух клонов происходила полная элиминация хромосом красавки.
Морковь + сныть: из образовавшейся каллусной ткани через полгода регенерировали аномальные растения. Одно из них цвело, но у цветка отсутствовали пыльники и пестик.
Первые работы по получению межсемейственных гибридов проведены К.Као и В.Веттером в 1976-77 гг. (соя + табак). Позднее в лаборатории Ю.Ю.Глебы провели аналогичные эксперименты пасленовые + бобовые и лилейные (горошек + табак и лук + табак). И.Ф.Каневскому удалось индуцировать морфогенез стеблеподобных тератом в культуре межсемейственных гибридов N.tabacum + Vicia faba.
Практически во всех случаях наблюдалась видоспецифичная элиминация хромосом одного из родителей. В культурах межсемейственных гибридов наблюдалось много многоядерных клеток, клеток с мини ядрами, в метафазах делений встречались гигантские хромосомы. Отмечена асинхронность в расхождении родительских хромосом в анафазе. Морфогенез у такого материала отмечен не был.
Для отдаленных гибридов характерно:
1. Относительная стабильность гибридного состояния, при котором не наблюдается полной элиминации генетического материала одного из родителей.
2. Генетические перестройки (реконструкция и частичная элиминация хромосом).
3. Генетическая разнокачественность клонов гибридных клеток.
4. Ограниченная морфогенетическая способность.
Изучение межцарственных гибридов клеток «животное + растение» показало, что на этапе слияния видоспецифичность не проявляется, поэтому можно слить даже животную и растительную клетки. На более поздних этапах онтогенеза эти различия сказываются, что было установлено в экспериментах по слиянию протопластов арабидопсиса и табака с лимфоцитами человека. При этом происходило слияние цитоплазмы, ядра не сливались. Эдвард Коккинг параллельно проводил изучение ультраструктуры таких гибридов, работая с клетками амфибий и протопластами моркови. После объединения клеток ядра амфибии были окружены тонким слоем собственной цитоплазмы, но уже через 48 часов отмечалось полное смешивание цитоплазмы и регенерация клеточной стенки вокруг гетерокариона.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет