Что такое сопротивление воздуха в физике

Воздушное сопротивление

Первоклассный бегун, состязающийся на скорость, вовсе не стремится в начале бега быть впереди соперников. Напротив, он старается держаться позади них; только приблизившись к финишу, он проскальзывает мимо других бегунов и приходит к конечному пункту первым. Для чего избирает он такой маневр? Почему ему выгоднее бежать позади других?

Причина та, что при быстром беге приходится затрачивать немало работы для преодоления сопротивления воздуха. Обыкновенно мы не думаем о том, что воздух может служить помехой нашему движению: расхаживая по комнате или прогуливаясь по улице, мы не замечаем, чтобы воздух стеснял наши движения. Но это только потому, что скорость нашей ходьбы невелика. При быстром движении воздух уже заметно мешает нам двигаться. Кто ездит на велосипеде, тот хорошо знает, что воздух мешает быстрой езде. Недаром гонщик пригибается к рулю своей машины: он этим уменьшает величину той поверхности, на которую напирает воздух. Вычислено, что при скорости 10 км в час велосипедист тратит седьмую часть своих усилий на то, чтобы бороться с воздухом; при скорости 20 км на борьбу с воздухом уходит уже четвертая доля усилий ездока. При еще большей скорости приходится расходовать на преодоление воздушного сопротивления третью долю работы и т. д.

Теперь вам станет понятно загадочное поведение искусного бегуна. Помещаясь позади других, менее опытных бегунов, он освобождает себя от работы по преодолению воздушного сопротивления, так как эту работу выполняет за него бегущий впереди. Он сберегает свои силы, пока не приблизится к цели настолько, что станет наконец выгодно обогнать соперников.

Маленький опыт разъяснит вам сказанное. Вырежьте из бумаги кружок величиной с пятикопеечную монету. Уроните монету и кружок порознь с одинаковой высоты. Вы уже знаете, что в пустоте все тела должны падать одинаково быстро. В нашем случае правило не оправдается: бумажный кружок упадет на пол заметно позднее монеты. Причина та, что монета лучше одолевает сопротивление воздуха, чем бумажка. Повторите опыт на иной лад: положите бумажный кружок поверх монеты и тогда уроните их. Вы увидите, что и кружок и монета достигнут пола в одно время. Почему? Потому что на этот раз бумажному кружку не приходится бороться с воздухом: эту работу выполняет за него монета, движущаяся впереди. Точно так же и бегуну, движущемуся позади другого, легче бежать: он освобожден от борьбы с воздухом.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Сопротивление воздуха

Сопротивление воздуха И это еще не все, что ожидает пассажиров в течение того краткого мига, который они проведут в канале пушки. Если бы каким-нибудь чудом они остались живы в момент взрыва, гибель ожидала бы их у выхода из орудия. Вспомним о сопротивлении воздуха! При

ТЕОРИЯ УПРУГОСТИ И СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

ТЕОРИЯ УПРУГОСТИ И СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Связь между прикладными задачами и теоретическими обобщениями в русской механике второй половины XIX — начала XX в. получила также яркое выражение в работах по теории упругости и сопротивлению материалов.Задачи теории

41. Полное сопротивление ((импеданс) тканей организма. Физические основы реографии

41. Полное сопротивление ((импеданс) тканей организма. Физические основы реографии Ткани организма проводят не только постоянный, но и пе ременный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индук тивность его близка к

Источник

Основные свойства и законы движения воздуха. Сопротивление воздуха.

Для аэродинамики очень важно следствие из уравнения неразрывности: скорость движения воздуха в струе обратно пропорциональна площади её поперечного сечения. Данное следствие из уравнения неразрывности помогает объяснить процессы движения воздуха при обтекании крыла (лопасти).

Создание подъёмной силы крылом за счет разности скоростей потока.

Физический закон сохранения энергии позволяет сделать заключение, что энергия воздушного потока величина неизменная, лишь её вид переходит из одного состояния в другой. Так, при малых скоростях потока можно считать, что поток обладает только потенциальной (статическое давление) и кинетической энергией (скоростной напор). Скоростной напор (динамическое давление) q- это кинетическая энергия одного кубического метра движущегося воздуха: q =pV 2 /2.

Уравнение Бернулли базируется на законе сохранения энергии и законе неразрывности потока воздуха и формулируется следующим образом: сумма кинетической и потенциальной энергии единицы объёма воздуха есть величина постоянная в любом сечении струи. Иными словами в установившемся потоке сумма статического давления (р) и скоростного напора (pV 2 /2) есть величина постоянная, а значит, уменьшение статического давления приводит к соответствующему увеличению скоростного напора и наоборот: р + pv2l2 = const.

Уравнение Бернулли вместе с уравнением неразрывности объясняет природу возникновения подъёмной силы у крыла. При обтекании крыла плоско-выпуклого профиля воздушным потоком со скоростью V0 на верхней (выпуклой) поверхности крыла в соответствии с уравнением

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикенеразрывности скорость обтекания увеличивается (уменьшается сечение струйки) до скорости V-i и становится больше скорости движения потока под крылом. Далее, в соответствии с законом Бернулли можно сделать вывод, что над крылом давление потока будет меньше, чем под крылом. Разность давлений вызовет образование подъёмной силы (рис. 1).

Вывод: полет самолета в воздушной среде возможен при обеспечении его движения относительно этой среды за счет силы тяги, создаваемой силовой установкой.

При движении предмета в воздушной среде возникают силы сопротивления трения и силы сопротивления давления.

Причиной возникновения сил сопротивления трения является вязкость, которая вызывает взаимное влияние слоев воздуха в потоке. Скорость частиц воздуха на поверхности перемещающегося предмета понижается до ноля, относительно этого предмета. Слой потока, в котором восстанавливается скорость его струй, по мере удаленности от поверхности предмета, называется пограничным слоем. Естественно требуется энергия восстановления скорости струй возмущенного потока.

На неподвижную относительно воздушной среды пластину действуют силы статического давления. На движущуюся пластину, согласно третьему закону механики, помимо статического давления, действуют силы сопротивления воздуха движению пластины.

Создание подъемной силы за счет несимметричного обтекания.

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикепластиной становится больше, чем в невозмущенном потоке. Над пластиной поток сужается и скорость увеличивается. В пограничном слое происходит срыв потока. Поток из ламинарного состояния переходит в турбулентный. Давление над пластиной будет меньше, чем под ней.

Аэродинамические характеристики крыла и самолета.
Характеристики силовой установки.

Назначение и геометрические параметры крыла.

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физике

Величина подъёмной силы и силы сопротивления зависят от схемы крыла, его геометрических характеристик, положения в потоке и других факторов. Аэродинамические характеристики крыла зависят в основном от его геометрических форм: формой профиля; формой в плане; видом крыла спереди.

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикеОт формы крыла в плане зависит распределение подъёмной силы вдоль размаха крыла и место зарождения срыва потока на больших углах атаки, величина коэффициента индуктивного сопротивле­ния, которое будет рассматриваться при изучении реального крыла.

Крыло самолета создает подъёмную силу за счет разности скоростей потока над крылом и под крылом и за счет несимметричного обтекания профиля под положительным углом атаки.

Сила лобового сопротивления крыла бесконечного размаха состоит только из профильного сопротивления, которое возникает вследствие разности давлений перед профилем и за ним (сопротивление давления), а так же за счет внутренних сил трения в пограничном слое. Сопротивление давления зависит от относительной толщины и относительной кривизны профиля, с увеличением которых оно увеличивается. Сопротивление трения зависит от характера течения в пограничном слое (шероховатости поверхности крыла и распределения давления по

поверхности профиля). Крыло самолета имеет конечный размах и поэтому лобовое сопротивление самолетного крыла состоит из профильного сопротивления и индуктивного.

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикеИндуктивное сопротивление. Сопротивление крыла конечного размаха зависит и от разности давлений под крылом и над ним. Вследствие разности давлений массы воздуха перетекают из области повышенного давления в область повышенного давления (рис.6.).

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикеПеретекающий воздух образует на концах крыла вихревые жгуты, а на задней кромке крыла вихревую пленку.

По поляре в одинаковых масштабах Суа и Сха дополнительно можно определить значение CRa и угла качества.

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикеМеханизация крыла.

Различные устройства на крыле, предназначенные для увеличения

Общая характеристика силовой установки.

Пилот может изменять силу тяги, устанавливая ее равной, большей и меньшей силе лобового сопротивления крыла и вредного сопротивления самолета. Если сила тяги равна силе лобового сопротивления, движение самолета будет установившимся, а скорость постоянной. Если сила тяги больше или меньше лобового сопротивления, движение самолета не установившееся, а скорость будет увеличиваться или уменьшаться.

Скорость и угол атаки элементов лопасти винта.

При работе двигателя в полете все элементы лопасти винта совершают сложное движение, перемещаясь по окружности с окружной скоростью U и поступательно со скоростью V (рис.9.).

Поступательная скорость всех элементов лопасти V равна истиной скорости полета самолета. Окружная скорость U увеличивается с увеличение радиуса элемента лопасти. При этом, если угол установки элемента лопасти оставить неизменным по всей её длине, то угол атаки с увеличением радиуса будет увеличиваться, а это приведет к не эффективному использованию винта. Чтобы заставить все элементы лопасти винта работать с максимальным качеством, необходимо уменьшать их углы установки по мере удаления от оси вращения, то есть произвести геометрическую крутку.

Основные режимы работы элемента лопасти винта.

2. Режим положительной тяги (рис.9.) (пропеллерный). С увеличением поступа­тельной скорости угол атаки элемента лопасти уменьшается, уменьшается элементарная сила тяги. Это основной рабочий режим элемента лопасти, при котором лопасть обтекается потоком с положительными углами

3. Режим нулевой тяги (рис.10.V1 и W1). При дальнейшем увеличении поступательной скорости угол атаки элемента лопасти уменьшится до полного исчезновения подъёмной силы на нём, а значит и тяги винта в целом. Этот режим характерен для планирования с некоторой средней скоростью и малым числом оборотов винта.

4. Режим отрицательной тяги (режим торможения) возникающий при дальнейшем увеличении скорости полета (рисЮ V2 и W2). Угол атаки элемента еще больше уменьшается вплоть до отрицательных значений. Полная элементарная аэродинамическая сила становится направленной против полета. Отрицательная тяга хоть и небольшая, но затрудняет разгон самолета, режим характерен пологому пикированию.

5. Режим авторотации (самовращения). Такой режим отрицательной тяги, при котором сила сопротивления вращению элемента лопасти, как составляющая полной аэродинамической силы, равна нулю. Вращение продолжаться по инерции. Отрицательная тяга небольшая.

6. Режим ветряка. При больших значениях отрицательных углов атаки полная аэродинамическая сила отклоняется еще больше, создается значительная отрицательная тяга элемента, а сила сопротивления вращению элемента лопасти оказывается направленной в сторону вращения и, действуя относительно оси вращения, раскручивает вал двигателя. Этот режим возможет на пикировании.

Все выше рассмотренное показывает работу винта фиксированного шага (ВФШ) (ср = const).

Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикеВинт изменяемого шага.

Винт изменяемого шага сохраняет заданную частоту вращения независимо от режима полета с помощью регулятора постоянных оборотов, который, меняя угол установки лопасти, способен самостоятельно сохранить постоянный момент сопротивления вращению.

Правила пользования винтом изменяемого шага.

При запуске, на взлете на самолете Як-18Т рычаг управления винтом находится в положении «Малый шаг». На высоте 50м, после взлета, следует установить первый номинальный режим: штурвалом удерживать скорость 170км/ч, сектором газа установить наддув двигателю 800мм рт

Для увеличения режима работы двигателя необходимо облегчить винт до требуемой частоты вращения, затем рычагом управления двигателем установить требуемый наддув.

Для уменьшения режима работы двигателя необходимо установить рычагом управления двигателем наддув, затем, увеличив шаг винта, уменьшить частоту вращения до заданной.

Соблюдение последовательности действий при переходе с режима на режим обеспечивает работу двигателя без перегрузок.

Более подробно аэродинамические характеристики самолета и силовой установки приводятся в Руководстве по летной эксплуатации.

Дата добавления: 0000-00-00 ; просмотров: 6067 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Как зависит сила сопротивления воздуха от формы предмета и его массы

Одним из проявлений силы взаимного тяготения является сила тяжести, т.е. сила притяжения тел к Земле. Если на тело действует только сила тяжести, то оно совершает свободное падение. Следовательно, свободное падение – это падение тел в безвоздушном пространстве под действием притяжения к Земле, начинающееся из состояния покоя.

Впервые это явление изучил Галилей, но из-за отсутствия воздушных насосов он не мог провести опыт в безвоздушном пространстве, поэтому Галилей производил опыты в воздухе. Отбрасывая все второстепенные явления, встречающиеся при движении тел в воздухе, Галилей открыл законы свободного падения тел. (1590г.)

Практически воздух всегда оказывает сопротивление движению падающего тела, причем для данного тела сопротивление воздуха тем больше, чем больше скорость падения. Следовательно, по мере увеличения скорости падения сопротивление воздуха увеличивается, ускорение тела уменьшается и, когда сопротивление воздуха сделается равным силе тяжести, ускорение свободно падающего тела станет равным нулю. В дальнейшем движение тела будет равномерным движением.

Реальное движение тел в земной атмосфере происходит по баллистической траектории, существенно отличающейся от параболической из-за сопротивления воздуха. Например, если выпустить из винтовки пулю со скоростью 830 м/с под углом α = 45о к горизонту и зафиксировать с помощью кинокамеры фактическую траекторию трассирующей пули и место ее падения, то дальность полета окажется равной примерно 3,5 км. А если рассчитать по формуле, то оно окажется 68, 9 км. Разница огромная!

Сопротивление воздуха зависит от четырех факторов: 1) РАЗМЕР движущегося предмета. Большой объект, очевидно, получит большее сопротивление, чем маленький. 2) ФОРМА движущегося тела. Плоская пластина определенной площади будет оказывать гораздо большее сопротивление ветру, чем обтекаемое тело (форма капли), имеющее ту же площадь сечения для такого же ветра, реально в 25 раз большее! Круглый предмет находится где-то посередине. (Это и есть причина, по которой корпуса всех автомобилей, самолетов и парапланов имеют по возможности скругленную или каплевидную форму: она уменьшает сопротивление воздуха и позволяет двигаться быстрее при меньших усилиях на двигатель, а значит, при меньших затратах топлива). 3) ПЛОТНОСТЬ ВОЗДУХА. Нам уже известно, что один кубический метр весит около 1,3 кг на уровне моря, и, чем выше вы поднимаетесь, тем менее плотным становится воздух. Эта разница может играть некоторую практическую роль при взлете только очень с большой высоты. 4) СКОРОСТЬ. Каждый из трех рассмотренных до сих пор факторов дает пропорциональный вклад в воздушное сопротивление: если вы увеличиваете один из них вдвое, сопротивление также удваивается; если вы уменьшаете любой из них в два раза, сопротивление падает наполовину.

СОПРОТИВЛЕНИЕ ВОЗДУХА равно ПОЛОВИНЕ ПЛОТНОСТИ ВОЗДУХА, умноженной на КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ, умноженной на ПЛОЩАДЬ СЕЧЕНИЯ и умноженной на КВАДРАТ СКОРОСТИ.

Введем следующие символы: D — сопротивление воздуха; р — плотность воздуха; А — площадь сечения; cd — коэффициент сопротивления; υ — скорость воздуха.

Теперь имеем: D = 1/2 х р х cd x A x υ 2

При падении тела в реальных условиях ускорение тела не будет равно ускорению свободного падения. В этом случае 2 закон Ньютона примет вид ma = mg – Fсопр –Fарх

А чтобы подчеркнуть, что эта сила направлена против вектора скорости.

При наличии атмосферы падающие тела помимо силы тяжести испытывают воздействие сил вязкого трения о воздух. В грубом приближении при малых скоростях силу вязкого трения можно считать пропорциональной скорости движения. В этом случае уравнение движения тела (второй закон Ньютона) имеет вид ma = mg – η υ

Масса же сферического тела постоянной плотности пропорциональна его объему, т.е. кубу радиуса m = ρ V = ρ 4/3π R3

Рассмотрим для примера падение шариков из разного материала. Возьмем два шарика одинакового диаметра, пластмассовый и железный. Примем для наглядности, что плотность железа в 10 раз больше плотности пластмассы, поэтому железный шар будет иметь массу в 10 раз больше, соответственно его инертность будет в 10 раз выше, т.е. под воздействием той же силы он будет ускоряться в 10 раз медленнее.

В вакууме на шарики действует только сила тяжести, на железный в 10 раз больше чем на пластмассовый, соответственно разгоняться они будут с одним и тем же ускорением (в 10 раз большая сила тяжести компенсирует в 10 раз большую инертность железного шарика). При одинаковом ускорении одно и то же расстояние оба шарика пройдут за одно и то же время, т.е. другими словами упадут одновременно.

В воздухе: к действию силы тяжести добавляются сила аэродинамического сопротивления и Архимедова сила. Обе эти силы направлены вверх, против действия силы тяжести, и обе зависят только от размера и скорости движения шариков ( не зависят от их массы) и при равных скоростях движения равны для обоих шариков.

T.о. результирующая трех сил действующих на железный шарик будет уже не в 10 раз превышать аналогичную результирующую деревянного, а в больше чем 10, инертность же железного шарика остается больше инертности деревянного все в те же 10 раз.. Соответственно ускорение железного шарика будет больше, чем пластмассового, и упадет он раньше.

Источник

Что такое сопротивление воздуха в физике

вернёмся в начало?
Часть I. ПРЕПЯТСТВИЯ, КОТОРЫЕ
ПРЕДСТОИТ ПРЕОДОЛЕТЬ

Глава III. Воздушная оболочка Земли
Раздел А. Воздух как препятствие

1. Зависимость сопротивления воздуха от формы корабля

2. Зависимость сопротивления воздуха от скорости корабля

3. Сопротивление воздуха на различных высотах на уровне моря

4. Воздухоплавательные аппараты, движимые винтами, и ракетные корабли

5. Зависимость наивыгоднейшей скорости от сопротивления воздуха

6. Сопротивление воздуха и нагревание тел

7. Сопротивление воздуха как средство торможения

Всякий корабль вселенной, предназначенный для путешествий с пассажирами, должен быть сделан совершенно воздухонепроницаемым, чтобы создать для находящихся в нем пассажиров привычные условия дыхания, независимые от условий, господствующих вне корабля. Поэтому для наших последующих рассуждений химический состав земного воздуха и атмосфер других планет, на поверхность которых мы намереваемся совершить путешествие, не играет никакой роли. Равным образом и в отношении питания двигателей корабля вселенной, содержание кислорода воздуха даже в наиболее плотных слоях атмосферы оказывается недостаточным для покрытия огромной потребности кислорода при сгорании горючего, происходящем взрывами; тем меньше об этом может быть речи при полетах на больших высотах в разреженном воздухе.

В обычной своей форме основное уравнение сопротивления воздуха пишется следующим образом: Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физикеили Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физике

То, что сопротивление воздуха возрастает пропорционально увеличению площади движущегося в нем тела, вполне понятно, и то, что форма и строение поверхности этого тела играют при этом известную роль, очевидно само собой. Равным образом ясно, что сопротивление возрастает и пропорционально увеличению плотности подлежавшего вытеснению воздуха, а также и то, что оно должно в какой-либо степени возрастать вместе с увеличением скорости. То, что при этом играет главную роль именно квадрат скорости, объяснимо тем, что какая-либо сдвигаемая в стороны масса воздуха при увеличении скорости движения тела вдвое, воспринимает при этом движении четырехкратное количество энергии. Фактор же k входит в эту формулу потому, что вследствие внутреннего трения воздуха и других причин, лежащих в природе газовых струй, сопротивление возрастает не в точности пропорционально квадрату скорости.

Мощность машины, предназначенной для движения с двойной скоростью в воздушной среде, оказывающей четырехкратное сопротивление, естественно возрастает даже в третьей степени, потому что ежесекундно четырехкратная сила на вдвое более длинном пути потребует в произведении восьмикратной мощности двигателя (выраженной в лошадиных силах) по сравнению с мощностью наших машин.

При использовании же ракетных моторов в тех же условиях оказывается достаточным четырехкратное реактивное действие, так как мощность ракет независима от длины пути.

1. Зависимость сопротивления воздуха от формы корабля

* Автор вместо этого числа указывает большее, а именно 330 кг, соответствующее устаревшему коэфициенту, полученному Лилиенталем. (Прим. ред. )

* И ружейных пуль. (Прим. ред.)
Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физике
Рис.14
Вверху наивыгоднейшая форма гранаты. Внизу наивыгоднейшая форма дирижабля. Нарисованные сбоку кружки изображают диски, испытывающие одинаковое с ними сопротивление воздуха. Стрелками показано направление движения.

У кораблей вселенной, по своей внешней форме значительно отличающихся от стройной формы гранат и благодаря наличию несущих поверхностей, приближающихся скорее к форме наших самолетов, лобовое сопротивление, по-видимому, будет больше. Его едва ли удастся снизить сильнее, чем до р = 1/6 по сравнению с сопротивлением, испытываемым плоским диском.

Для них должно вводиться в расчет еще и так называемое сопротивление парения. В общем, как показал опыт, у самолетов; рассчитанных на движение в горизонтальном направлении со скоростью 144 км/час или 40 м/сек, тянущее усилие их моторов в зависимости от профиля крыльев и угла атаки должно составлять от 1/5 до 1/20 их веса.
2. Зависимость сопротивления воздуха от скорости корабля

Увеличение сопротивления воздуха при возрастании скорости движущегося тела подробно изучалось теоретиками воздухоплавания со времени его возникновения и артиллеристами в течение многих десятилетий.

Было обнаружено, что при весьма незначительных скоростях, подобных скоростям движения маятника часов, сопротивление воздуха возрастает пропорционально первой степени скорости. При возрастании скорости движения сопротивление воздуха начинает увеличиваться пропорционально более высокой степени скорости и при скорости движения тела, равной 10 м/сек достигает в точности квадрата этой скорости. Это соотношение сопротивления воздуха и скорости движения с весьма большой точностью остается постоянным вплоть до скорости в 100 м/сек. Лишь после этого оно начинает расти заметно быстрее квадрата скорости, особенно при приближении к скорости звука, равной 333 м/сек. Несколько выше ее, а именно при 425 м/сек, отклонение увеличения сопротивления воздуха от точки квадрата скорости достигает наибольшего значения.

При дальнейшем увеличении скорости это отклонение вновь уменьшается и при очень высоких скоростях стремится к предельному своему значению, до некоторой степени зависимому от формы движущегося тела.

Таблица A

V2503003504004255007501 00010 000 м/сек
W0,1440,220,640,921,041,362,383,48
K1,151,272,612,892,902,742,121,741,50
W/F0,0720,110,320,460,520,681,191,74
W/M36,756163234285346607886

Для крупных калибров (о которых нам придется говорить позднее при оценке возможности выстрела из пушки на Луну), согласно Кранцу, имеют место следующие значения сопротивления воздуха (в атмосферах):

б) Различные заостренные спереди снаряды с радиусом округления в 3 калибра.

Скорость V в м/сек *4008001 2002 0004 00010 000
W / F для снаряда1,586,8515,6443,80175,61 098
W / F для круглого диска2818502001250

3. Сопротивление воздуха на различных высотах на уровне моря

Сопротивление воздуха на различных высотах над земной поверхностью обусловливается быстро убывающей с высотою плотностью воздуха. Для его оценки нам поэтому необходимо знание степени убывания давления вместе с высотою. Но мы располагаем данными прямых измерений лишь до высоты в 25 км, в то время как для больших высот мы вынуждены прибегать к различного рода математическим экстраполяциям. Вследствие недостаточности наших знаний о температурах на этих высотах получаемые при этом результаты оказываются в большей или в меньшей степени ненадежными. Для наших целей будет во всяком случае достаточно привести табличные значения, содержащиеся в работе инженера Гомана, принимающего, что атмосферное давление на высоте 400 км над уровнем моря практически падает до нуля.

В связи с этим будет полезно напомнить, что в вертикальном столбе воздуха, простирающемся от уровня моря до этой высоты, содержится такая же масса воздуха, как и в горизонтальном столбе воздуха того же поперечного сечения длиною в 7 800 м при нормальном атмосферном давлении, равном 760 мм ртутного столба. Поэтому число 7 800 м называют высотою однородной изотермической атмосферы; это понятие имеет значение при расчете горизонтального выстрела из пушки

С помощью таблиц А и Б путем подстановки соответствующих значений в основное уравнение сопротивления воздуха, имеется возможность ответить на следующие три вопроса:

1) Как велико будет сопротивление воздуха при данной скорости и высоте полета?

2) На какой высоте при данной скорости имеет место определенное сопротивление воздуха?

3) При какой скорости на данной высоте наблюдается определенное (например, наибольшее допустимое) сопротивление воздуха?

Ответ на первый вопрос важен для правильного выбора мощности мотора. Ответ на второй вопрос нужен для установления высоты, ниже которой не должен осуществляться полет, чтобы не испытывать недопустимого сопротивления воздуха. Ответ на третий вопрос необходим для вычисления той скорости, которая при заданной высоте не должна быть превзойдена, имея в виду предельную прочность проектируемого корабля и его двигателей.

4. Воздухоплавательные аппараты, движимые винтами и ракетные корабли

Произведя эти расчеты для различных высот, сопротивлений и скоростей, мы приходим к выводу исключительно важному, как для проблемы полетов в мировом пространстве, так и для грядущего развития воздушных сообщений.

При этом обнаруживается, что как наши современные самолеты, так и дирижабли как аппараты, движимые моторами с винтами, почти вплотную подошли к возможным границам достижимых на них высот и скоростей полета. Причина этого заключается в том, что на небольших высотах менее 6 км вместе с увеличением скорости сопротивление воздуха возрастает в столь огромной степени, что полезная грузоподъемность падает до нуля, потому что чудовищная потребная мощность моторов пожирает полностью всю достижимую грузоподъемность. На значительных же высотах свыше 18 км, где в силу незначительности сопротивления воздуха были бы достижимы уже весьма высокие скорости, их практически не удается осуществить при помощи моторов, движимых пропеллерами, потому что столь высоко поднять такие моторы невозможно: как подъемная сила дирижаблей, так и реальная мощность самолетных моторов сильно падает по мере уменьшения плотности окружающего воздуха.

Следовательно, будущее сверхдальнего и сверхбыстрого воздушного транспорта* принадлежит типу двигателей, способ действия которых независим от окружающего их воздуха, благодаря чему именно на наибольших высотах они смогут развивать наивысшие скорости полета, а наиболее плотные слои атмосферы вблизи уровня моря смогут пролетать с умеренными скоростями.

* Называемого также «суперавиацией».(Прим. ред.)

Как это будет подробно показано в последующем изложении, удовлетворить это требование сможет только ракета. Поэтому задача конструктивного усовершенствования ракеты как мотора, пригодного для приведения в движение воздухоплавательных аппаратов, уже является неотложнейшей проблемой современной техники, даже и в том случае, если бы мы при этом и не могли иметь в виду возможности полетов в пустом мировом пространстве.

То, что мощность, необходимая для достижения больших скоростей на небольших высотах, выходит далеко за пределы технически осуществимого с помощью моторов, движимых пропеллерами, легко усмотреть на диаграмме (рис. 15), построенной инженером Германом Борком для гигантского самолета Юнкерса типа 0-24. Этот самолет на уровне моря, обладая мощностью моторов в 400 л. с., способен развить скорость в 50 м/сек. Желая удвоить его скорость, нам пришлось бы увеличить мощность ого моторов в 8 раз, т. е. скорость в 100 м/сек была бы достижима лишь при мощности моторов в 3 200 л. с. Повторное удвоение скорости до 200 м/сек потребовало бы дальнейшего увеличения мощности моторов до 25 600 л. с. Принимая во внимание, что даже при полном отказе от полезной грузоподъемности общий вес их не должен превосходить 2 000 кг, мы убеждаемся в том, что мощность в 3 200 л. с. в настоящее время является практически предельной*, так как даже наиболее легкие самолетные моторы весят не менее 0,5 кг на 1 л.с. Следовательно, границы достижимых скоростей вблизи уровня моря для воздухоплавательных аппаратов этого типа лежат около 100 м/сек или 360 км/час**. На высоте же 18 км, где воздух ровно в 10 раз реже, теоретически была бы достаточна мощность уже в 2 560 л. с. для достижения скорости в 200 м/сек или 720 км/час. Однако какая польза нам в этом выигрыше скорости, если возрастающий почти до 2 кг на 1 л.с. необходимый вес высотного мотора о нагнетателем позволил бы поднять на эту высоту лишь мотор реальной мощностью в 1 000 л.с.?

* Ко времени редактирования этой книги указываемый автором предел оказался превзойденным советскими конструкторами более чем вдвое. Сконструированный А. Н. Туполевым и построенный в 1934 г. Центральным ааро-гидродинамическим институтом (ЦАГИ) самолет-гигант «Максим Горький» (АНТ-20) обладал общей мощностью своих восьми моторов около 7 000 л. с. (Прим. ред.)

** В 1934 г. в Италии на самолете была достигнута скорость, превышающая 700 км/час. (Прим. ред.)

Пользуясь диаграммой Борка (рис. 15), легко могут быть определены (для всякого летательного аппарата независимо от типа его мотора) для любой высоты наиболее выгодные скорости полета путем отсчета положения кривой, касательная к которой будет вертикальна. При этом мы видим, что кривые для больших скоростей поднимаются все более и более круто, благодаря чему вблизи значений соответствующих наиболее благоприятным скоростям, для которых необходимая мощность будет наименьшей, образуется все больший диапазон близких к ним скоростей, особенно в сторону их увеличения. Для высоты в 50 км наиболее выгодной оказывается скорость в 600 м/сек. На высоте в 65 км она увеличивается уже до 1 600 м/сек, для чего необходима мощность в 6 000 л. с. Дальнейшее увеличение мощности еще на 1 000 л. с. позволило бы довести скорость до 2 450 м/сек. А эта последняя скорость (как об этом будет речь впоследствии) является как раз той, которая достижима при извержении взрывных газов лучших сортов пороха и для которой работа ракетных двигателей становится экономически наиболее выгодной. В этом смысле общий вывод, который может быть сделан из рассмотрения диаграммы Борка, таков:

Нижняя граница области, пригодной для применения ракетного полета в пределах земной атмосферы, лежит не на тех сравнительно незначительных высотах, на которых отказываются работать современные авиационные моторы, но лишь на высоте в 50 км над уровнем моря. Экономически выгодным ракетный полет становится лишь на высоте в 60 км, а полная мощность ракетных двигателей сможет быть использована в области от 65 до 100 км над земной поверхностью.

5. Зависимость наивыгоднейшей скорости от сопротивления воздуха

* Называемой иначе барометрической формулой. (Прим. ред.)

Так как практически невозможно направить полет таким образом, чтобы корабль в каждой точке своего пути двигался с наивыгоднейшей для него скоростью, то, имея в виду соблюдение других необходимых условий полета, при этом приходится итти на компромисс. В силу этого понятие о наивыгоднейшей скорости полета на протяжении определенного участка пути от А до В является совершенно иным по сравнению c вышеохарактеризованным. Эта скорость будет соответствовать такому способу полета, при котором, несмотря на достижение в конечной точке участка В одинаковой конечной скорости, исходя из одинаковой начальной скорости в начальной точке А, расход горючего будет минимальным. Вычисление (диференциальной) наивыгоднейшей скорости полета в определенной точке пути является делом довольно трудным, а вычисление (интегральной) наивыгоднейшей скорости полета на определенном отрезке пути является еще нерешенной проблемой вариационного исчисления.

6. Сопротивление воздуха и нагревание тел

Результаты таких вычислений, выполненные для 6 метеоров, 6 кораблей вселенной, 2 типов артиллерийских снарядов различных масс и 1 пули, движущихся с различными скоростями приведены для сравнения в нижеследующей таблице 8. Значения, относящиеся к метеорам и снарядам, наилучшим образом согласуются с фактически наблюдавшимися и измеренными замедлениями и явлениями возгорания.

Таблица 8

По поводу чисел, стоящих в последнем столбце, нужно сказать следующее: вследствие того, что метеоры обладают неправильной формой, большая часть энергии, освобождающаяся при их торможении, будет расходоваться на образование вихрей и на нагревание увлекаемой ими при полете воздушной оболочки. Поэтому, чем больше и массивнее является метеор и чем выше должно было бы быть теоретическое увеличение температуры, тем меньше часть образующейся при торможении теплоты, которая придется на долю самого метеора.

Согласно письменному сообщению профессора Прандтля, опыты с ракетами как зажженными, так и не зажженными в аэродинамических трубах, насколько ему известно, еще нигде не производились. Опыты по измерению нагревания тела, помещенного в поток воздуха, движущегося с большой скоростью, производились путем измерения термоэлементами температуры воздуха, образующего этот поток. Они всегда оказывались равными температурам, которые должен был приобретать воздух, вырывающийся из камер, где он находился в сжатом состоянии, при своем адиабатическом * расширении до того состояния, в котором производился опыт.

* Адиабатическим расширением массы воздуха называется такое, при котором не происходит ни поглощения ею теплоты извне, ни выделения ею теплоты во вне. Таким образом в процессе адиабатического расширения (или сжатия) масса воздуха сохраняет присущее ей перед этим количество теплоты. (Прим. ред.)

При движении кораблей вселенной на любой высоте с наивыгоднейшей скоростью и даже в момент проникновения в верхние слои атмосферы корабля, возвращающегося из мирового пространства с параболической скоростью, не приходится опасаться недопустимого нагревания корпуса корабля **. Для этого необходимо позаботиться лишь о том, чтобы ежесекундно получаемая корпусом корабля теплота, развиваемая торможением вследствие сопротивления, воздуха, не превысила бы количества теплоты, отдаваемой им за это же время путем излучения (а также и теплопроводности). Это условие должно быть осуществлено путем соответствующего маневрирования при помощи рулевого управления корабля. Для этого спуск его не должен совершаться с чрезмерно большой скоростью, дабы не слишком рано или слишком круто проникнуть в более плотные слои атмосферы.

** Этот вопрос был теоретически исследован Ю. В. Кондратюком. (Прим. ред.)

7. Сопротивление воздуха как средство торможения

Подобно тому как у всех наших земных экипажей обкладка или же самый материал тормозных колодок приносится в жертву, предоставляемый постепенному истиранию, так естественно и в случае торможения корабля вселенной в атмосфере какой-нибудь планеты должно быть пожертвовано тормозящее устройство; раскаляясь, оно должно было бы превратиться в пары, подобно метеору. Наилучшим материалом для такого рода тормозящих устройств явится не металл, подобный железу или даже свинцу, удельные теплоемкости которых низки (1/9 и 1/30 соответственно) и которые вследствие этого расплавились бы слишком быстро, но такое вещество, которое при достаточно высокой точке плавления обладало бы наибольшей удельной теплоемкостью; благодаря этому 1 кг этого вещества смог бы поглотить возможно большее количество больших калорий, прежде чем испариться. Расчеты показывают, что для этой цели наиболее благоприятными оказались бы бетон и шамот, обладающие удельными телоемкостями в 0,27 и 0,25 и точками плавления свыше 1 500 и 2 500° C, соответственно.
Что такое сопротивление воздуха в физике. Смотреть фото Что такое сопротивление воздуха в физике. Смотреть картинку Что такое сопротивление воздуха в физике. Картинка про Что такое сопротивление воздуха в физике. Фото Что такое сопротивление воздуха в физике
Рис.16 Тормозящие диски, предотвращающие накаливание корпуса корабля путем производимых ими завихрений и сгорания их самих.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Род телаМасса в кг.Высота в км.Скорость в м/секЗамедление в м/секРабота торможенияНагревание в °С
в кгмв б. кал
Метеор0,000110070 0001248672,03120 310