Что такое составной транзистор
Составной транзистор (схема Дарлингтона и Шиклаи)
Составной транзистор — электрическое соединение двух или более биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.
Условное обозначение составного транзистора
Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора (иногда ошибочно называемого «супербета»), у мощных транзисторов ≈ 1000 и у маломощных транзисторов ≈ 50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.
В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, биполярный транзистор с изолированным затвором), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами. Так же для составного транзистора достигнуть повышения значения коэффициента усиления можно, уменьшив толщину базы, но это представляет определенные технологические трудности.
Примером супербета (супер-β) транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).
Фото типичного усилителя на составных транзисторах
Один из видов такого транзистора изобрёл инженер-электрик Сидни Дарлингтон (Sidney Darlington).
Принципиальная схема составного транзистора
Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:
Следует подчеркнуть, что коэффициенты β 1 и β 1 могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1 + β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2 = Iэ1 ).
Каскад Шиклаи, подобный транзистору с n – p – n переходом
Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера (увеличение эквивалентной ёмкости инвертирующего усилительного элемента, обусловленное обратной связью с выхода на вход данного элемента при его выключении).
Достоинства и недостатки составных транзисторов
Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.
а) Высокий коэффициент усиления по току.
б) Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.
а) Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.
б) Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше, чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).
в) Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).
Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа кт825, его коэффициент усиления по току равен 10000 (типичное значение) для коллекторного тока, равного 10 А.
ElectronicsBlog
Обучающие статьи по электронике
Составные транзисторы. Схемы включения.
Транзисторы как силовые элементы многих радиоэлектронных устройств для нормальной работы должны выполнять следующие функции:
1. Обеспечивать управление заданным током нагрузки при большом усилении по мощности.
2. Обладать достаточной (с учётом заданной выходной мощности и диапазонов изменения входного и выходного напряжений) рассеиваемой мощностью.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
3. Иметь максимально допустимое напряжение коллектор – эмиттер, позволяющее без опасности пробоя обеспечивать необходимое падение напряжение на переходе коллектор – эмиттер при возможных значениях входного и выходного напряжений.
В некоторых случаях имеющиеся в наличии транзисторы не позволяют выполнить одно или несколько вышеописанных условий, тогда прибегают к помощи так называемых составных транзисторов. Схем составных транзисторов существует великое множество, но основных схем существует всего три.
Тандемное включение транзисторов (схемы Дарлингтона и Шиклаи)
Довольно часто возникает ситуация, когда необходимого коэффициента усиления одного транзистора не хватает. В этом случае транзисторы соединяют тандемно (то есть выходной ток первого транзистора является входным током для второго). Существует две схемы такого включения: схема Дарлингтона и схема Шиклаи. Отличие заключается лишь в том, что в схеме Дарлингтона используются транзисторы одинакового типа проводимости, а в схеме Шиклаи – разного типа проводимости.
Схема Дарлингтона
Схема Шиклаи
Данные пары – это просто два каскада эмиттерного повторителя. Иногда данные составные схемы транзисторов называют «супер-β» пары, так как они функционируют как один транзистор с высоким коэффициентом усиления.
Общий коэффициент передачи тока будет равен:
При использовании данных схем вполне возможна такая ситуация, когда нагрузка уменьшится до нуля (или некоторого минимального значения, близкого к нулю) или при повышении температуры базовый ток транзистора VT1 может стать равным нулю или даже переменить направление за счёт неуправляемого обратного тока коллектора. Во избежание запирания транзистора VT2 его режим следует стабилизировать с помощью резистора R1.
Величину сопротивления R1 можно определить по формуле:
Параллельное включение транзисторов
Современные транзисторы позволяют реализовать электронные схемы расчитаные на широкие диапазоны изменений токов и напряжений, но в отдельных случаях для увеличения допустимой мощности рассеивания применяется параллельное включение транзисторов.
Схема параллельного включения транзисторов
Максимально допустимый ток протекающий через такой составной транзистор равен:
При такой схеме включения транзисторов следует учитывать, что вследствие разброса параметров параллельно включённых транзисторов токи между ними распределяются неравномерно. Большая часть тока будет протекать через транзистор, имеющий больший коэффициент усиления. Рассеиваемые транзисторами мощности можно выровнять включением в их эмиттерные цепи дополнительных симметрирующих резисторов с небольшими сопротивлениями. Так как на практике трудно подбирать такие сопротивление для каждого транзистора, в практических схемах в эмиттеры всех транзисторов ставят резисторы одного сопротивления. Сопротивление симметрирующих резисторов R1 и R2 можно определить по формуле
где n – число параллельно соединенных транзисторов
IK — ток проходящий через коллектор.
Такой способ связан с ухудшением усилительных свойств транзисторов, однако его достоинством является возможность получения мощного силового элемента при использовании относительно маломощных транзисторов.
Последовательное включение транзисторов
Во время работы силового транзистора на его переходе коллектор – эмиттер падает напряжение, представляющее собой разность входного и выходного напряжений. В отдельных случаях эта разность может превышать максимально допустимое напряжений коллектор – эмиттер транзистора, имеющегося в распоряжении. В этом случае необходимо использовать последовательное соединение нескольких транзисторов.
Схема последовательного включения транзисторов
Эквивалентный транзистор будет иметь следующие параметры:
Для симметрирования напряжений, которые будут падать на переходе коллектор – эмиттер транзисторов вводят симметрирующие резисторы R1 и R2 сопротивление, которых можно определить по формуле
где IB – ток базы составного регулирующего транзистора.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Составной транзистор (схема Дарлингтона)
При проектировании схем радиоэлектронных устройств часто желательно иметь транзисторы с параметрами лучше тех моделей, которые предлагают фирмы производители радиоэлектронных компонентов (или лучше чем позволяет реализовать доступная технология изготовления транзисторов). Эта ситуация чаще всего встречается при проектировании интегральных микросхем. Нам обычно требуются больший коэффициент усиления по току h21, большее значение входного сопротивления h11 или меньшее значение выходной проводимости h22.
Улучшить параметры транзисторов позволяют различные схемы составных транзисторов. Существует много возможностей реализовать составной транзистор из полевых или биполярных транзисторов различной проводимости, улучшая при этом его параметры. Наибольшее распространение получила схема Дарлингтона. В простейшем случае это соединение двух транзисторов одинаковой полярности. Пример схемы Дарлингтона на npn транзисторах приведен на рисунке 1.
Рисунок 1 Схема Дарлингтона на npn транзисторах
Приведенная схема эквивалентна одиночному npn транзистору. В данной схеме ток эмиттера транзистора VT1 является током базы транзистора VT2. Ток коллектора составного транзистора определяется в основном током транзистора VT2. Основным преимуществом схемы Дарлингтона является высокое значение коэффициента усиления по току h21, которое можно приблизительно определить как произведение h21 входящих в схему транзисторов:
Однако следует иметь ввиду, что коэффициент h21 достаточно сильно зависит от тока коллектора. Поэтому при малых значениях тока коллектора транзистора VT1 его значение может значительно уменьшиться. Пример зависимости h21 от тока коллектора для разных транзисторов приведен на рисунке 2
Рисунок 2 Зависимость коэффициента усиления транзисторов от тока коллектора
Как видно из этих графиков, коэффициент h21э практически не изменяется только у двух транзисторов: отечественный КТ361В и иностранный BC846A. У остальных транзисторов коэффициент усиления по току значительно зависит от тока коллектора.
В случае когда базовый ток транзистора VT2 получается достаточно мал, ток коллектора транзистора VT1 может оказаться недостаточным для обеспечения необходимого значения коэффициента усиления по току h21. В этом случае увеличения коэффициента h21 и, соответственно, уменьшения тока базы составного транзистора можно добиться увеличением тока коллектора транзистора VT1. Для этого между базой и эмиттером транзистора VT2 включают дополнительный резистор, как это показано на рисунке 3.
Рисунок 3 Составной транзистор Дарлингтона с дополнительным резистором в цепи эмиттера первого транзистора
Например, определим элементы для схемы Дарлингтона, собранной на транзисторах BC846A Пусть ток транзистора VT2 будет равен 1 мА. Тогда его ток базы будет равен:
При таком токе коэффициент усиления по току h21 резко падает и общий коэффициент усиления по току может оказаться значительно меньше расчетного. Увеличив ток коллектора транзистора VT1 при помощи резистора можно значительно выиграть в значении общего коэффициента усиления h21. Так как напряжение на базе транзистора является константой (для кремниевого транзистора ), то номинал сопротивления резистора рассчитаем по закону Ома:
В этом случае мы вправе ожидать коэффициент усиления по току до 40000. Именно таким образом выполнены многие отечественные и иностранные супербетта транзисторы, такие как КТ972, КТ973 или КТ825, TIP41C, TIP42C. Схема Дарлингтона широко используется в выходных каскадах усилителей низкой частоты (двухтактных усилителях), операционных усилителей и даже цифровых логических элементов, например, ТТЛ логики.
Следует отметить, что схема Дарлингтона обладает таким недостатком, как повышенное напряжение Uкэ. Если в обычных транзисторах Uкэ составляет 0,2 В, то в составном транзисторе это напряжение возрастает до 0,9 В. Это связано с необходимостью открывать транзистор VT1, а для этого на его базу следует подать напряжение 0,7 В (если мы рассматриваем кремниевые транзисторы).
Для того, чтобы устранить указанный недостаток была разработана схема составного транзистора на комплементарных транзисторах. В российском Интернете она получила название схемы Шиклаи. Это название пришло из книги Титце и Шенка, хотя эта схема ранее имела другое название. Например, в советской литературе она называлась парадоксной парой. В книге В.Е.Хелейн и В.Х.Холмс составной транзистор на комплементарных транзисторах называется схемой Уайта, поэтому будем ее называть просто составным транзистором. Схема составного pnp транзистора на комплементарных транзисторах приведена на рисунке 4.
Рисунок 4 Составной pnp транзистор на комплементарных транзисторах
Точно таким же образом образуется npn транзистор. Схема составного npn транзистора на комплементарных транзисторах приведена на рисунке 5.
Рисунок 5 Составной npn транзистор на комплементарных транзисторах
В списке литературы на первом месте приведена книга 1974 года издания, но существуют КНИГИ и остальные издания. Есть основы, которые не устаревают длительное время и огромное количество авторов, которые просто повторяют эти основы. Рассказать понятно надо уметь! За все время профессиональной деятельности я встретил менее десяти КНИГ. Я всегда рекомендую изучать аналоговую схемотехнику с этой книги.
Дата последнего обновления файла 18.06.2018
Понравился материал? Поделись с друзьями!
Вместе со статьей «Составной транзистор (схема Дарлингтона)» читают:
Darlington и Sziklai составные транзисторы. Какую пару выбрать для выходного кас- када УМЗЧ, выполненного на биполярных транзисторах?
Приведу наиболее, на мой взгляд, важные выдержки из этой статьи:
Пары Дарлингтона и Шиклая широко используются в линейных цепях, причём пары Дарлингтона являются наиболее распространёнными. Читатели моих Аудио Страниц могут заметить, что я в своих разработках для выходных каскадов усилителя мощности почти всегда без исключения использовал пары составных транзисторов по схеме включения Шиклая. Это относительно необычный подход, но для этого выбора имеются веские причины.
Давным-давно было установлено и продемонстрировано, что составная пара Шиклая обладает большей линейностью, чем пара Дарлингтона, и, хотя эта информация, по-видимому, игнорировалась большинством людей в течение очень долгого времени, она все ещё верна.
1. Линейность составных пар.
Рис. 2 Повторители на парах Шиклая и Дарлингтона
Это довольно простые каскады, и трудно ожидать какой-либо существенной разницы между ними, учитывая то, что эти цепи охвачены 100%-ой отрицательной обратной связью.
Входной сигнал представляет собой синусоиду с пиковым напряжением 1 В (среднеквадратичное значение 707 мВ) и смещением постоянного тока 6 В, необходимым для того, чтобы установить рабочие точки выходов повторителей на уровне, близком к половине напряжения питания.
Первое, что бросается в глаза, это то, что составная пара Шиклая имеет более высокое выходное напряжение (это 99,5% от входного напряжения) по сравнению с парой Дарлингтона, которая передаёт на выход только 98,7%. Правда, это вряд ли можно назвать большой разницей, но, тем не менее, это заметно.
Рис.3 Графики нелинейных искажений повторителей на парах Шиклая и Дарлингтона
2. Температурная стабильность.
Соберём схемы для проверки температурной зависимости транзисторных пар Шиклая и Дарлингтона
Рис.4 Схемы для проверки температурной зависимости составных транзисторов
и проверим сказанное выше.
Температура транзистора | Sziklai пара | Darlington пара | |||||||||||||
Q1, Q3 (Driver) | Q2, Q4 (Output) | Выходной ток | Выходной ток | ||||||||||||
25 °C 25 °C | 41 mA | 41 mA | 75 °C | 25 °C | 123 mA | 96 mA | 25 °C | 75 °C | 44 mA | 87 mA | 75 °C | 75 °C | 126 mA | 148 mA | |
В таблице приведены температурные зависимости двух цепей, изображённых на Рис.4.
Поскольку гораздо проще поддерживать постоянную температуру на драйверных транзисторах, очевидно, что будет и гораздо проще поддерживать стабильный выходной ток в составной паре Шиклаи, по сравнению с цепью, использующей пару Дарлингтона.
Это было доказано на практике. Ни один из моих проектов не имеет проблем с термостабильностью, и все биполярные конструкции используют выходной каскад, выполненный на составной паре Шиклаи.
2. Двухтактные выходные каскады.
Три типовые схемы выходных каскадов усилителей мощности показаны на Рис.5. Очевидно, что есть и другие, но они обычно базируются на той или иной комбинации из представленных на рисунке.
Рис.5 Три основные схемы выходных каскадов усилителей мощности
По причинам, которые я всегда находил неясными и несколько загадочными, я обнаружил, что каждый усилитель, который я проектировал с использованием конфигурации Шиклаи, имел паразитные колебания на отрицательной полуволне.
Добавление конденсатора небольшой ёмкости (обычно 220 пФ), установленного, как показано на схеме, было необходимо каждый раз и полностью устраняло эту проблему.
Как правильно собрать составной транзистор. Составной транзистор (схема Дарлингтона и Шиклаи)
Рис. 1.24. Замена полевыми транзисторами составного транзистора по
После такой несложной доработки, т.е. замены узлов в электрических схемах, универсального применения, тока на транзисторах VT1, VT2 не выходит из строя даже при 10-кратной и более перегрузке по напряжению. Причем ограничительного резистора в цепи затвора VT1 также увеличивается в несколько раз. Это приводит к тому, что имеют более высокое входное и, как следствие, выдерживают перегрузки при импульсном характере управления данным электронным узлом.
Коэффициент усиления по току полученного каскада не менее 50. Увеличивается прямо пропорционально увеличению напряжения питания узла.
Так же как и в предыдущем варианте (Рис. 1.24), включают параллельно.
Цоколевка полевых транзисторов в микросхеме 1014КТ1А…В
Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.
Рис. 2.60. Составной транзистор Дарлингтона.
Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.
Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).
Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.
Улучшить параметры транзисторов позволяют различные схемы составных транзисторов. Существует много возможностей реализовать составной транзистор из полевых или биполярных транзисторов различной проводимости, улучшая при этом его параметры. Наибольшее распространение получила схема Дарлингтона. В простейшем случае это соединение двух транзисторов одинаковой полярности. Пример схемы Дарлингтона на npn транзисторах приведен на рисунке 1.
Рисунок 1 Схема Дарлингтона на npn транзисторах
Однако следует иметь ввиду, что коэффициент h 21 достаточно сильно зависит от тока коллектора. Поэтому при малых значениях тока коллектора транзистора VT1 его значение может значительно уменьшиться. Пример зависимости h 21 от тока коллектора для разных транзисторов приведен на рисунке 2
Рисунок 2 Зависимость коэффициента усиления транзисторов от тока коллектора
Как видно из этих графиков, коэффициент h 21э практически не изменяется только у двух транзисторов: отечественный КТ361В и иностранный BC846A. У остальных транзисторов коэффициент усиления по току значительно зависит от тока коллектора.
Рисунок 3 Составной транзистор Дарлингтона с дополнительным резистором в цепи эмиттера первого транзистора
Например, определим элементы для схемы Дарлингтона, собранной на транзисторах BC846A Пусть ток транзистора VT2 будет равен 1 мА. Тогда его ток базы будет равен:
(2)
Следует отметить, что схема Дарлингтона обладает таким недостатком, как повышенное напряжение U кэ. Если в обычных транзисторах U кэ составляет 0,2 В, то в составном транзисторе это напряжение возрастает до 0,9 В. Это связано с необходимостью открывать транзистор VT1, а для этого на его базу следует подать напряжение 0,7 В (если мы рассматриваем кремниевые транзисторы).
Для того, чтобы устранить указанный недостаток была разработана схема составного транзистора на комплементарных транзисторах. В российском Интернете она получила название схемы Шиклаи. Это название пришло из книги Титце и Шенка, хотя эта схема ранее имела другое название. Например, в советской литературе она называлась парадоксной парой. В книге В.Е.Хелейн и В.Х.Холмс составной транзистор на комплементарных транзисторах называется схемой Уайта, поэтому будем ее называть просто составным транзистором. Схема составного pnp транзистора на комплементарных транзисторах приведена на рисунке 4.
Рисунок 4 Составной pnp транзистор на комплементарных транзисторах
Точно таким же образом образуется npn транзистор. Схема составного npn транзистора на комплементарных транзисторах приведена на рисунке 5.
Рисунок 5 Составной npn транзистор на комплементарных транзисторах
В списке литературы на первом месте приведена книга 1974 года издания, но существуют КНИГИ и остальные издания. Есть основы, которые не устаревают длительное время и огромное количество авторов, которые просто повторяют эти основы. Рассказать понятно надо уметь! За все время профессиональной деятельности я встретил менее десяти КНИГ. Я всегда рекомендую изучать аналоговую схемотехнику с этой книги.
Дата последнего обновления файла 18.06.2018
Вместе со статьей «Составной транзистор (схема Дарлингтона)» читают:
В интегральных схемах и дискретной электронике большое распространение получили два вида составных транзисторов: по схеме Дарлингтона и Шиклаи. В микромощных схемах, например, входные каскады операционных усилителей, составные транзисторы обеспечивают большое входное сопротивление и малые входные токи. В устройствах, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) для повышения КПД необходимо обеспечить высокий коэффициент усиления по току мощных транзисторов.
Схема Шиклаи реализует мощный p-n-p транзистор с большим коэффициентом усиления с помощью маломощного p-n-p транзистора с малым В и мощного n-p-n транзистора (рисунок 7.51 ). В интегральных схемах это включение реализует высокобетный p-n-p транзистор на основе горизонтальных p-n-p транзистора и вертикального n-p-n транзистора. Также эта схема применяется в мощных двухтактных выходных каскадах, когда используются выходные транзисторы одной полярности (n-p-n ).
Схема Шиклаи или комплементарный транзистор Дарлингтона ведет себя, как транзистор p-n-p типа (рисунок 7.51 ) с большим коэффициентом усиления по току,
Входное напряжение идентично одиночному транзистору. Напряжение насыщения выше, чем у одиночного транзистора на величину падения напряжения на эмиттерном переходе n-p-n транзистора. Для кремниевых транзисторов это напряжение составляет порядка одного вольта в отличие от долей вольта одиночного транзистора. Между базой и эмиттером n-p-n транзистора (VT2) рекомендуется включать резистор с небольшим сопротивлением для подавления неуправляемого тока и повышения термоустойчивости.
Транзистор Дарлингтона реализуется на однополярных транзисторах (рисунок 7.52 ). Коэффициент усиления по току определяется произведением коэффициентов составляющих транзисторов.
Входное напряжение транзистора по схеме Дарлингтона в два раза больше, чем у одиночного транзистора. Напряжение насыщения превышает выходного транзистора. Входное сопротивление операционного усилителя при
.
Схема Дарлингтона используется в дискретных монолитных импульсных транзисторах. На одном кристалле формируются два транзистора, два шунтирующих резистора и защитный диод (рисунок 7.53 ). Резисторы R 1 и R 2 подавляют коэффициент усиления в режиме малых токов, (рисунок 7.38 ), что обеспечивает малое значение неуправляемого тока и повышение рабочего напряжения закрытого транзистора,
Составной транзистор Дарлингтона компонуется из пары стандартны транзисторов, объединённых кристаллом и общим защитным покрытием. Обычно на чертежах для отметки положения подобного транзистора не применяют никаких специальных символов, только тот, которым отмечают транзисторы стандартного типа.
К эмиттерной цепи одного из элементов присоединён нагрузочный резистор. Выводы транзистора Дарлингтона аналогичны биполярному полупроводниковому триоду:
Помимо общепринятого варианта составного транзистора существует несколько его разновидностей.
Пара Шиклаи и каскодная схема
Другое название составного полупроводникового триода – пара Дарлингтона. Кроме неё существует также пара Шиклаи. Это сходная комбинация диады основных элементов, которая отличается тем, что включает в себя разнотипные транзисторы.
Что до каскодной схемы, то это также вариант составного транзистора, в котором один полупроводниковый триод включается по схеме с ОЭ, а другой по схеме с ОБ. Такое устройство аналогично простому транзистору, который включён в схему с ОЭ, но обладающему более хорошими показателями по частоте, высоким входным сопротивлением и большим линейным диапазоном с меньшими искажениями транслируемого сигнала.
Достоинства и недостатки составных транзисторов
Главным достоинством составных транзисторов считается их способность давать большой коэффициент усиления по току. Дело в том, что, если коэффициент усиления у каждого из двух транзисторов будет по 60, то при их совместной работе в составном транзисторе общий коэффициент усиления будет равен произведению коэффициентов входящих в его состав транзисторов (в данном случае — 3600). Как результат — для открытия транзистора Дарлингтона потребуется довольно небольшой ток базы.
Недостатком составного транзистора считается их низкая скорость работы, что делает их пригодными для использования только в схемах работающих на низких частотах. Зачастую составные транзисторы фигурируют как компонент выходных каскадов мощных низкочастотных усилителей.
Особенности работы устройства
У составных транзисторов постепенное уменьшение напряжения вдоль проводника на переходе база-эмиттер вдвое превышает стандартное. Уровень уменьшения напряжения на открытом транзисторе примерно равен тому падению напряжения, которое имеет диод.
По данному показателю составной транзистор сходен с понижающим трансформатором. Но относительно характеристик трансформатора транзистор Дарлингтона обладает гораздо большим усилением по мощности. Подобные транзисторы могут обслуживать работу переключателей частотой до 25 Гц.
Система промышленного выпуска составных транзисторов налажена таким образом, что модуль полностью укомплектован и оснащён эмиттерным резистором.
Как проверить транзистор Дарлингтона
Самый простой способ проверки составного транзистора заключается в следующем:
Если всё получилось так, как описано, то транзистор исправен.