Что такое совместный гидролиз
Совместный гидролиз двух солей
Если слить растворы двух солей, одна из которых гидролизуется по катиону, а другая по аниону, то обменной реакции не будет, будет необратимый совместный гидролиз обеих солей, образуется слабое основание (от первой соли), слабая кислота (от второй соли), новая соль – продукт взаимодействия сильных электролитов – продуктов гидролиза.
Например, пусть первый раствор – раствор сульфата железа (III), а второй – карбоната натрия. В растворе Fe2(SO4)3 происходит гидролиз по катиону, среда кислая:
Fe 3+ + H2O FeOH 2+ + OH –
или в молекулярном виде:
Fe2(SO4)3 + 2H2O 2FeOHSO4 + H2SO4
В растворе Na2CO3 происходит гидролиз по аниону, среда щелочная:
CO3 2– + H2O HCO3 – + OH –
или в молекулярном виде:
Na2CO3 + H2O NaHCO3 + NaOH
При сливании растворов обе соли усиливают гидролиз друг друга, идет не только первая ступень гидролиза, но и последующие – до слабых электролитов. А образующиеся сильные электролиты взаимодействуют друг с другом:
Итоговое уравнение совместного гидролиза:
Заданий на совместный гидролиз двух солей достаточно много, нельзя путать его с реакцией ионного обмена. Например, для рассмотренного случая абитуриент может составить такую реакцию:
Как не сделать ошибку?
– как правило, заданию сопутствует описание: например, для рассмотренной реакции «выпал бурый осадок, выделился газ». В случае реакции (*) газ не выделяется;
– всегда (не только в этой теме) следует проверять составляемые вещества по таблице растворимости. В таблице у соли Fe2(CO3)3 стоит знак «–» – в водной среде разлагается, т.е. она не может образоваться в растворе;
– совместный гидролиз – способ получения гидроксидов металлов средней активности. В качестве первого раствора может быть соль железа, алюминия, цинка, хрома, меди и пр., в качестве второго раствора или карбонат или сульфид натрия (калия). Рассмотрим пример с сульфидом:
Гидролиз
Темы кодификатора ЕГЭ: Гидролиз солей. Среда водных растворов: кислая, основная и щелочная.
Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.
Гидролиз солей может протекать:
→ обратимо : только небольшая часть частиц исходного вещества гидролизуется.
→ необратимо : практически все частицы исходного вещества гидролизуются.
Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.
Обратимый гидролиз солей
Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:
CH3COONa + HOH ↔ CH3COOH + NaOH
CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —
сокращенное ионное уравнение:
CH3COO — + HOH ↔ CH3COOH + OH —
Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:
CO3 2- + HOH ↔ HCO3 2- + OH —
или в молекулярной форме:
или в молекулярной форме:
Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.
или в молекулярной форме:
Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:
Fe 3+ + HOH ↔ FeOH 2+ + H +
FeCl3 + HOH ↔ FeOHCl2 + H Cl
FeOH 2+ + HOH ↔ Fe(OH)2 + + H +
FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl
Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +
Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl
Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.
Сведем вышеописанную информацию в общую таблицу:
Необратимый гидролиз
Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.
Варианты необратимого гидролиза:
! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:
МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).
Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:
! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:
2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)
При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.
Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.
3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!
Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.
Галогенангидриды некоторых кислот:
Кислота | Галогенангидриды |
H2SO4 | SO2Cl2 |
H2SO3 | SOCl2 |
H2CO3 | COCl2 |
H3PO4 | POCl3, PCl5 |
Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).
при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:
BiCl3 + H2O = BiOCl + 2HCl,
SbCl3 + H2O = SbOCl + 2HCl.
Алюмокалиевые квасцы:
Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.
Факторы, влияющие на степень гидролиза:
1. Температура
Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.
Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:
2. Концентрация соли
Чем меньше концентрация соли, тем выше степень ее гидролиза.
Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:
По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.
3. Добавление к реакционной смеси кислоты или щелочи
Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.
Совместный гидролиз 2х солей
Если слить водные растворы 2х солей, одна из которых является солью слабого основания и сильной кислоты, а вторая наоборот солью сильного основания и слабой кислоты, то протекает их совместный необратимый гидролиз, продуктами которого являются слабое основание, слабая кислота и соль сильного основания и сильной кислоты.
Соль слабого основания сильной кислоты + соль сильного основания слабой кислоты + Н2О → слабое основание + слабая кислота + соль сильного основания и сильной кислоты.
Количественно глубину гидролиза оценивают по величинеcстепени гидролиза h
h=ƒ(природа соли, Т, с)
с ↑Т h↑, т.к. степень диссоциации H2O ↑
Окислительно-восстановительные реакции (ОВР)
ОВР сопровождаются изменением степени окисления элементов
Степень окисления элемента в соединении – заряд иона, вычисленный исходя из предположения, что молекула состоит из ионов
Для соединений с ковалентной связью общая электронная пара полностью переходит к более электроотрицательному элементу. А для простых молекул делится пополам.
В химических соединениях алгебраическая сумма степеней окисления элементов равна 0, а для иона – его заряду.
Только окислительные свойства проявляются только Ft, O2, а так же элементы высшей степени окисления.
Только восстановительные свойства проявляют металлы и элементы низшей степени окисления.
Окислительные и восстановительные свойства проявляют только элементы промежуточной степени окисления.
При составлении уравнения ОВР пользуются 2мя методами:
Оба метода основаны на том, что в ОВР число электронов, отдаваемых восстановителем = числу электронов, присоединяемых окислителем, это одни и те же электроны.
При выводе ОВР часто встречаются с проблемой, когда содержание О2 в окисленной и восстановленной форме разное в зависимости от характера среды и проблемы поступают следующим образом:
Избыток О2 | Недостаток О2 | |
Кислая среда | O 2- +2H + =H2O | H2O =O 2- +2H + |
Щелочная (нейтральная) среда | O 2- + H2O=2OH — | 2OH — =O 2- + H2O |
4. Вывод среды: брать (получать): Н + (OH — ); нельзя брать (получать): Н2О
Если среда выводится кислая, берётся H2SO4, т.к. это сильная кислота и в отличии от соляной и азотной она не будет участвовать в ОВР.
Если среда выводится щелочная, то берут КОН или NaOH, т.к. это сильные основания и они не дают осадков.
5. Реакция диспропорционирования (окислитель и восстановитель одно и то же вещество).
6. Среда одновременно окислитель или восстановитель.
Совместный гидролиз двух солей
Рассмотрим реакцию, происходящую в водном растворе двух солей:
В ионно-молекулярном виде:
Процесс совместного гидролиза двух солей FeCl3 и Na2CO3 можно представить следующим образом. Сначала записывают уравнение реакции вза-имодействия этих солей
а затем уравнение реакции гидролиза Fe2(CO3)3:
Fe2(CO3)3 + 6НОН = 2Fe(ОН)3 + 3Н2CO3. (2)
Соль NaCl гидролизу не подвергается. Для получения общего уравнения гидролиза FeCl3 и Na2CO3 следует просуммировать уравнения (1) и (2).
Гидролиз принадлежит к числу обратимых процессов, поэтому положение его равновесия может быть смещено в ту или иную сторону изменением концентрации исходных веществ, а также температуры раствора. Разбавление раствора, повышение температуры увеличивает степень гидролиза. Наоборот, добавляя кислоту в растворы, имеющие кислую реакцию, или щелочь в растворы со щелочной реакцией, можно понизить степень гидролиза.
Если кислота и основание, образующие соль, не только слабые электроли-ты, но и малорастворимы или неустойчивы и разлагаются с образованием летучих продуктов, то гидролиз соли часто протекает необратимо, в результате чего про-исходит полное разложение соли водой, т.е. такие соли разлагаются водой:
205. Составьте ионное и молекулярное уравнения совместного гидролиза, происходящего при смешивании растворов K2S и CrCl3. Каждая из взятых солей гидролизуется необратимо до конца.
206. При смешивании растворов CuSO4 и K2CO3 выпадает осадок основной соли – гидроксокарбонат меди(II) и выделяется диоксид углерода. Составьте ион-ное и молекулярное уравнения происходящего гидролиза.
207. Какое значение рН (больше или меньше 7) имеют растворы солей Li2S, AlCl3, NiSO4? Составьте ионные и молекулярные уравнения гидролиза этих солей.
208. Какое значение рН (больше или меньше 7) имеют растворы следующих солей K3PO4, Pb(NO3)2, Na2S? Составьте ионные и молекулярные уравнения гидролиза солей.
209. Какая из солей K2SO4, CH3COOK, (NH4)2SO4 при растворении в воде имеет рН > 7? Составьте уравнение гидролиза для этой соли в ионном и молекулярном виде.
210. Составьте ионные и молекулярные уравнения гидролиза солей Na2CO3, ZnCl2. Какое значение рН (больше или меньше 7) имеют растворы этих солей?
211. Составьте ионные и молекулярные уравнения гидролиза солей : ацетата калия, сульфата цинка и нитрата алюминия. Какое значение рН (больше или меньше 7) имеют растворы этих солей?
212. Какие из солей – RbCl, Cr2(SO4)3, Ni(NO3)2 – подвергаются гидролизу? Составьте ионные и молекулярные уравнения гидролиза соответствующих солей.
213. Составьте ионные и молекулярные уравнения гидролиза солей K2S, NiCl2, Pb(CH3COO)2. Какое значение рН (больше или меньше 7) имеют растворы этих солей?
214. Какое значение рН (больше или меньше 7) имеют растворы солей MnCl2, Na2CO3, Ni(NO3)2? Составьте ионные и молекулярные уравнения гидролиза этих солей.
218. При смешивании растворов Al2(SO4)3 и Na2CO3 каждая из взятых солей гидролизуется необратимо до конца. Составьте ионное и молекулярное уравнения происходящего совместного гидролиза.
219. При смешивании растворов Al2(SO4)3, и Na2S образуются Al(ОН)3 и Н2S. Выразите этот гидролиз ионным и молекулярным уравнениями.
220. Какое значение рН (больше или меньше 7) имеют растворы следующих солей: Na3РO4, K2S, CuSO4? Составьте ионные и молекулярные уравнения гидро-лиза этих солей.
Гидролиз
Определение гидролиза
Гидролиз — это процесс взаимодействия сложного химического вещества с водой, итогом которого становится разложение молекул этого вещества. Сам термин происходит от двух греческих слов: hydor, что значит «вода», и lysis, то есть «распад». |
Гидролизации подвержены как органические, так и неорганические вещества: углеводы, белки, оксиды, карбиды, соли и т. д. Например, гидролиз органических соединений напрямую связан с пищеварением — с его помощью происходит распад и усвоение клетками организма жиров, белков, углеводов. Но сейчас мы займемся неорганической химией и рассмотрим гидролизацию на примере солей.
Гидролиз солей — это реакция взаимодействия ионов соли с Н + и ОН − ионами воды, которая ведет к распаду исходного соединения. В результате такого ионного обмена образуется слабый электролит — кислотный, щелочной или нейтральный. |
Условия гидролиза
Далеко не все соединения распадаются, вступая в реакцию с молекулами воды. Сейчас мы на примере солей рассмотрим, какие вещества подвергаются гидролизу, а какие нет, и от чего это зависит.
Начнем с того, что любая соль включает основание — амфотерный гидроксид, и кислотный остаток.
сульфат меди CuSO4состоит из основания Cu(ОН)2и кислоты H2SO4;
хлорид натрия NaCl состоит из основания NaOH и кислоты HCl;
хлорид цинка ZnCl2состоит из основания Zn(ОН)2 и кислоты HCI;
карбонат натрия Na2CO3состоит из основания NaOH и кислоты H2CO3.
В зависимости от того, какие соли подвергаются гидролизу — со слабым основанием или слабой кислотой, в итоге может получиться кислая, щелочная или нейтральная среда водного раствора.
А что происходит, если соль состоит из сильного основания и сильного кислотного остатка? Ничего. 🙂 В этом случае ее сильные катионы и анионы не взаимодействуют с ионами воды. Такая соль не распадается, то есть не подвержена гидролизу.
Схема химической реакции гидролиза выглядит так:
XY + HOH ↔ XH + HOY
XH — кислотный остаток;
Индикаторы среды раствора
Для определения среды раствора за считанные секунды используются специальные индикаторы. Самый распространенный из них — лакмусовая бумага, но также популярны фенолфталеин и метиловый оранжевый. В нейтральной среде они не меняют свой цвет, а в кислотной или щелочной — приобретают другую окраску.
Изменение цвета индикатора однозначно говорит о том, что произошла гидролизация. Однако если цвет остался тем же — это не всегда означает отсутствие гидролиза. Среда будет почти нейтральной и в том случае, когда гидролизу подвергается соль со слабым основанием и слабой кислотой. Но об этом поговорим дальше, а пока посмотрите таблицу.
Виды гидролиза
Мы выяснили, что в составе соли может быть слабый ион, который и отвечает за гидролизацию. Он находится в основании, в кислотном остатке или в обоих компонентах, и от этого зависит тип гидролиза.
Соль с сильным основанием и сильной кислотой
Гидролиз отсутствует. Как вы уже знаете, при наличии сильного основания и сильного кислотного остатка соль не распадается при взаимодействии с водой. Так, например, невозможен гидролиз хлорида натрия (NaCl), поскольку в составе этого вещества нет слабых ионов. К таким же не подверженным гидролизации солям относят KClO4, Ba(NO3)2 и т. д.
Среда водного раствора — нейтральная, т. е. pH = 7.
Реакция индикаторов: не меняют свой цвет (лакмус остается фиолетовым, а фенолфталеин — бесцветным).
Соль со слабым основанием и сильной кислотой
Среда водного раствора — кислая, pH меньше 7.
Реакция индикаторов: фенолфталеин остается бесцветным, лакмус и метиловый оранжевый — краснеют.
Соль с сильным основанием и слабой кислотой
Среда водного раствора — щелочная, pH больше 7.
Реакция индикаторов: фенолфталеин становится малиновым, лакмус — синим, а метиловый оранжевый желтеет.
Молекулярное уравнение: KNO2 + H2O ↔ HNO2 + KOH
Ионное уравнение: K + + NO2 − + HOH ↔ HNO2 + K + + OH −
Гидролиз по катиону и аниону. Если у соли оба компонента — слабые, при взаимодействии с водой в реакцию вступает и анион, и катион. При этом катион основания связывает ионы воды OH − а анион кислоты связывает ионы H +
Среда водного раствора: нейтральная, слабокислая или слабощелочная.
Реакция индикаторов: могут не изменить свой цвет.
Цианид аммония NH4CN включает слабое основание NH4OH и слабую кислоту HCN.
Молекулярное уравнение: NH4CN + H2O ↔ NH4OH + HCN
Ионное уравнение: NH4 + + CN − + HOH ↔ NH4OH + HCN
Среда в данном случае будет слабощелочной.
Обобщим все эти сведения в таблице гидролиза солей.
Ступенчатый гидролиз
Любой из видов гидролиза может проходить ступенчато. Так бывает в тех случаях, когда с водой взаимодействует соль с многозарядными катионами и анионами. Сколько ступеней будет включать процесс — зависит от числового заряда иона, отвечающего за гидролиз.
Как определить количество ступеней:
если соль содержит слабую многоосновную кислоту — число ступеней равняется основности этой кислоты;
если соль содержит слабое многокислотное основание — число ступеней определяют по кислотности основания.
Для примера рассмотрим гидролиз карбоната калия K2CO3. У нас есть двухосновная слабая кислота H2CO3, а значит, гидролизация пройдет по аниону в две ступени.
I ступень: K2CO3+HOH ↔ KOH+KHCO3, итогом которой стало получение гидроксида калия (KOH) и кислой соли (KHCO3).
II ступень: K2HCO3+HOH ↔ KOH+H2CO3, в итоге получился тот же гидроксид калия (KOH) и слабая угольная кислота (H2CO3).
Для приблизительных расчетов обычно принимают в учет только результаты первой ступени.
Обратимый и необратимый гидролиз
Химические вещества могут гидролизоваться обратимо или необратимо. В первом случае распадается лишь некоторое количество частиц, а во втором — практически все. Если соль полностью разлагается водой, это необратимый процесс, и его называют полным гидролизом.
Необратимо гидролизуются соли, в составе которых есть слабые нерастворимые основания и слабые и/или летучие кислоты. Такие соединения могут существовать лишь в сухом виде, их не получить путем смешивания водных растворов других солей.
Например, полному гидролизу подвергается сульфид алюминия:
Как видите, в результате гидролизации образуется гидроксид алюминия и сероводород.
Необратимые реакции при взаимодействии с водой имеют место и в органической химии. В качестве примера рассмотрим полный гидролиз органического вещества — карбида кальция, в результате которого образуется ацетилен:
Степень гидролиза
Взаимодействие соли или другого химического соединения с водой может усиливаться или ослабляться в зависимости от нескольких факторов. Если нужно получить количественное выражение гидролиза, говорят о его степени, которая указывается в процентах.
h — степень гидролиза,
nгидр. — количество гидролизованного вещества,
nобщ. — общее количество растворенного в воде вещества.
На степень гидролизации может повлиять:
температура, при которой происходит процесс;
концентрация водного раствора;
состав участвующих в гидролизе веществ.
Можно усилить гидролиз с помощью воды (просто разбавить полученный раствор) или стимулировать процесс повышением температуры. Более сложным способом будет добавление в раствор такого вещества, которое могло бы связать один из продуктов гидролиза. К соли со слабой кислотой и сильным основанием нужно добавить соль со слабым основанием и сильной кислотой.
Для ослабления гидролиза раствор охлаждают и/или делают более концентрированным. Также можно изменить его состав: если гидролизация идет по катиону — добавляют кислоту, а если по аниону — щелочь.
Итак, мы разобрались, что такое гидролиз солей и каким он бывает. Пора проверить свои знания и ответить на вопросы по материалу.
Вопросы для самопроверки:
Назовите необходимое условие для гидролиза.
Какие типы гидролиза вы знаете?
В каком случае в результате гидролиза может образоваться слабощелочная или слабокислая среда?
По какому типу гидролизуется соль с сильным основанием и слабым кислотным остатком?
При гидролизе соли с сильным основанием и слабой кислотой для ослабления процесса нужно добавить в раствор кислоту или щелочь?
Как воздействует на гидролиз разбавление раствора водой?
Как определяется количество ступеней гидролиза?
Какая среда раствора образуется при гидролизации солей NaF, KCl, FeBr2, Na2PO4? Ответов может быть несколько.
Какие из солей гидролизуются по катиону: Csl, FeSO4, RbNO3, CuSO4, Mn(NO3)2? Ответов может быть несколько.
Какая из солей не подвергается гидролизу: K2HPO4, KNO3, KCN, Ni(NO3)2?