Что такое спектр поглощения
Спектр поглощения
Спектр поглощения — зависимость показателя поглощения вещества от длины волны (или частоты, волнового числа, энергии кванта и т. п.) излучения. Он связан с энергетическими переходами в веществе. Для различных веществ спектры поглощения различны.
Исторически первые наблюдения линейчатых оптических спектров поглощения в спектре Солнца проделал в 1802 году Волластон, но не придал открытию значения, поэтому эти линии были названы «фраунгоферовыми» в честь другого учёного Фраунгофера, который детально изучил их в 1814—1815 гг.
Измерения спектров поглощения могут проводиться как с источником белого света так и с источниками монохроматического излучения.
Для почти свободных атомов и молекул в разрежённых газах оптический спектр поглощения состоит из отдельных спектральных линий и называется линейчатым.
Разным веществам соответствуют разные спектры поглощения, что позволяет использовать спектроскопические методы для определения состава вещества. Для твёрдых веществ спектры поглощения непрерывны, но встречаются и отдельные линии.
Полупроводники
В полупроводниках можно наблюдать следующие типы поглощения света, которые играют наиболее важную роль в исследовании свойств твёрдого тела (его зонной структуры и плотности состояний) и квазичастиц:
См. также
Полезное
Смотреть что такое «Спектр поглощения» в других словарях:
СПЕКТР ПОГЛОЩЕНИЯ — характеристика светового потока после прохождения его через слой исследуемого вещества, выражаемая, как и в случае спектра испускания (см. Анализ спектральный эмиссионный), в виде распределения интенсивности поглощения света в зависимости от… … Геологическая энциклопедия
спектр поглощения — absorbcijos spektras statusas T sritis chemija apibrėžtis Per tiriamą medžiagą praėjusios spinduliuotės sugėrimo intensyvumo priklausomybė (ppr. grafinė) nuo bangos ilgio ar dažnio. atitikmenys: angl. absorption spectrum; darkline rus. спектр… … Chemijos terminų aiškinamasis žodynas
спектр поглощения — sugerties spektras statusas T sritis fizika atitikmenys: angl. absorption spectrum; darkline spectrum vok. Absorptionsspektrum, n rus. спектр поглощения, m pranc. spectre d’absorption, m … Fizikos terminų žodynas
СПЕКТР, ПОГЛОЩЕНИЯ — В оптике – пропорция падающего света, поглощенного телом как функция длины волны; см. кривая спектрального поглощения … Толковый словарь по психологии
инфракрасный спектр поглощения — infraraudonosios spinduliuotės sugerties spektras statusas T sritis fizika atitikmenys: angl. infra red absorption spectrum; IR absorption spectrum vok. Infrarot Absorptionsspektrum, n; IR Absorptionsspektrum, n rus. инфракрасный спектр… … Fizikos terminų žodynas
вращательный спектр поглощения — sukimosi sugerties spektras statusas T sritis fizika atitikmenys: angl. rotational absorption spectrum vok. Rotationsabsorptionsspektrum, n rus. вращательный спектр поглощения, m; ротационный спектр поглощения, m pranc. spectre d’absorption de… … Fizikos terminų žodynas
ротационный спектр поглощения — sukimosi sugerties spektras statusas T sritis fizika atitikmenys: angl. rotational absorption spectrum vok. Rotationsabsorptionsspektrum, n rus. вращательный спектр поглощения, m; ротационный спектр поглощения, m pranc. spectre d’absorption de… … Fizikos terminų žodynas
СПЕКТР — СПЕКТР, расположение ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, упорядоченное по длине ВОЛНЫ или по ЧАСТОТЕ. Спектр видимого света является последовательностью цветов (красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового). Каждый цвет… … Научно-технический энциклопедический словарь
СПЕКТР — (1) совокупность семи цветовых полос (спектральные цвета), чередующихся в определённом порядке, которые получаются при прохождении светового луча через преломляющую среду (напр. радуга, образующаяся вследствие преломления солнечных лучей в каплях … Большая политехническая энциклопедия
Поглощения коэффициент — Коэффициент поглощения доля поглощения объектом, взаимодействующего с ним другого объекта. Взаимодействующим объектом может быть электромагнитное излучение определённой частоты, энергия звуковых волн, ионизирующее или проникающее излучение, какое … Википедия
Спектр. Лазеры.
СПЕКТРЫ
Спектры испускания
Совокупность частот (или длин волн), которые содержатся в излучении какого-либо вещества, называютспектром испускания. Они бывают трех видов.
Линейчатый — это спектр, испускаемый газами, парами малой плотности в атомарном состоянии. Состоит из отдельных линий разного цвета (длины волны, частоты), имеющих разные расположения. Каждый атом излучает набор электромагнитных волн определенных частот. Поэтому каждый химический элемент имеет свой спектр
Полосатый—это спектр, который испускается газом в молекулярном состоянии.
Линейчатые и полосатые спектры можно получить путем нагрева вещества или пропускания электрического тока.
Спектры поглощения
Спектры поглощения получают, пропуская свет от источника. дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном, состоянии.
Спектр поглощения — это совокупность частот, поглощаемых данным веществом.
Согласно закону Кирхгофа вещество поглощает те линии спектра, которые и испускает, являясь источником света.
Исследование спектров испускания и поглощения позволяет установить качественный состав вещества. Количественное содержание элемента в соединении определяется путем измерения яркости спектральных линий.Метод определения качественного и количественного состава вещества по его спектру называется спектральным анализом. Зная длины волн, испускаемых различными парами, можно установить наличие тех или иных элементов в веществе.
Этот метод очень чувствителен. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой. Спектральный анализ сыграл большую роль в науке. С его помощью был изучен состав Солнца и звезд.
В спектре Солнца (1814) были открыты фраунгоферовы темные линии.
Солнце — раскаленный газовый шар (Т ≈ 6000 °С), испускающий сплошной спектр. Солнечные лучи проходят через атмосферу Солнца, где Т ≈ 2000— 3000 °С.
Корона поглощает из сплошного спектра определенные частоты, а мы на Земле принимаем солнечный спектр поглощения. По нему можно определить, какие элементы присутствуют в короне Солнца.
Он помог обнаружить все земные элементы, а также неизвестный элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу открыто 25 элементов.
Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии и машиностроении. С помощью спектрального анализа определяют химический состав руд и минералов,
Спектральный анализ можно производить как по спектрам испускания, так и по спектрам поглощения.
Состав сложных смесей анализируется по молекулярному спектру.
ЛАЗЕРЫ
Фотон, имеющий энергию hv, возбуждает атом и переводит электрон в состояние с более высокой энергией. Электрон произвольно возвращается в первоначальное состояние, испуская фотон энергией hv.
Вынужденное излучение
Падающий фотон с энергией hv взаимодействует с атомом, находящимся в возбужденном состоянии, и стимулирует его высвечивание. Возникают два фотона с энергией hv каждый, которые движутся в одном направлении и одной фазе.
Населенность уровней
Чтобы получить когерентное излучение в результате вынужденного испускания, необходимы два условия:
1. Населенность верхних уровней должна быть больше, чем нижних.
2. Один из верхних уровней с состоянием Е2 должен быть метастабильным, т. е, электроны в нем должны находиться не
Оба перехода сопровождаются выделением энергии. Большое различие во временах жизни в состояниях Е2 и Е3приводит к тому, что под действием возбуждающих фотонов с энергией атомы переходят в состояние Е3, а затем самопроизвольно — в состояние Е2. Без излучения света (энергия поглощается кристаллом) и происходит накопление атомов на метастабильном уровне с состоянием Е2. Для создания в лазере инверсной населенности используют Al2O3, смесь гелия (15%), неона (85%) и другие вещества. Переход из состояния Е2 в состояние Е3 под действием внешней электромагнитной волны сопровождается излучением, что и используется в лазерах.
Свойства лазерного излучения
В настоящее время лазеры применяются:
Спектр поглощения
Всего получено оценок: 46.
Всего получено оценок: 46.
Спектры, испускаемые нагретыми веществами – это спектры излучения. Существует еще один тип спектров – спектры поглощения. Поговорим о них более подробно.
Виды спектров
Свет, с которым имели дело первые исследователи, начиная с И.Ньютона, был светом нагретых предметов – Солнца или огня.
Ньютон показал, что белый свет представляет собой смесь различных цветов, которые могут быть разложены в спектр – в радужную полоску непрерывно изменяющегося цвета.
Позже было установлено, что такая радужная полоска характерна для излучения нагретых твердых и жидких веществ. Спектр такого типа был назван непрерывным.
Однако, нагретые газы при невысоких давлениях – дают совсем другую картину. Спектры нагретых газов дают не непрерывно изменяющуюся цветную полосу, а ряд узких линий, между которыми почти нет излучения. Такие спектры были названы линейчатыми.
Рис. 2. Примеры линейчатых спектров.
Особым видом линейчатых спектров являются полосатые спектры. Если газ находится под большим давлением, или состоит из многоатомных молекул, то его спектр представляет собой не узкие линии, а широкие полосы. Такие спектры были названы полосатыми.
Спектры поглощения
Вид спектров был объяснен в модели атома Н. Бора. Тепловое излучение испускает кванты света (фотоны) любых длин волн около какого-то среднего значения, спектр получается непрерывным. Атомы возбужденного газа излучают лишь при переходах электронов с одного энергетического уровня на другой. Поэтому на спектре присутствуют только узкие полоски. Если газы находятся под большим давлением, их атомы начинают взаимодействовать, и электроны могут переходить между соседними атомами, энергия таких переходов лежит в более широком диапазоне, в результате в спектре получаются широкие полосы. Тоже самое происходит, если атомы находятся в составе молекул.
Теория Н. Бора предсказывала не только излучение при переходе с более высокого уровня на более низкий. Электроны могут переходить с более низкого уровня на более высокий, если они поглощают определенное количество энергии. Таким образом, если газ облучать белым светом с непрерывным спектром, то фотоны, обладающие энергией перехода с более низкого уровня на более высокий, будут поглощаться электронами. В составе спектра энергии этой длины волны будет меньше, в спектре появятся темные полосы.
Проведенные эксперименты подтвердили это предположение. Если белый свет пропускать через холодный газ, а потом разлагать в спектр – то в непрерывном спектре появляются темные полосы как раз в тех местах, где кванты света поглощались атомами газа. Такие спектры были названы спектрами поглощения.
Рис. 3. Примеры спектров поглощения.
Спектры поглощения газов бывают тех же типов, что и спектры излучения – линейчатые и полосатые. Первые образуют газы при низких давлениях. Вторые – это спектры газов при высоких давлениях или молекулярные спектры поглощения.
Именно спектр поглощения позволяет исследовать химический состав Солнца. Нагретая поверхность Солнца излучает непрерывный спектр, а внешние слои солнечной атмосферы избирательно поглощают свет, образуя спектр поглощения, который может быть исследован. При таком исследовании был открыт элемент гелий.
Что мы узнали?
Согласно теории Н. Бора, электроны атомов излучают свет, переходя с более высоких на более низкие энергетические уровни. При переходах на более высокий уровень, электроны поглощают свет. Таким образом, если облучать газ непрерывным спектром – в нем появятся темные линии поглощения. Такой спектр называется спектром поглощения.
Спектр поглощения: что это такое, применение. Спектроскопия
Спектры поглощения различных веществ могут предоставить нам информацию об их химическом составе, молекулярной структуре и атомном строении. Область спектроскопии занимается их получением и анализом. Полученные таким образом знания можно использовать для разработки и получения новых материалов с интересными свойствами, что позволило нам создать современные самолеты, катализаторы выхлопных газов, фотогальванические элементы или литий-ионные батареи.
Спектроскопия
Изучение атомных спектров полезно не только в материаловедении — спектроскопический анализ также является основополагающим в работе реставраторов произведений искусства. Это, в том числе, позволяет понять, почему работает микроволновая печь.
Слово спектр происходит от латинского слова spectrum, означающего появление, вид или образ, а также дух или фантом. «Спектроскопия», с другой стороны, — это метод получения и изучения спектров, то есть зависимости физических величин от длины волны, частоты или энергии света. Поэтому термин «абсорбционная спектроскопия» будет использоваться для описания методов исследования, целью которых является получение спектра поглощения вещества.
Обратите внимание, что когда мы пишем о спектроскопических методах, мы используем множественное число — не существует единственного метода, называемого «абсорбционная спектроскопия». В зависимости от используемой длины волны света можно говорить о различных разновидностях абсорбционной спектроскопии (и различных спектрах поглощения). Примеры (не все!) этого семейства представлены в таблице 1.
Тип используемого излучения | Название метода |
Рентгеновское | Рентгеновская абсорбционная спектроскопия |
Ультрафиолетовое и видимое | Ультрафиолетовая – видимая спектроскопия (UV-VIS-спектроскопия) |
Инфракрасное | Инфракрасная абсорбционная спектроскопия |
Микроволновое | Микроволновая абсорбционная спектроскопия |
Радиоволновое | Спектроскопия ядерного магнитного резонанса. Спектроскопия электронного парамагнитного резонанса. |
Таблица 1: Разновидности абсорбционной спектроскопии.
Прежде чем двигаться дальше, давайте вспомним, что такое спектр поглощения — его получают, освещая вещество определенным излучением и исследуя излучение, которое проходит через вещество. Другими словами, если мы наблюдаем отсутствие определенных длин волн в спектре поглощения по сравнению с падающим излучением, это означает, что эти длины волн были поглощены материалом.
Схема метода поглощения показана на рис. 2, а пример спектра поглощения — на рис. 3. Это спектр поглощения солнечного излучения, полученный, когда солнечное излучение, произведенное глубоко внутри звезды, проходит через слои газа. Видимые черные линии указывают на то, что часть излучения была поглощена.
Различные виды абсорбционной спектроскопии являются мощными инструментами для изучения разнообразных свойств материалов. В таблице 2 мы привели примеры информации, которую можно получить, изучая спектры поглощения в различных спектральных диапазонах.
Тип используемого излучения | Применение |
Рентгеновское | Изучение расположения атомов друг относительно друга на очень малых расстояниях, изучение химического состава образца и степени окисления элементов |
Ультрафиолетовое | Тестирование химического состава образца, тестирование концентрации растворов |
Видимое | Изучение химического состава звезд и межзвездных облаков, изучение электронной структуры твердых тел, изучение химического состава образца, изучение концентрации растворов |
Инфракрасное | Изучение химического состава газов, изучение типов связи между атомами, для органических соединений: определение типов функциональных групп, которые присоединяются к углеродной цепи |
Микроволновое | Определение длин и углов связей между атомами |
Радиоволновое | Изучение расположения атомов друг относительно друга на очень малых расстояниях, изучение степени окисления элементов в образце |
Таблица 2: Научные применения абсорбционной спектроскопии
Применение
В таблице 2 мы представили типичные научные применения абсорбционной спектроскопии. Но давайте попробуем ответить на вопрос — чем могут быть полезны для нас исследованные свойства? Какую пользу мы можем извлечь из знания взаимного расположения атомов в материале или типов химических связей? Другими словами, почему эти методы так важны?
Ответ очень общий — знание перечисленных аспектов позволяет нам, в частности, связывать различные свойства материалов с их атомной структурой. Зная, как связаны свойства и структура материала, мы можем попытаться изменить эту структуру и таким образом улучшить свойства материалов. В результате мы теперь можем производить очень прочные и очень легкие композитные материалы, которые используются, например, при строительстве самолетов, все более совершенные электрические проводники, каталитические нейтрализаторы для разложения выхлопных газов автомобилей, литий-ионные батареи, фотогальванические элементы или датчики выхлопных газов или других токсичных газов.
Изучая свойства различных материалов с помощью методов абсорбционной спектроскопии, мы можем разрабатывать новые материалы с улучшенными свойствами. Например, самолет Boeing 787-8, легче предшественников в своем классе благодаря использованию в его конструкции современных композитных материалов.
Однако применение абсорбционной спектроскопии не ограничивается материаловедением. Возьмем пример из совершенно другой области — искусства! При изучении различных произведений живописи историков интересуют ответы на следующие вопросы: является ли картина, которую мы видим сегодня, той, которую художник написал изначально? Какова была техника рисования? И, наконец, не менее важный вопрос — является ли данная картина оригиналом или очень хорошо созданной копией? Методы абсорбционной спектроскопии могут дать ответы на эти вопросы!
В истории искусства часто случалось так, что художник, например, получал заказ от своего покровителя написать первый вариант той или иной картины. Если меценат не был удовлетворен результатом, художник закрашивал или перерисовывал части картины. Бывает также, что пигменты, используемые в красках, не выдержали испытания временем и в результате химических реакций изменили свой цвет — так, например, темно-зеленая краска может стать коричневой. Наконец, случается, что работа оригинального художника впоследствии «исправляется» другими. Такие изменения коснулись, например, знаменитой «Дамы с горностаем» Леонардо да Винчи, где фон за фигурой был закрашен черным, а сама дама и горностай отретушированы. Текущая версия изображения показана на рисунке 4.
Рис. 4. Дама с горностаем. Автор картины: Леонардо да Винчи. Леонардо да Винчи, общественное достояние, через Wikimedia Commons
На рис. 5 представлен фрагмент горностая, увиденный в инфракрасном излучении. Темные участки сильно поглощают это излучение, светлые — слабо.
Более высокое поглощение в какой-либо области может означать, что под видимым слоем может находиться более ранняя версия изображения — в данном случае более темная линия вокруг морды животного указывает на то, что в первоначальной версии изображения она была немного больше.
С другой стороны, на рис. 6 показано использование поглощения ультрафиолетового излучения. Изображение поглощает ультрафиолетовое излучение и испускает излучение в видимом свете. Состав этого света зависит от типа используемого пигмента и его элементного состава. В красной краске, которой да Винчи покрасил рукав платья портретируемой Чечилии Галлерани, присутствуют, в частности, свинец, ртуть, железо и кальций. Обратите внимание, как меняется пропорция каждого элемента в более светлых и более темных областях рукава.
Изучение химического состава пигментов также позволяет ответить на вопрос, каким был их первоначальный цвет — не изменился ли цвет, который мы видим сегодня, под воздействием, например, погодных условий. Наконец, это позволяет определить, имела ли место подделка. Если при исследовании картины обнаруживается присутствие красителей, по составу схожих с теми, которые используются сегодня, а не во время создания картины, мы можем быть уверены, что данная картина не является оригиналом.
Давайте теперь сменим тему на несколько иную — от материаловедения и искусства перейдем к изучению… воды. Мы попытаемся объяснить некоторые его свойства, основываясь на спектрах поглощения для различных диапазонов излучения.
Мы знаем, что вода прозрачна в видимом свете, но имеет легкий голубоватый оттенок. Почему? Посмотрите на рис. 7. На нем показана зависимость коэффициента поглощения воды (вертикальная ось) от длины волны падающего излучения (горизонтальная ось). Вертикальная ось показана в логарифмическом масштабе.
Из графика можно сделать два важных вывода: во-первых, коэффициент поглощения не является постоянной величиной, а зависит от длины волны (или частоты) падающего света! Во-вторых, мы видим, что длины волн, создающие впечатление фиолетового и синего цветов, поглощаются более чем в 100 раз меньше, чем те, которые ассоциируются с красным цветом! Это придает воде «голубоватый» оттенок.
Рис. 7. Зависимость коэффициента поглощения в зависимости от длины волны излучения. Источник
Давайте теперь проанализируем другой спектр, на этот раз в области микроволнового излучения. Она представлена на рис. 8. Пунктирными линиями на рисунке показана зависимость так называемых диэлектрических потерь как функция частоты излучения и температуры. Диэлектрические потери связаны с поглощением — чем выше диэлектрические потери, тем выше поглощение излучения.
Поэтому кривые, показанные на рис. 8. можно также назвать спектрами поглощения, просто представленными с помощью других физических величин. «Диэлектрические потери» означают, что энергия падающего излучения будет поглощена материалом. Мы знаем, что поглощенная энергия направлена на увеличение интенсивности колебаний молекул воды. Макроскопически это означает, что вода повышает свою температуру при освещении микроволнами.
Рис. 8. Диэлектрические потери воды в зависимости от температуры и частоты излучения. Источник: Андрей Андриевский, Светлана М. Кузнецова, Сергей В. Жуковский, Юрий С. Кившарь, Андрей В. Лавриненко “Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials» Scientific Reports 5:13535, DOi: 10.1038/srep13535.
Можете ли вы придумать какое-нибудь применение этому явлению? Это, конечно же, микроволновая печь. Типичное устройство такого типа производит микроволны с частотой 2,45 ГГц (что соответствует длине волны около 0,12 м). Из рис. 8 видно, что диэлектрические потери на этой частоте отличны от нуля — поэтому вода, присутствующая в пище, поглощает микроволновое излучение и повышает свою температуру, что приводит к нагреванию всей пищи.
Анализируя рис. 9, можно также задать вопрос — почему мы не используем в микроволновых печах частоты, где диэлектрические потери еще выше — например, около 10 ГГц? Ведь тогда поглощение излучения происходило бы еще эффективнее, и пища нагревалась бы быстрее! Ответ связан с другим свойством излучения — чем выше коэффициент поглощения (или диэлектрические потери), тем меньше излучение проникает в материал.
Высокие диэлектрические потери означают, что большая часть излучения поглощается очень близко к поверхности. Поэтому, если бы микроволновые печи вырабатывали микроволны более высокой частоты, то нагреваемая пища была бы очень горячей в тонком слое у поверхности и становилась бы холодной в глубине. При более низких частотах микроволн поглощенная энергия более равномерно распределяется по пище.
Наконец, проанализируем зависимость коэффициента поглощения воды для широкого диапазона частот. На рисунке 9 показан диапазон видимого света, который мы обсуждали ранее. Анализируя спектр в широком диапазоне, можно увидеть, что поглощение воды в видимом диапазоне очень слабое — вода гораздо лучше поглощает волны из инфракрасного и микроволнового диапазона (что вызывает ее нагрев) и из ультрафиолетового диапазона.
Рис. 9. Коэффициент поглощения воды в зависимости от длины волны излучения. Источник
Для сравнения — поглощение в ультрафиолете примерно в миллиард раз сильнее, чем в видимой области! Сильное поглощение в этой области уже связано с фотоионизацией воды — излучение поглощается молекулами воды и вызывает выбивание из них электронов.
Своим присутствием на Земле мы обязаны тому факту, что вода лишь слабо поглощает излучение видимого диапазона. Если бы вода сильно поглощала это видимое излучение, все водоемы были бы темными и мутными. Это предотвратило бы развитие водных растений, а затем и водных животных.