Что такое сравни выражения
Числовые и буквенные выражения
Числовые выражения
В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.
Значение выражения — это результат выполненных действий.
Чтение числовых выражений
Решение числовых выражений
45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13
Сравнение значений числовых выражений
Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.
Для этого найдем значения каждого из них:
Буквенные выражения
Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.
Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.
Чаще всего используются буквы:
a, b, c, d, x, y, k, m, n
Алгоритм решения буквенного выражения
1. Прочитать буквенное выражение
2. Записать буквенное выражение
3. Подставить значение неизвестного в выражении
4. Вычислить результат
Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с
Подставим вместо неизвестного «с» число 4.
У нас получается выражение: 28 – 4
Переменные
Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.
Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства
Мы изменили значения переменных c и x. Переменной c присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:
Теперь мы можем найти значение этого выражения:
с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7
Поделись с друзьями в социальных сетях:
Сравнение выражений
Вначале рассматривается сравнение чисел с опорой на множества, и результат фиксируется с помощью знаков «больше», «меньше», «равно». После этого дети сравнивают число и выражение, найдя значение выражения, сравнивают его с данным числом.
Например, 5 ∙ 3 + 4, 5 ∙ 5 – 2. Желательно давать не только готовые выражения, но и составлять их, используя предметные действия с множествами. На третьем этапе дети сравнивают два выражения вида 10 – 5 и 3 + 4; 8 – 3 и 8 – 4. В таких выражениях сравнение можно производить не только нахождением их значений, но и наблюдением за компонентами действия. (Чем большее число мы отнимем от одного и того же числа, тем меньше будет остаток).
Работа по сравнению выражений и составлению верных равенств часто связана с преобразованием выражений на основе изучаемых свойств:
При сравнении выражений дети знакомятся с терминами «равенство» и «неравенство», которые могут быть верными или неверными.
В программе «Школа 2000» алгебраический материал не только связан с арифметическим материалом, но и является материалом для развития учащихся. Он намного богаче содержанием и вводится с первого класса.
Как и в традиции, составляются выражения (по рисункам), причем не только числовые, но и буквенные:
П + К а + б a + б = к, к – а = б
Рано вводятся термины «равенство», «неравенство», «выражение».
Сравнение выражений основано на рассуждении:
Правила о порядке выполнения действий рассматриваются с точки зрения алгоритмов (т.е. составление программ).
Для закрепления правил выполняются такие упражнения
1) расставь скобки по заданной программе;
2) составь выражения по схеме-«дереву»;
3) составь программу действий в выражении
Выражение с переменной
Подготовительная работа заключается в решении задач с недостающими данными, например: Купили несколько дневников по пять рублей. Сколько заплатили за дневники?
Выражения с переменной очень широко используются для обобщения знаний:
1) Все законы и свойства записываются в общем виде:
2) Решения задач (из блиц-турниров) записываются в общем виде, с буквенными данными:
3) Вводятся условные обозначения величин и их формулы:
Вопрос 20. Формирование представлений об уравнении. Методика обучения решению уравнений и задач, решаемых уравнением.
В начальной школе рассматриваются уравнения, содержащие только одно действие. Первоначально они решаются подбором. В дальнейшем уравнения решаются на основе зависимости между компонентами и результатами действий.
В традиционной школе уравнения вводятся во втором классе, а в других системах – с начала обучения. Дети знакомятся с терминами «уравнение» и «решение уравнения». Для закрепления этих понятий предлагаются упражнения: «Выбери среди данных записей уравнения», «Преврати (составь) уравнения». Кроме этого включаются задания такого вида:
«Угадай корни: 7 + х = 7; 7 – у = 0; n – 0 = 7; а – а = 7; b – b = 0».
В «Школе 2000» уравнения вводятся в 3 части 1 класса. Вначале выполняются привычные операции с множествами-«мешками»:
и вводится термин «уравнение».
Опорой для решения уравнений являются понятия части и целого. В течение подготовительного периода учащиеся осваивают эти понятия в операциях с множествами и усваивают их соотношения: чтобы найти одну часть надо от целого отнять другую часть.
Последовательность введения уравнений такая же, как и в традиционной программе, но на одном уроке при закреплении могут встречаться уравнения разных видов, т.к. основа их решения похожа.
Помощниками в решении уравнениях являются:
1) рисунки весов 2 + х = 4
2) схемы 5 – х = 4 х + 3 = 7
3) числовые отрезки
4) уравнения с линиями
Кроме уравнений на нахождение части и целого, включены нестандартные уравнения:
Основой для их решений является зависимость между сторонами прямоугольника и его площадью: чтобы найти сторону
В 3 кл. происходит обобщение знаний по уравнениям: вводится термин „уравнение“, „решение уравнения“ и рекомендуется решать их с комментированием:
1. Неизвестное делимое х+3. Чтобы найти …
При изучении дробей включены уравнения
,которые решаются аналогично.
В системе РОЗ (М1А, стр. 19) вводятся термины «равенства», «неравенства», с помощью рисунков составляются верные равенства и неравенства. Неверные неравенства превращаются в верные.
х + 5 = 9, которые вводятся через задачу.
Уравнения могут быть не стандартными:
( 5 + х ) + 2 = 11,где надо догадаться при сравнении равенств,
( 5 + 4 ) + 2 = 11,чему равно неизвестное.
В конце первого класса, дети знакомятся с уравнениями вида:
Все виды этих уравнений даются в сравнении друг с другом:
надо выяснить связь этих уравнений и тогда найти решение.
Во втором классе продолжается работа над уравнениями, где надо найти самое большое число и воспользоваться обратными действиями:
а + 23 = 41 85 – к = 72
Уравнения, связанные с действиями умножения и деления решаются с помощью таблицы умножения (подбором).
Для решения уравнений другим способом изучаются основные свойства равенств:
1) а = b, ó a + c = b + c, ó a– c = b – c.
5 у + 7 = 62 5у + 7 = 62
Вопрос 21. Методика изучения геометрического материала в начальной школе.
Математическое развитие школьников невозможно без приобщения их к геометрии. В начальных классах ставится задача расширить и уточнить представления учащихся о геометрических фигурах, а также развивать их пространственное мышление в процессе выполнения различных практических упражнений.
Для осуществления методической работы, направленной на решение этих задач, учителю необходимо знать, что геометрия как наука строится на базе основных понятий и аксиом, а новые факты вводятся дедуктивным путем. Школьный курс геометрии – это евклидова геометрия на плоскости и в пространстве. Эта геометрия опирается на понятие величины и ее измерения. Формирование представлений о геометрических фигурах в начальной школе связано с изучением длины и площади.
Основой формирования представлений о геометрических фигурах является способность детей воспринимать форму предмета. Эта способность позволяет узнавать, различать и изображать различные геометрические фигуры:
Основными геометрическими фигурами, изучаемыми в начальной школе, являются: точка, прямая и кривая линии, отрезок и ломаная, а затем угол, прямоугольник, квадрат, многоугольник, треугольник.
|
Чтобы дети имели представление об этих фигурах, их достаточно показать и назвать термином (остенсивное определение). Но ученик воспринимает фигуру как целостный объект и не выделяет свойства объекта, поэтому не всегда узнает знакомые фигуры, расположенные необычно:
«не «не квадрат» «не прямоугольник» «треугольник» «многоугольник»
В дальнейшем необходимо изучать существенные свойства объектов для точных представлений о них. Для этой цели геометрические фигуры изучают в определенной последовательности, выполняя с моделями различные практические действия.
Точка— след карандаша, ручки, мела. Через точку дети проводят различные линии: прямые и кривые. Убеждаются, что через точку можно провести сколько угодно прямых и кривых, а через две точки – только одну прямую и множество кривых.
Отрезок – это часть прямой между двумя ее точками. Отрезок имеет начало и конец, любая его точка может быть и концом и началом. Отрезок имеет длину. Отрезки можно сравнивать, складывать и отнимать, измерять.
Ученику начальных классов трудно различать такие понятия как «прямая» и «отрезок» и идти к пониманию отрезка от прямой. В просторечии слово «отрезок» почти не употребляется, говорят: «прямая», «идти по прямой», но при этом никто не имеет в виду бесконечную прямую, как принято в геометрии. Бесконечную прямую нельзя изобразить на бумаге. В учебниках математики для начальной школы принято при изображении отрезка отмечать его начало и конец точками или штрихами, чего нет в изображении прямой.
Угол можно ввести как фигуру, образованную двумя лучами, исходящими из одной точки. Такой подход к введению понятия угла возможен там, где вводится понятие луча, как части прямой, имеющей начало, но не имеющей конца. (например, М1А). В учебнике М2П углом называют часть плоскости, заключенной между двумя лучами, исходящими из одной точки, причем называют меньшую часть, т.к. плоскость делится лучами на две части.
Математика. 2 класс
Конспект урока
Математика, 2 класс
Урок № 14. Числовые выражения. Порядок действий в числовых выражениях. Скобки. Сравнение числовых выражений
Перечень вопросов, рассматриваемых в теме:
— Что такое числовые выражения?
— Как правильно читать и записывать числовые выражения?
— Как выполнять порядок действий, если есть скобки?
— Как сравнить два выражения?
Числовое выражение – это запись, состоящая из чисел и знаков действий между ними.
Значение выражения – это результат выполненных действий.
Сравнить числовые выражения – найти значение каждого из выражений и их сравнить.
Порядок выполнения действий – это последовательность проводимых вычислений в данном выражении.
Основная и дополнительная литература по теме:
1. Моро М. И., Бантова М. А., Бельтюкова Г. В.и др. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1. –8-е изд. – М.: Просвещение, 2017. – с.38-40
2. Волкова А. Д. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций. М.: Просвещение, 2017, с. 22-27
3. Глаголева Ю. И., Волкова А. Д. Математика. КИМы. 2 кл: учебное пособие для общеобразовательных организаций. М.: Просвещение, Учлит, 2017, с.16
Теоретический материал для самостоятельного изучения
Маша и Миша решали пример: из числа 12 вычесть сумму чисел 7 и 3. Они записали его по-разному и получили разные ответы. Маша сначала из 12 вычла 7 и получила 5, потом прибавила 3, получила 8.
Миша обвёл овалом сумму чисел 7 и 3 и сначала посчитал сумму, получил 10. Затем от 12 отнял 10, получил 2.
Кто из них вычислил верно? Решил верно, Миша.
Запишем пример, который решали дети правильно:
Вычислим. 7 + 3 равно 10, из 12 вычесть 10, получится 2. Запомните: действия, записанные в скобках, выполняются первыми.
Посмотрим на запись.
Запись, в которой разные числа (однозначные и двузначные) соединены знаками «+» и «–» в различных сочетаниях, называется числовым выражением и читается так: «из числа 9 вычесть сумму чисел 6 и 2».
Найти значение выражения – это значит, нужно выполнить все указанные действия в выражении. Значение данного выражения 1.
Теперь мы будем называть примеры числовыми выражениями, а ответы значениями числовых выражений.
К числу 10 прибавить разность чисел 8 и 3.
Как найти значение выражения? Нужно выполнить необходимые действия. Но с какого действия нужно начинать? С того, которое записано в скобках. Находим разность чисел 8 и 3, будет 5, к 10 прибавить 5, получится 15.
Давайте сравним значения двух выражений:
Сначала найдем значение каждого из выражений и их сравним.
ГДЗ по математике, 2 класс, Моро М.И. Сравни выражения.
Сравни выражения.
1) Сумму чисел 8 и 9 и разность чисел 20 и 1.
2) Разность чисел 16 и 8 и разность чисел
16 и 10.
1) Запиши 3 любых двузначных числа. Умень-
ши каждое из них на 10.
2) Запиши 3 любых однозначных числа. Уве- ( Подробнее. )
Оля перепрыгнула через верёвочку 18 раз, а
Света — только 10 раз.
Поставь вопрос и реши задачу.
Кто сможет? Выполните деление:
( Подробнее. )
Троллейбус за время t прошел путь s. Какую скорость v приобрел он в конце пути и с каким ускорением а двигался, если начальная скорость ( Подробнее. )
Числовые и буквенные выражения
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Числовые выражения: что это
Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.
Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.
Например:
Это простые числовые выражения.
Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:
Это сложные числовые выражения.
Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».
Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.
Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.
11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.
При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)
Часто бывает нужно сравнить два числовых выражения.
Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.
Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2
14 больше 4
14 > 4
6 + 8 > 2 * 2
Буквенные выражения
Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.
В буквенном выражение есть цифры, знаки арифметических действия и буквы.
Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.
Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.
У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:
Пример 1. Найдите значение выражения: 5 + x.
Пример 2. Найдите значение выражения: (4 + a) * (2 + x).
Выражения с переменными
Переменная — это значение буквы в буквенном выражении.
Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.
Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.
5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a
Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.
Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.
Задание раз.
Задание два.
Составьте буквенное выражение:
Сумма разности b и 345 и суммы 180 и x.
Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.
Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?
150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.
Ответ: Маша и Лена посмотрели всего 313 видео.