Что такое среда исполнителя алгоритма в информатике
Информатика. 7 класс
Электронное приложение к учебному пособию
Напишите нам
белый — основные материалы, обязательные для изучения;
голубой — примеры, иллюстрирующие основные материалы;
желтый — определения основных понятий;
светло-зеленый — исторические сведения, информация об ученых, внесших вклад в развитие информатики, и другие интересные факты.
В учебном пособии используются следующие условные обозначения:




* — задание или пример для любознательных.
§ 8. Алгоритмы и исполнители
8.1. Понятие алгоритма
Вспомним некоторые понятия, с которыми вы познакомились в 6-м классе.
Алгоритм — понятная и конечная последовательность точных действий (команд), формальное выполнение которых позволяет получить решение поставленной задачи.
Исполнитель алгоритма — человек (группа людей) или техническое устройство, которые понимают команды алгоритма и умеют правильно их выполнять.
Система команд исполнителя — команды, которые понимает и может выполнить исполнитель.
Любой исполнитель имеет ограниченную систему команд. Все команды исполнителя можно разделить на группы:
Компьютер является универсальным исполнителем.
Запись алгоритма в виде последовательности команд, которую может выполнить компьютер, называют программой.
Существуют следующие способы представления алгоритмов:
(Схематически данные способы представлены в примере 8.1.)
8.2. Исполнитель Чертежник
В прошлом учебном году вы познакомились с исполнителем Чертежник, который предназначен для построения рисунков и чертежей на координатной плоскости (пример 8.2).
Чертежник имеет перо, с помощью которого он может рисовать отрезки на плоскости. Исходное положение пера исполнителя Чертежник поднято и находится над точкой (0, 0) — началом координат. После завершения рисования перо также должно быть поднято.
Напомним систему команд исполнителя Чертежник:
Переместить перо Чертежника в точку (x,y)
Поднять перо Чертежника
Опустить перо Чертежника
Создать поле размером N x M
Сместить перо Чертежника на а единиц по горизонтали и b единиц по вертикали
Пример 8.3. Составим алгоритм решения задачи.
Прямоугольный участок, длина которого в 2 раза больше ширины, огородили забором длиной 120 м. Определите длину и ширину участка. Напишите программу, выполнив которую исполнитель Чертежник построит чертеж забора этого участка. Масштаб: 1 клетка равна 10 м.
Словесное описание алгоритма:
8.3. Алгоритмическая конструкция следование
Существует большое количество алгоритмов, в которых все команды выполняются последовательно одна за другой в том порядке, в котором они записаны. В подобных алгоритмах отсутствуют команды, меняющие порядок выполнения других команд. Такие программы вы составляли в прошлом году для исполнителя Чертежник.
Алгоритмическая конструкция следование — последовательность команд алгоритма, которые выполняются в том порядке, в котором они записаны.
Следование использовалось в примере 8.3, в котором описывались алгоритмы вычисления длины и ширины участка и построения прямоугольника исполнителем Чертежник.
Алгоритмическая конструкция следование представлена в примере 8.4 и примере 8.5.
8.4. Вспомогательные алгоритмы
Нередко в одной программе приходится рисовать одно и то же изображение несколько раз. Получение этого изображения удобно оформить в виде вспомогательного алгоритма, который можно использовать нужное число раз, обращаясь к его названию.
Вспомогательный алгоритм — алгоритм, целиком используемый в составе другого алгоритма.
Вспомогательный алгоритм решает некоторую подзадачу основной задачи. Вызов вспомогательного алгоритма в программе заменяет несколько команд одной командой.
Пример 8.6. Напишем программу, выполнив которую исполнитель Чертежник нарисует следующий рисунок:
Описание основного алгоритма будет следующим:
При решении задач над проектом могут работать несколько человек (или десятков человек). Каждый из членов коллектива делает часть своей работы и оформляет ее как отдельный вспомогательный алгоритм.
Алгоритмы построения чертежей человек разрабатывает с глубокой древности. Появление чертежей связано с практической деятельностью человека — возведением укреплений и городских построек. Первые сведения о чертежах, напоминающих современные, связаны с именем Леонардо да Винчи (1452—1519) —итальянского ученого и художника, который в технических рисунках и эскизах раскрывал свои идеи в области техники и строительства.
В настоящее время чертежи широко применяются в различных отраслях строительства, сельского хозяйства, промышленности и т. д. Сегодня для построения чертежей используются специальные программы, позволяющие автоматизировать процесс черчения. Для применения таких программ специалист должен овладеть навыками работы с имеющимися в них инструментами и алгоритмами построения различных чертежей. Вот логотипы подобных программ:
Пример 8.2. Поле исполнителя Чертежник.
Пример 8.3. Запись алгоритма по действиям:
Исполнитель Чертежник должен нарисовать прямоугольник длиной 4 клетки и шириной 2 клетки. Программа для исполнителя Чертежник :
Понятие алгоритма. Свойства алгоритма. Исполнители алгоритмов (назначение, среда, режим работы, система команд). Компьютер как формальный исполнитель алгоритмов (программ).
Появление алгоритмов связывают с зарождением математики. Более 1000 лет назад (в 825 году) ученый из города Хорезма Абдулла (или Абу Джафар) Мухаммед бен Муса аль-Хорезми создал книгу по математике, в которой описал способы выполнения арифметических действий над многозначными числами. Само слово алгоритм возникло в Европе после перевода на латынь книги этого математика.
Алгоритм – описание последовательности действий (план), строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.
Вы постоянно сталкиваетесь с этим понятием в различных сферах деятельности человека (кулинарные книги, инструкции по использованию различных приборов, правила решения математических задач. ). Обычно мы выполняем привычные действия не задумываясь, механически. Например, вы хорошо знаете, как открывать ключом дверь. Однако, чтобы научить этому малыша, придется четко разъяснить и сами эти действия и порядок их выполнения:
1. Достать ключ из кармана.
2. Вставить ключ в замочную скважину.
3. Повернуть ключ два раза против часовой стрелки.
4. Вынуть ключ.
Если вы внимательно оглянитесь вокруг, то обнаружите множество алгоритмов которые мы с вами постоянно выполняем. Мир алгоритмов очень разнообразен. Несмотря на это, удается выделить общие свойства, которыми обладает любой алгоритм.
Свойства алгоритмов:
1. Дискретность (алгоритм должен состоять из конкретных действий, следующих в определенном порядке);
2. Детерминированность (любое действие должно быть строго и недвусмысленно определено в каждом случае);
3. Конечность (каждое действие и алгоритм в целом должны иметь возможность завершения);
4. Массовость (один и тот же алгоритм можно использовать с разными исходными данными);
5. Результативность (отсутствие ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значениях).
Виды алгоритмов:
1. Линейный алгоритм (описание действий, которые выполняются однократно в заданном порядке);
2. Циклический алгоритм (описание действий, которые должны повторятся указанное число раз или пока не выполнено задание);
3. Разветвляющий алгоритм (алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий)
4. Вспомогательный алгоритм (алгоритм, который можно использовать в других алгоритмах, указав только его имя).
| Вид стандартного графического объекта | Назначение |
![]() | Начало алгоритма |
![]() | Конец алгоритма |
![]() | Выполняемое действие записывается внутри прямоугольника |
![]() | Условие выполнения действий записывается внутри ромба |
![]() | Счетчик кол-во повторов |
![]() | Последовательность выполнения действий. |
Стадии создания алгоритма:
1. Алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает.
2. Алгоритм должен быть представлен в форме, понятной тому объекту (в том числе и человеку), который будет выполнять описанные в алгоритме действия.
Объект, который будет выполнять алгоритм, обычно называют исполнителем.
Идеальными исполнителями являются машины, роботы, компьютеры.
Исполнитель способен выполнить только ограниченное количество команд. Поэтому алгоритм разрабатывается и детализируется так, чтобы в нем присутствовали только те команды и конструкции, которые может выполнить исполнитель.
Исполнитель, как и любой объект, находится в определенной среде и может выполнять только допустимые в нем действия. Если исполнитель встретит в алгоритме неизвестную ему команду, то выполнение алгоритма прекратится.
Компьютер – автоматический исполнитель алгоритмов.
Алгоритм, записанный на «понятном» компьютеру языке программирования, называется программой.
2 Структу́рноепрограмми́рование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70-х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом.
В соответствии с данной методологией
1. Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:
· последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;
· ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;
· цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла).
В программе базовые конструкции могут быть вложены друг в друга произвольным образом, но никаких других средств управления последовательностью выполнения операций не предусматривается.
2. Повторяющиеся фрагменты программы (либо не повторяющиеся, но представляющие собой логически целостные вычислительные блоки) могут оформляться в виде т. н. подпрограмм (процедур или функций). В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.
3. Разработка программы ведётся пошагово, методом «сверху вниз».
Сначала пишется текст основной программы, в котором, вместо каждого связного логического фрагмента текста, вставляется вызов подпрограммы, которая будет выполнять этот фрагмент. Вместо настоящих, работающих подпрограмм, в программу вставляются «заглушки», которые ничего не делают. Полученная программа проверяется и отлаживается. После того, как программист убедится, что подпрограммы вызываются в правильной последовательности (то есть общая структура программы верна), подпрограммы-заглушки последовательно заменяются на реально работающие, причём разработка каждой подпрограммы ведётся тем же методом, что и основной программы. Разработка заканчивается тогда, когда не останется ни одной «затычки», которая не была бы удалена. Такая последовательность гарантирует, что на каждом этапе разработки программист одновременно имеет дело с обозримым и понятным ему множеством фрагментов, и может быть уверен, что общая структура всех более высоких уровней программы верна. При сопровождении и внесении изменений в программу выясняется, в какие именно процедуры нужно внести изменения, и они вносятся, не затрагивая части программы, непосредственно не связанные с ними. Это позволяет гарантировать, что при внесении изменений и исправлении ошибок не выйдет из строя какая-то часть программы, находящаяся в данный момент вне зоны внимания программиста.
2.1 Теорема Бёма — Якопини — положение структурного программирования, согласно которому любой исполняемый алгоритм может быть преобразован к структурированному виду, то есть такому виду, когда ход его выполнения определяется только при помощи трёх структур управления: последовательной (англ. sequence), ветвлений (англ. selection) и повторов или циклов (англ. repetition, cycle).
1. В последовательной структуре инструкции выполняются в том порядке, как они записаны в программе, то есть одна за другой.
Конец Подпрограммы 1.
2. В структуре ветвлений последовательность выполнения инструкций зависит от заданного, чаще всего логической переменной, условия.
Подпрограмма 2 /* ветвлений – Выбор инструкции согласно условию */
Если условие 1 то Инструкция 1; /* выполняется, если истинно условие 1 */
Если условие 2 то Инструкция 2; /* выполняется, если истинно условие 2 */
Конец Подпрограммы 2.
3. В циклах инструкции повторяются до тех пор, пока не изменится некое условие, например значение логической переменной.
Подпрограмма 3 /* цикл */
Пока условие N выполнить Инструкция N /* цикл повторяется пока верно условие N */
Инструкция N + 1 /* выход из цикла по нарушению условия N */
Конец Подпрограммы 3
Оператор присваивания
Для того чтобы задать то или иное значение переменной используется оператор присваивания, который записывается как знак ‘=’. Работу этого оператора представим на следующем примере:
Здесь переменной с именем length присваивается значение 5, т.е. элемент слева от знака равенства является именем переменной, а элемент справа – это значение, присвоенное этой переменной. Сам символ ‘=’ называется оператором присваивания.
На первый взгляд, различие между именем переменной и значением переменной может показаться несущественным, однако рассмотрим такой пример обычного вычислительного оператора:
С математической точки зрения такая операция не имеет смысла, т.к. переменная i не может быть равна i+1. Однако данная запись в смысле операции присваивания вполне приемлема. Действительно, компьютер сначала определит значение переменной i, а затем прибавит 1 к этому значению и полученный результат присвоит снова переменной i. Таким образом, исходное значение переменной i увеличится на 1.
Так как оператор присваивания задает значение переменной, то оператор типа
не будет иметь смысла, поскольку число 20 будет интерпретироваться как константа, которой не может быть присвоено какое-либо другое значение.
Теперь рассмотрим такой пример. Допустим, что имеются две переменные разного типа:
и выполняется оператор присваивания
В результате переменная arg_long будет иметь значение 10 и оператор присваивания выполнит автоматическое преобразование типов и потери данных не происходит. Вдругомслучае, когда
floatagr_f = 8.7;
intarg_long;
arg_long = arg_f;
в операторе присваивания произойдет потеря данных, т.к. целое число не может представлять числа, стоящие после запятой (точки). В результате переменная arg_long будет иметь значение 8. Для корректного преобразования одного типа данных в другой используется операция приведения типов, имеющая следующий синтаксис:
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Алгоритм – исполнитель
Детальные инструкции значительно упрощают решение сложных задач для исполнителя. А пошаговые рекомендации позволяют автоматизировать процесс. Каждый такой алгоритм создается для определенного исполнителя. Если им будет маленький ребенок, команды будут одними, если взрослый человек – другими, компьютер или робот – третьими.
Примеры задач из жизни и люди, которые их обычно решают:
Если вопрос касается профессиональной сферы, то работники опираются на должностные и рабочие инструкции, в них описан круг обязанностей и порядок их выполнения. Если же это социальные задачи, люди ориентируются на то, как это делалось в семье их родителей, как это делают другие люди или как описано в литературе.
Виды исполнителей, их особенности
Одной из основных классификаций является деление исполнителей по отношению к тому, как они выполняют. Одушевленных называют неформальными, потому что они понимают, что делают, могут анализировать и даже видоизменять команды при изменении условий. Неодушевленных – формальными исполнителями, так как они строго выполняют команды, механически, не понимая, что делают, не задумываясь над задачей или промежуточными итогами.
Хорошим примером формального исполнителя является любая программируемая система, иногда даже человек, который подходит к выполнению определенных задач бездумно, как робот, не только не волнуясь о результате, и не анализируя происходящее.
Алгоритм пишут, учитывая особенности того, для кого он предназначен. Для некоторых людей сухого набора команд мало, им нужны дополнительные инструменты (изображения, примеры). Инструкция будет разной, если написана она для конкретного Игоря Козакова или для учеников 6-класса. Точно также команды для бездомной собаки Жуля будут одни, а для дрессированных полицейских овчарок – другие.
Характеристики исполнителей
Перед написанием алгоритма следует определиться не только с конечной задачей, но и с особенностями исполнителей. Это позволит использовать правильные слова, а также учесть все факторы, которые могут повлиять на конечный результат.
СКИ – набор простейших команд, понятных данному исполнителю.
Перспективными исполнителями являются роботы, автоматы и компьютеры. Несмотря на формальность работы, их можно запрограммировать и «научить» очень и очень многому. Даже если это светофор, стиральная машинка, не говоря уже о роботах, космических кораблях, персональных или научных компьютерах.
Особенно удивительно выглядит компьютер, ведь он:
Пользователи ПК могут использовать готовые приложения, чтобы задать ту или иную команду своему смартфону, компьютеру или другой умной технике. Или же самостоятельно написать «внутренности», программный код, задавая приложению те характеристики и функции, которые нужны.
Учебная среда Исполнителя
Для того, что сделать мир программирования и алгоритмизации ярким и веселым, были разработаны различные приложения. Существует учебная среда Исполнитель Кумир для учащихся, в которую входят Чертежник, Робот, Редактор и другие.
Различные приложения отличаются интерфейсом и набором команд, но общий принцип у них одинаковый – пользователь учится писать инструкции для компьютерного исполнителя (робот, черепашка, чертежник и другие). Он дает ему команды, изучая программирование от единичных заданий, постепенно переходя от элементарных линейных алгоритмов до циклических с условиями. Обучение проходит в игровой форме, при помощи кнопок. Далее этап написания команд на русском языке. На финальном этапе ученик осваивает СКИ на языке программирования (на английском).
Если ученик/пользователь дает задание исполнителю, которое невозможно выполнить физически (непреодолимое препятствие), математически (деление на ноль) – запускается система отказов.
Сравнительная характеристика основных приложений:
Исполнитель «Черепашка»
При помощи простых команд и красочного интерфейса пользователь легко освоит построение алгоритмов. На первом этапе в игровой форме, используя готовые кнопки и цвета. На следующем уровне уже можно программировать, записывая команды на русском по всем правилам программирования.
Исполнитель «Робот»
На клеточном поле произвольно выставляется робот, который обозначается любым удобным символом (*, Р, ●, ♦, другими). Задания пишутся при помощи системы команд исполнителя Робот.
В этой учебной системе можно самому рисовать стены, выращивать клумбы, задавать маршрут прохождения. Можно закрашивать клетки, даже если они до этого были цветные. Делать это можно при помощи линейных алгоритмов, с разветвлением или с повторением цикличных команд.
Для программирования используются простейшие алгоритмы и элементы программирования (правила написания команд, условия, обязательные символы), которые применяются в большинстве компьютерных языков.
В случае ошибок система выдает отказ. Отказы могут быть в случае неправильного написания элемента программы, противоречивых команд или логических ошибок. Отказ в виде ответа Робота: «Не могу» (пройти через стену), «Не понимаю» (ошибочно написана команда) или результат не тот, что нужен (перепутаны горизонталь и вертикаль).
Составляем алгоритм для Робота
Как видно из этого примера, в некоторых случаях команды многократно повторяются. Тогда используют подзадачи и циклы.
Основная программа с именем подзадачи:
Алгоритм Рисунок
Начало
Алгоритм Узор (5 раз);
Конец.
Указав только имя подзадачи в теле программы, пользователь вызывает ее столько раз, сколько указано в скобках. Полный текст вспомогательного алгоритма описывается под основным.
Алгоритм Узор
Начало
конец.
Если не использовать подзадачи, которые повторяются много раз, то размер программы увеличится в десятки раз.
Чтобы выполнить движение, робот может выполнять команды проверки наличия стены на пути: Сверху/снизу/слева/справа свободно?
Используя условие «если», робот проверяет дорогу и только тогда идет:
(Снизу_свободно), то вниз (3)
Или условие «пока» есть куда идти (нет стены сверху), робот будет идти прямо вверх и сажать цветы.
Исполнитель «Чертежник»
Учебная система «Исполнитель Чертежник» используется для рисования графиков, чертежей в системе координат (x;y). Поле поделено на пиксели, в параметрах можно указать размер поля и количество точек по осям.
Перо – инструмент чертежника, его, как настоящее, можно поднимать и опускать на рисовальное поле, перемещать в нужное место, менять цвет и добавлять надпись. Если перо приподнято, то не остается следа, если опущено – за ним тянется линия.
Во время рисования видно труженика Чертежника, который выполняет команды. Но его иконку можно скрыть, тогда будет виден только карандаш.
Начинать работу следует с команды «использовать Чертежник». Писать можно одиночные команды, а можно целые серии. Правила написания программы соответствуют основам большинства компьютерных языков. Это облегчит в будущем изучение программированию, улучшит понимание процесса построения алгоритмов, начиная от линейных и заканчивая циклическими.
На следующем этапе можно перейти к написанию алгоритма на языке Pascal. Процесс построения аналогичен, только команды пишутся на языке программирования (на английском):
uses Drawman;
begin
PenUp;
ToPoint (1, 1);
PenDown;
ToPoint (1, 5);
ToPoint (3, 5);
ToPoint (2, 4);
ToPoint (3, 3);
ToPoint (1, 3);
end.
Освоив построение алгоритмов на родном языке, запомнив правила написания команд, пользователь с легкостью перейдет на задания, написанные на языке программирования.
Вспомогательные алгоритмы или процедуры
Во время работы с учебными исполнителями приходится часто выполнять однотипные команды или серии команд. Намного удобнее создать вспомогательные подзадачи или процедуры. Таким блокам команд присваивается имя и потом не нужно каждый раз повторять ту или иную последовательность операций, достаточно указать имя вспомогательной процедуры.
Процедуры, их характеристики:











