Что такое среднее напряжение
среднее напряжение
3.1.12 среднее напряжение: Напряжение, номинальное среднеквадратическое значение которого превышает 1 кВ, но не превышает 35 кВ.
Смотри также родственные термины:
49. Среднее напряжение разряда химического источника тока
Среднее значение напряжений, измеренных через равные интервалы времени в течение непрерывного разряда химического источника тока
9.1.3. Среднее напряжение трансформатора
Номинальное напряжение, являющееся промежуточным между высшим и низшим номинальными напряжениями обмоток трансформатора.
Примечание. При наличии более трех цепей и двух или более промежуточных напряжений эти напряжения, начиная с более высокого, следует именовать, «первое среднее», «второе среднее» и т.д.
Среднее напряжение цикла
Постоянная положительная или отрицательная составляющая напряжений цикла, равная полусумме максимального и минимального напряжений цикла:
Полезное
Смотреть что такое «среднее напряжение» в других словарях:
среднее напряжение — [mean stress] 1. Усредненное по величине напряжение из суммы действующих в данном элементе тела. Обычно рассматриваются нормальные напряжения. Среднее напряжение обозначается σ0 или σ и является инвариантной величиной: σ0 = (σx+σy+σz)/3 = σij/3 … Энциклопедический словарь по металлургии
Среднее напряжение — Mean stress (Sm) Среднее напряжение. Среднее алгебраическое максимальных и минимальных напряжений в одном цикле. Sm = (Smax + + Smin)/2. Также известно как устойчивая компонента напряжения. (Источник: «Металлы и сплавы. Справочник.» Под редакцией … Словарь металлургических терминов
среднее напряжение — vidutinė įtampa statusas T sritis automatika atitikmenys: angl. average voltage; medium voltage vok. Mittelspannung, f; mittlere Spannung, f; Spannungsmittelwert, m rus. среднее значение напряжения, n; среднее напряжение, n pranc. tension moyenne … Automatikos terminų žodynas
среднее напряжение — vidutinė įtampa statusas T sritis fizika atitikmenys: angl. average voltage vok. mittlere Spannung, f rus. среднее напряжение, n pranc. tension moyenne, f … Fizikos terminų žodynas
Среднее напряжение цикла — sm, МПа Постоянная положительная или отрицательная составляющая напряжений цикла, равная полусумме максимального и минимального напряжений цикла: Источник … Словарь-справочник терминов нормативно-технической документации
среднее напряжение цикла — [mean cyclic stress] алгебраическая полусумма максимальных и минимальных напряжений цикла; Смотри также: Напряжение электрическое напряжение условное напряжение напряжение течения … Энциклопедический словарь по металлургии
Среднее напряжение разряда химического источника тока — 49. Среднее напряжение разряда химического источника тока Среднее напряжение Mittlere Entladespannung Среднее значение напряжений, измеренных через равные интервалы времени в течение непрерывного разряда химического источника тока Источник: ГОСТ… … Словарь-справочник терминов нормативно-технической документации
Среднее напряжение трансформатора — 9.1.3. Среднее напряжение трансформатора СН Номинальное напряжение, являющееся промежуточным между высшим и низшим номинальными напряжениями обмоток трансформатора. Примечание. При наличии более трех цепей и двух или более промежуточных… … Словарь-справочник терминов нормативно-технической документации
нормальное (среднее) напряжение цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN normal circuit voltage … Справочник технического переводчика
среднее — 3.3 среднее (mean): Среднее значение для (выбранного) времени усреднения результатов измерений анемометром. Источник: ГОСТ Р ИСО 1 … Словарь-справочник терминов нормативно-технической документации
Определение тарифного уровня напряжения при непосредственном техприсоединении
По моему мнению, при идентификации тарифного уровня (диапазона) напряжения, предопределяющего размер тарифа на услуги по передаче, необходимо учитывать следующие обстоятельства:
3. При определении фактического уровня напряжения необходимо учитывать, где находится граница балансовой принадлежности (далее по тексту – ГБП): на «источнике питания» или нет?
4. Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении энергопринимающих устройств (далее по тексту – ЭПУ) потребителя к объектам электросетевого хозяйства ТСО
«Напряжение» – это техническая характеристика энергоустановки, оно указывает, для приёма какого напряжения предназначена ЭПУ. Измеряется в вольтах (В) или киловольтах (кВ). Предопределяется техническими условиями, проектом на ЭПУ. Первично, как правило, напряжение фиксируется в документах о технологическом присоединении, чаще всего – в актах разграничения балансовой принадлежности. В нашей стране ЭПУ предназначаются для приёма следующего «напряжения»:
«Уровень напряжения» (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон) напряжения») – это понятие, используемое:
1. в тарифном регулировании – при установлении тарифов на передачу электроэнергии
2. в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии
По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».
Понятие «уровень напряжения» в нормативно-правовых актах (далее по тексту – НПА) появляется и используется в контексте тарифообразования и тарифоприменения.
В соответствии с пунктом 42 ПНД «при установлении тарифов на услуги по передаче электрической энергии ставки тарифов определяются с учетом необходимости обеспечения равенства единых (котловых) тарифов на услуги по передаче электрической энергии для всех потребителей услуг, расположенных на территории соответствующего субъекта Российской Федерации и принадлежащих к одной группе (категории) из числа тех, по которым законодательством Российской Федерации предусмотрена дифференциация тарифов на электрическую энергию (мощность)».
Дифференциация тарифов на передачу электроэнергии по «уровням напряжения» установлена следующими НПА:
Пункт 81(1) Основ ценообразования гласит: «Единые (котловые) тарифы дифференцируются по следующим «уровням напряжения»:
Пункт 44 Двадцатой методики устанавливает: «Размер тарифа на услуги по передаче электрической энергии рассчитывается в виде экономически обоснованной ставки, которая в свою очередь дифференцируется по четырем «уровням напряжения»:
Из указанных пунктов НПА также видно, что каждый «уровень напряжения» имеет свои напряжения, которые к нему относятся:
Таким образом, понятия «напряжение» и «уровень напряжения» не тождественны. Это разные понятия. Но их часто путают, особенно при определении величины тарифа на передачу электроэнергии, по которому подлежит оплата оказанных территориальными сетевыми организациями (далее по тексту – ТСО) услуг по передаче. Это происходит ещё из-за того, что путаются понятия «фактический уровень напряжения» и «фактическое напряжение».
Для определения величины тарифа на передачу электроэнергии важно установить на каком «фактическом уровне напряжения» подключён потребитель электроэнергии. Не на каком «фактическом напряжении», а на каком «фактическом УРОВНЕ напряжения». Это не одно и тоже.
Эти понятия становятся, практически тождественными при ситуации, когда граница балансовой принадлежности потребителя находится НЕ на ИСТОЧНИКЕ ПИТАНИЯ.
В этом случае за «напряжение», относящееся к соответствующему «уровню напряжения», принимают «фактическое напряжение» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.
То есть «фактическое напряжение» ЭПУ совпадает с «напряжением», которое относится к тому или иному «уровню напряжению». «Фактическое напряжение» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО ПРЕДОПРЕДЕЛЯЕТ «фактический УРОВЕНЬ напряжения», используемый для выбора величины тарифа на передачу электроэнергии.
Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится НЕ на источнике питания, то напряжение, относящееся к соответствующему «уровню напряжения», будет тоже 6 кВ. Поэтому, «уровень напряжения» будет «средним вторым» (СН2), так как напряжение ЭПУ полностью совпадает с напряжением, относящимся ко второму «уровню напряжения» (СН2). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: напряжения ЭПУ и напряжения, относящегося к соответствующему «уровню напряжения».
Совсем иная ситуация, когда граница балансовой принадлежности потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ.
При определении фактического уровня напряжения необходимо учитывать, где находится граница балансовой принадлежности: на «источнике питания» или нет?
Когда ГБП потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ, определение «фактического уровня напряжения», на котором подключены ЭПУ потребителя к объектам электросетевого хозяйства ТСО, производится НЕ по фактическому напряжению ЭПУ потребителя, а по фактическому значению питающего (высшего) «напряжения» центра питания (подстанции).
То есть «фактический уровень напряжения» ПРЕДОПРЕДЕЛЯЕТСЯ фактическим питающим (высшим) напряжением источника питания, а не фактическим напряжением ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО. В такой ситуации для нас важно не какое фактическое напряжение ЭПУ потребителя, а какое фактическое питающее (высшее) напряжение источника питания. Напряжение ЭПУ потребителя, в этом случае вообще не участвует в определении «фактического уровня напряжения», на котором подключены ЭПУ потребителя к объектам электросетевого хозяйства ТСО, используемого в дальнейшем для выбора величины тарифа на передачу электроэнергии.
1. соотносить фактическое питающее (высшее) «напряжение» источника питания с «напряжением», относящимся к соответствующему «уровню напряжения»
2. определять «фактический уровень напряжения» по совпадению этих двух напряжений.
Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится на источнике питания, то мы забываем про «фактическое напряжение» ЭПУ.
Сразу же переходим к определению фактического питающего (высшего) напряжение источника питания. Смотрим, что у нас за источник питания? какое высшее напряжение приходит на него? Допустим, у нас источник питания – это подстанция 110/6кВ. Это означает, что на таком источнике питания происходит преобразование напряжения (трансформация) со 110 кВ на 6 кВ. Отсюда, фактическим питающим (высшим) напряжением источника питания является напряжение 110 кВ.
А раз фактическое питающее (высшее) напряжение источника питания составляет 110 кВ, то напряжение, относящееся к соответствующему «уровню напряжения», будет тоже 110 кВ. Поэтому, «фактический уровень напряжения» будет «высоким напряжением» (ВН), так как фактическое питающее (высшее) напряжение источника питания полностью совпадает с напряжением, относящимся к высокому «уровню напряжения» (ВН). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: питающего (высшего) напряжения источника питания и напряжения, относящегося к соответствующему «уровню напряжения».
Таким образом, из сказанного следует, что для определения «фактического уровня напряжения» предопределяющего величину тарифа на передачу электроэнергии, сначала необходимо устанавливать, где находится граница балансовой принадлежности:
В первом случае, за напряжение, относящееся к соответствующему «уровню напряжения», надо принимать фактическое напряжение ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.
Во второму случае, за напряжение, относящееся к соответствующему «уровню напряжения», надо принимать фактическое питающее (высшее) напряжение источника питания, на котором находится ГБП потребителя.
Это вытекает из следующих НПА:
· абзац 3 пункта 15(2) ПНД гласит: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств … потребителя … установлена на объектах…, на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов …»
· пункт 45 Двадцатой методики устанавливает: «При расчете тарифа на услуги по передаче электрической энергии за уровень напряжения принимается значение питающего (высшего) напряжения центра питания (подстанции) независимо от уровня напряжения, на котором подключены электрические сети потребителя (покупателя, ЭСО), при условии, что граница раздела балансовой принадлежности электрических сетей рассматриваемой организации и потребителя (покупателя, ЭСО) устанавливается на: выводах проводов из натяжного зажима портальной оттяжки гирлянды изоляторов воздушных линий (ВЛ), контактах присоединения аппаратных зажимов спусков ВЛ, зажимах выводов силовых трансформаторов со стороны вторичной обмотки, присоединении кабельных наконечников КЛ в ячейках распределительного устройства (РУ), выводах линейных коммутационных аппаратов, проходных изоляторах линейных ячеек, линейных разъединителях»
На основе всего выше сказанного, можно построить ниже приведённую матрицу определения «фактического уровня напряжения», применяемого в дальнейшем для идентификации величины тарифа на услуги по передаче электроэнергии:
Из этой матрицы наглядно видно:
1. как будет меняться «фактический уровень напряжения» в зависимости от того где находится граница балансовой принадлежности: на источнике питания или нет
2. как «фактический уровень напряжения» зависит или НЕ зависит от фактического напряжения ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО. В первом случае напрямую зависит, во втором никак не зависит.
Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении ЭПУ потребителя к объектам электросетевого хозяйства ТСО
Описанная выше логика, нам нужна, чтобы решить всего одну следующую задачу:
Идентифицировать величину тарифа на передачу электроэнергии, для дальнейшего его применения в расчётах между ТСО и потребителем услуг по передаче электроэнергии в рамках договора энергоснабжения с энергосбытовой организацией (далее по тексту – ЭСО) или в рамках прямого договора оказания услуг по передаче электроэнергии с ТСО.
Целевой результат выполнения данной задачи: Правильно идентифицированная по тарифному меню ТСО величина тарифа на передачу электроэнергии.
Решается эта задача по следующему алгоритму:
Приведённый выше алгоритм касается только той ситуации, когда энергопринимающие устройства потребителя непосредственно подключены к объектам электросетевого хозяйства ТСО, и к ним применяются:
1. для ситуации когда «ГБП на источнике питания» положения абзаца 3 пункта 15(2) ПНД: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств … потребителя … установлена на объектах…, на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов …»
2. для ситуации когда «ГБП НЕ на источнике питания» положения части первой абзаца 5 пункта 15(2) ПНД, которые звучат так: «в иных случаях принимается уровень напряжения, на котором подключены энергопринимающие устройства и (или) иные объекты электроэнергетики потребителя электрической энергии (мощности)»
Класс напряжения
Класс напряжения — это типовое значение линейного (междуфазного) напряжения в электрических сетях, которое является номинальным для различных групп оборудования: трансформаторов, линий, генераторов, реакторов и прочих. Класс напряжения определяет требуемый уровень электрической изоляции электрооборудования. Порядок класса напряжения определяет то, для каких целей и задач применяется это оборудование. В частности, низкие напряжения используются для распределения мощности между мелкими потребителями на малые расстояния, средние классы — для распределения мощности между средними потребителями и группами потребителей на умеренной дистанции, высокие и сверхвысокие классы — для распределения мощности между крупными потребителями и для передачи мощности на большие расстояния. Иными словами низкие и средние классы напряжения характерны для распределительных сетей, в то время как высокие и сверхвысокие классы — для системообразующих сетей, связывающих отдельные энергосистемы.
Содержание
Необходимость применения различных классов напряжения
Если второй вопрос разрешился с точки зрения электроэнергетики сравнительно просто: был введен стандарт на классы напряжения, что обеспечило их совместимость, то первый из них оказывается напротив крайне сложным, поскольку передача на большое расстояние создает сразу несколько инженерных проблем. Ниже приводятся основные их них:
Чем выше напряжение, тем меньше потери мощности. Данную закономерность хорошо описывает формула потерь в элементе сети по параметрам конца передачи:
Чем выше напряжение, тем выше предел передаваемой мощности. Для любой передачи существует предел передаваемой активной мощности, определяемые статической устойчивостью, который в простейшем случае на основании уравнения угловой хараткеристки передачи определяется следующим выражением:
[math]\displaystyle P_
где [math]U_1, U_2[/math] — напряжения по концам передачи, кВ; [math]X[/math] — реактивное сопротивление передачи, Ом; [math]P_
Наиболее рациональный класс напряжения с точки зрения минимума потерь и капиталловложений определяется на этапе долгосрочного планирования режимов работы электрической сети.
Классификация классов напряжения
Классы напряжения | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Класс напряжения, кВ | 0,22 | 0,38 | 0,66 | 3 | 6 | 10 | 13,8 | 15,75 | 18 | 20 | 35 | 110 | 150 | 220 | 330 | 500 | 750 | 1150 |
Максимально допустимое рабочее напряжение, кВ | 0,253 | 0,437 | 0,759 | 3,6 | 6,9 | 11,5 | 15,87 | 18,11 | 20,7 | 23 | 40,5 | 126 | 172 | 252 | 363 | 525 | 787 | 1207,5 |
Электрические сети, кВ | 0,22 | 0,38 | 0,66 | 3 | 6 | 10 | — | — | — | 20 | 35 | 110 | 150 | 220 | 330 | 500 | 750 | 1150 |
Генератор, кВ | 0,23 | 0,4 | 0,69 | 3,15 | 6,3 | 10,5 | 13,8 | 15,75 | 18 | 20 | — | — | — | — | — | — | — | — |
Первичная обмотка трансформатора, кВ | 0,22 | 0,38 | 0,66 | 3; 3,15 | 6; 6,3 | 10; 10,5 | 13,8 | 15,75 | 18 | 20 | 35 | 110; 115 | 150; 158 | 230 | 330 | 500 | 750 | 1150 |
Вторичная обмотка трансформатора, кВ | 0,23 | 0,4 | 0,69 | 3,15; 3,3 | 6,3; 6,6 | 10,5; 11 | — | — | — | 22 | 36,75; 38,5 | 115; 121 | 158; 165 | 242 | 347 | 525 | 787 | — |
Комментарии к вопросу о классах напряжения
Учёт режима работы нейтрали
Повышенное напряжение базисного узла
Во многих практических расчётах можно столкнуться с тем, что напряжение базисного узла задается повышенным и редко совпадает с номинальной величиной. В частности, для сетей 110 кВ величина составляет 115 (121) кВ, для сетей 220 кВ — 230 (242) кВ. Объяснений данному факту может быть несколько.
В первую очередь это может быть обусловлено тем, что в соответствии с указаниями по расчёту коротких замыканий при учете тока подпитки от внешней системы необходимо задавать напряжение этой системы выше номинала на 5 %. Эта мера направлена на намеренное завышение расчётного тока короткого замыкания, чтобы исключить неопределенность, связанную с составом оборудования и режимом внешней сети.
Второе объяснение менее убедительно по сравнению с первым, но имеет под собой вполне логичное основание. Как правило, базисный узел задается на шинах мощной электростанции района, либо на шинах подстанции высокого или сверхвысокого напряжения, связывающей район с внешней системой. Опыт расчётов подсказывает, что в большинстве случаев мощность именно вытекает из базисного узла, а не наоборот. В начале передачи, опять же как правило, напряжение выше, чем на приемном конце, а на электростанции напряжения в нормальном режиме выше, чем у потребителей. Таким образом, умышленное завышение напряжения базисного узла имеет своей целью отразить указанную физическую закономерность.
Цветовое обозначение классов напряжения
Цветовая схема согласно стандарту СО ЕЭС | ||
---|---|---|
Класс напряжения | Образец цвета | Цвет в системе RGB |
1150 кВ | 205:138:255 | |
750 кВ (800 кВ ППТ) | 065:065:240 | |
500 кВ | 184:000:000 | |
400 кВ (ЛЭП, цепи ППТ) | 135:253:194 | |
330 кВ | 000:204:000 | |
220 кВ | 204:204:000 | |
128:128:000 | ||
150 кВ | 170:150:000 | |
110 кВ | 070:153:204 | |
27 — 60 кВ | 194:090:090 | |
6 — 24 кВ | 164:100:164 | |
Генераторное напряжение | 204:100:204 | |
Без напряжения | 204:204:204 | |
150:150:150 | ||
Заземлено | 255:153:000 | |
Перегрузка | 255:000:000 | |
Неизвестно | 140:140:140 |
Цветовая схема согласно стандарту ФСК ЕЭС | ||
---|---|---|
Класс напряжения | Образец цвета | Цвет в системе RGB |
1150 кВ | 205:138:255 | |
750 кВ (800 кВ ППТ) | 000:000:200 | |
500 кВ | 165:015:010 | |
400 кВ | 240:150:30 | |
330 кВ | 000:140:000 | |
220 кВ | 200:200:000 | |
150 кВ | 170:150:000 | |
110 кВ | 000:180:200 | |
35 кВ; 20 кВ | 130:100:050 | |
10 кВ | 100:000:100 | |
6 кВ | 200:150:100 | |
до 1 кВ | 190:190:190 | |
Генераторное напряжение | 230:070:230 | |
Обесточено | 255:255:255 | |
Заземлено, ремонт | 205:255:155 |
Разница палитр, как не трудно заметить, не драматична и не препятствует использованию ни одной из них, но предагаемый стандартом ФСК вариант, подразумевает работу в программном комплексе с черным фоном, из-за чего обесточенные участки предлагается показывать белым цветом. Таким образом, ориентация на цветовую схему стандарта СО ЕЭС является более удобной для рядовых расчётов. Категорически соблюдать требования к классам напряжения необходимо только при сотрудничестве непосредственно с соответствующими организациями.