Что такое среднее отклонение
Описательные статистики
Первичные описательные статистики – это наиболее простые характеристики, которыми можно описать психологические данные, которые были получены в ходже тестирования испытуемых.
К наиболее часто используемым в курсовых и дипломных по психологии описательным статистикам можно отнести:
Среднее значение
Простейшая математическая процедура, которую необходимо освоить студенту-психологу при написании диплома – расчет среднего значения.
Среднее значение или среднее арифметическое – это число, получаемое как сумма нескольких показателей, деланная на количество этих показателей. Например, в результате тестирования были получены показатели тревожности в группе из 10-ти человек. Чтобы получить среднее значение тревожности по группе нужно сложить показатели всех испытуемых, а затем получившуюся сумму разделить на 10.
Среднее значение характеризует группу целиком. Зная среднее можно оценить показатели каждого испытуемого относительно остальных. Например, измеряемая в приведённом выше примере тревожность могла быть от 1 до 5 баллов. Пусть средняя по группе тревожность оказалась 3,5 балла. Тогда, показатель испытуемого в 4 балла можно считать относительно высоким, а в 2 балла- относительно низким.
Среднее значение относится к показателям центральной тенденции и отражает степень выраженности показателя в группе. Стандартное отклонение отражает степень изменчивости признака в группе, но о нем речь впереди.
Среднее значение какого-либо показателя характеризует группу в целом и позволяет сравнивать ее с другими группами. Например, проведена диагностика уровня эмпатии в группе мужчин и женщин. Как узнать, влияет ли пол на способность к эмпатии. Один из способов – найти средний уровень этого показателя в группах мужчин и женщин. Например, в группе женщин средний уровень эмпатии равен 23,5 баллов, а в группе мужчин – 17,7 баллов. Как видно, в среднем у женщин эмпатия выше, чем у мужчин.
Среднее – это не единственный статистический показатель, который отражает выраженность переменной в группе. Аналогичную функцию выполняют мода и медиана. Однако они редко используются в дипломах по психологии.
Средние значения выраженности психологических показателей в курсовой или дипломной по психологии представляются в виде таблиц и диаграмм. В таблицах среднее обозначается буквой «М».
Стандартное отклонение
Если среднее арифметическое отражает выраженность показателя в группе, то стандартное отклонение (среднеквадратичное отклонение) показывает его разброс данных или изменчивость. Чем больше величина стандартного отклонения, тем больше разброс показателей в группе испытуемых.
Например, группу мальчиков протестировали методикой на выявление уровня эгоцентризма, показатели которого изменяются от 1 до 10. Расчет среднего показал М=6,5, а стандартное отклонение σ=3 (стандартное отклонение обозначается буквой «сигма»). Эти данные позволяют нам говорить о том, что подавляющее большинство показателей эгоцентризма мальчиков укладываются в диапазон от 3,5 до 9,5 (среднее плюс/минус стандартное отклонение – М ± σ).
Если при тестировании группы девочек среднее значение М=5, а стандартное отклонение σ=1, то большинство испытуемых этой группы имеют эгоцентризм в диапазоне от 4 до 6 (5 ± 1).
Анализирую такие данные в дипломе по психологии можно указать, что средний уровень эгоцентризма у мальчиков больше, чем у девочек. При этом разброс показателей эгоцентризма у мальчиков также больше, чем у девочек, то есть, в группе мальчиков есть испытуемые с очень низкими и очень высокими показателями относительно среднего. У девочек показатели менее «разбросаны» относительно среднего.
Расчет среднего и стандартного отклонения
Формула расчета среднего очень проста и этот параметр можно рассчитать вручную.
Пример расчёта среднего
В таблице приведены показатели, полученные по тесту диагностики уровня одиночества у 64-х испытуемых.
СРЕДНЕЕ ОТКЛОНЕНИЕ
Смотреть что такое «СРЕДНЕЕ ОТКЛОНЕНИЕ» в других словарях:
СРЕДНЕЕ ОТКЛОНЕНИЕ — (mean deviation) В статистике среднее арифметическое (arithmetic mean) отклонений (в абсолютных показателях) всех чисел ряда от их средней арифметической. Например, средняя арифметическая ряда 5, 8, 9 и 10 равняется 8; отклонения от этой средней… … Финансовый словарь
среднее отклонение — Мера разброса: среднее абсолютных величин отклонений от некоторого фиксированного значения, взятых по модулю. Примечания. 1. Обычно в качестве такого фиксированного значения выбирают среднее арифметическое выборки, хотя среднее отклонение… … Словарь социологической статистики
среднее отклонение — vidutinis nuokrypis statusas T sritis automatika atitikmenys: angl. mean deviation vok. Durchschnittsabweichung, f; mittlere Abweichung, f rus. среднее отклонение, n pranc. écart moyen, m … Automatikos terminų žodynas
среднее отклонение — vidutinis nuokrypis statusas T sritis chemija apibrėžtis Nuokrypių nuo rezultatų aritmetinio vidurkio absoliučiųjų dydžių aritmetinis vidurkis. atitikmenys: angl. mean deviation rus. среднее отклонение … Chemijos terminų aiškinamasis žodynas
среднее отклонение — vidutinis nuokrypis statusas T sritis fizika atitikmenys: angl. average deviation; mean deviation vok. Mittelablenkung, f rus. среднее отклонение, n pranc. écart moyen, m … Fizikos terminų žodynas
СРЕДНЕЕ ОТКЛОНЕНИЕ — См. отклонение, среднее … Толковый словарь по психологии
среднее отклонение (выборки) — 2.32. среднее отклонение (выборки) Среднее арифметическое отклонение от начала координат, когда все отклонения имеют положительный знак. Примечание Обычно выбранное начало отсчета представляет собой среднее арифметическое, хотя среднее отклонение … Словарь-справочник терминов нормативно-технической документации
среднее отклонение напряжения — Среднее значение отклонений напряжения в рассматриваемой точке электрической системы за период времени … Политехнический терминологический толковый словарь
среднее — 3.3 среднее (mean): Среднее значение для (выбранного) времени усреднения результатов измерений анемометром. Источник: ГОСТ Р ИСО 1 … Словарь-справочник терминов нормативно-технической документации
ОТКЛОНЕНИЕ, СРЕДНЕЕ — Измерение вариативности выборки значений по сравнению со средним статистическим этой выборки. Оно представляется как среднее арифметическое различий между каждым значением и средним; то есть AD = Х(Х – X)/N, где X – среднее, X, представляет… … Толковый словарь по психологии
Стандартное отклонение
Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.
Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.
Стандартное отклонение обозначается буквой σ (греческая буква сигма).
Стандартное отклонение также называется:
Использование и интерпретация величины среднеквадратического отклонения
Стандартное отклонение используется:
Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.
День 1 | День 2 | День 3 | День 4 | |
---|---|---|---|---|
Пред.А | 19 | 21 | 19 | 21 |
Пред.Б | 15 | 26 | 15 | 24 |
В обеих компаниях среднее количество товара составляет 20 единиц:
Однако, глядя на цифры, можно заметить:
Если рассчитать стандартное отклонение каждой компании, оно покажет, что
Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).
Расчет среднеквадратичного (стандартного) отклонения
Формулы вычисления стандартного отклонения
Разница между формулами S и σ («n» и «n–1»)
Состоит в том, что мы анализируем — всю выборку или только её часть:
Как рассчитать стандартное отклонение?
Пример 1 (с σ)
Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.
День 1 | День 2 | День 3 | День 4 | |
Пред.Б | 15 | 26 | 15 | 24 |
Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:
Применяем эти шаги:
1. Найти среднее арифметическое выборки:
μ = (15 + 26 + 15+ 24) / 4 = 20
2. От каждого значения выборки отнять среднее арифметическое:
3. Каждую полученную разницу возвести в квадрат:
4. Сделать сумму полученных значений:
5. Поделить на размер выборки (т.е. на n):
6. Найти квадратный корень:
Пример 2 (с S)
Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.
У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.
Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.
Яблоня 1 | Яблоня 2 | Яблоня 3 | Яблоня 4 | Яблоня 5 | Яблоня 6 |
9 | 2 | 5 | 4 | 12 | 7 |
Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:
Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.
Применяем практически те же шаги:
1. Найти среднее арифметическое выборки:
Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5
2. От каждого значения выборки отнять среднее арифметическое:
X1 – Xср = 9 – 6,5 = 2,5
X2 – Xср = 2 – 6,5 = –4,5
X3 – Xср = 5 – 6,5 = –1,5
X4 – Xср = 4 – 6,5 = –2,5
X5 – Xср = 12 – 6,5 = 5,5
X6 – Xср = 7 – 6,5 = 0,5
3. Каждую полученную разницу возвести в квадрат:
4. Сделать сумму полученных значений:
Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5
5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):
(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1
6. Найти квадратный корень:
S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193
Дисперсия и стандартное отклонение
Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).
Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:
Ещё расчёт дисперсии можно сделать по этой формуле:
Правило трёх сигм
Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.
Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:
Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.
Стандартное отклонение в excel
Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):
1. Занесите все данные в документ Excel.
2. Выберите поле, в котором вы хотите отобразить результат.
3. Введите в этом поле «=СТАНДОТКЛОНА(«
4. Выделите поля, где находятся данные, потом закройте скобки.
5. Нажмите Ввод (Enter).
В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.
Коэффициент вариации
Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.
Стандартное отклонение делится на среднее и умножается на 100%.
Можно классифицировать вариабельность выборки по коэффициенту вариации:
Среднеквадратическое отклонение
Среднеквадрати́ческое отклоне́ние (синонимы: среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние; близкие термины: станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.
Содержание
Основные сведения
Измеряется в единицах измерения самой случайной величины. Равно корню квадратному из дисперсии случайной величины. Среднеквадратическое отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.
Стандартное отклонение (оценка среднеквадратического отклонения случайной величины Пол, стены вокруг нас и потолок, x относительно её математического ожидания на основе несмещённой оценки её дисперсии):
Правило трёх сигм
Правило трёх сигм () — практически все значения нормально распределённой случайной величины лежат в интервале
. Более строго — не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при условии, что величина
истинная, а не полученная в результате обработки выборки).
Интерпретация величины среднеквадратического отклонения
Большое значение среднеквадратического отклонения показывает большой разброс значений в представленном множестве со средней величиной множества; маленькое значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.
Например, у нас есть три числовых множества: <0, 0, 14, 14>, <0, 6, 8, 14>и <6, 6, 8, 8>. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.
В общем смысле среднеквадратическое отклонение можно считать мерой неопределенности. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.
Практическое применение
На практике среднеквадратическое отклонение позволяет определить, насколько значения в множестве могут отличаться от среднего значения.
Климат
Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.
Спорт
Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.
Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.
Технический анализ
В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера.
См. также
Литература
Описательная статистика |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Статистический вывод и проверка гипотез |
| ||||||||||||
Корреляция | Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания | ||||||||||||
Линейные модели | Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ | ||||||||||||
Регрессия | Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия |
Полезное
Смотреть что такое «Среднеквадратическое отклонение» в других словарях:
Среднеквадратическое отклонение — мера отклонения опытных данных от выборочного среднего значения или от функциональной зависимости, выражаемая в абсолютных единицах, вычисляется по формулам (4), (12). Источник: ГОСТ 20522 96: Грунты. Методы статистической обработки результатов… … Словарь-справочник терминов нормативно-технической документации
Среднеквадратическое отклонение — показатель связи результатов деятельности взаимного фонда с общей ситуацией на рынке или динамикой соответствующего базового индекса. Если среднеквадратическое отклонение равно 1, то стоимость портфеля фонда в точности повторяет изменения… … Финансовый словарь
Среднеквадратическое отклонение — повторяемости: среднеквадратическое отклонение результатов измерений, полученных в условиях повторяемости (является мерой рассеяния результатов измерений в условиях повторяемости). Источник: ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА… … Официальная терминология
Среднеквадратическое отклонение — * сярэднеквадратычнае адхіленне * mean square deviation or standard deviation описательная статистика (параметр), являющаяся мерой рассеяния для приближенно нормально распределенных данных. Если распределение не соответствует закону нормального… … Генетика. Энциклопедический словарь
среднеквадратическое отклонение — vidutinis kvadratinis nuokrypis statusas T sritis automatika atitikmenys: angl. root mean square deviation vok. mittlere quadratische Abweichung, f rus. среднеквадратическое отклонение, n pranc. écart moyen quadratique, m … Automatikos terminų žodynas
Среднеквадратическое отклонение воспроизводимости — Среднеквадратическое отклонение воспроизводимости: среднеквадратическое отклонение результатов измерений, полученных в условиях воспроизводимости (является мерой рассеяния результатов измерений в условиях воспроизводимости). Источник:… … Официальная терминология
среднеквадратическое отклонение воспроизводимости — 3.6.5.1 среднеквадратическое отклонение воспроизводимости: Среднеквадратическое отклонение результатов измерений, полученных в условиях воспроизводимости (является мерой рассеяния результатов измерений в условиях воспроизводимости). Источник:… … Словарь-справочник терминов нормативно-технической документации
среднеквадратическое отклонение воспроизводимости результатов испытаний — 3.21 среднеквадратическое отклонение воспроизводимости результатов испытаний sR:Среднеквадратическое отклонение результатов испытаний, полученных в условиях воспроизводимости (см. 3.19) [5]. Источник … Словарь-справочник терминов нормативно-технической документации
среднеквадратическое отклонение повторяемости (сходимости) результатов испытаний — 3.24 среднеквадратическое отклонение повторяемости (сходимости) результатов испытаний sr: Среднеквадратическое отклонение результатов испытаний, полученных в условиях повторяемости (сходимости) (см. 3.22) [5]. Источник … Словарь-справочник терминов нормативно-технической документации
среднеквадратическое отклонение (совокупности), стандартное отклонение (совокупности) — 3.13 среднеквадратическое отклонение (совокупности), стандартное отклонение (совокупности) [(population) standard deviation] σ: Положительный квадратный корень из дисперсии совокупности σ2. Источник: ГОСТ Р ИСО 12491 2011: Материалы и изделия… … Словарь-справочник терминов нормативно-технической документации