Что такое средняя квадратичная погрешность результатов измерений
Средняя квадратическая погрешность
Вот и еще одна средняя, которая связана с погрешностями.
Средняя квадратическая погрешность (СКП) является мерой точности результатов измерений либо функций измеренных величин и является вероятностной характеристикой.
Рис. 3.1. Нормальный закон распределения
— для диапазона ±m ® Р = 68,3% (» 68%);
— для диапазона ±2m® Р = 95,5% (» 95%);
— для диапазона ±3m® Р = 99,7% (практически 100%).
Таким образом, только в 3-х случаях из 1000 может появиться погрешность, превышающая значение 3m. Погрешности, по абсолютной величине превышающие 3m (предельную погрешность), принято считать грубыми, и результаты измерений, содержащие эту грубую погрешность, исключают из дальнейшей обработки. В некоторых случаях, для ужесточения требований к точности измерений, устанавливают предельную погрешность в диапазоне от 2m до 3m.
Значения коэффициента Стьюдента (t) для различных вероятностей (Р)
| t | P% | t | P% | t | P% |
| 0,1 | 8,0 | 1,1 | 72,9 | 2,1 | 96,4 |
| 0,2 | 15,9 | 1,2 | 77,0 | 2,2 | 97,2 |
| 0,3 | 23,6 | 1,3 | 80,6 | 2,3 | 97,9 |
| 0,4 | 31,1 | 1,4 | 83,8 | 2,4 | 98,4 |
| 0,5 | 38,3 | 1,5 | 86,6 | 2,5 | 98,8 |
| 0,6 | 45,1 | 1,6 | 89,0 | 2,6 | 99,1 |
| 0,7 | 51,6 | 1,7 | 91,1 | 2,7 | 99,3 |
| 0,8 | 57,6 | 1,8 | 92,8 | 2,8 | 99,5 |
| 0,9 | 63,2 | 1,9 | 94,3 | 2,9 | 99,6 |
| 1,0 | 68,3 | 2,0 | 95,5 | 3,0 | 99,7 |
Часто значение СКП указывают с коэффициентом t (коэффициент Стьюдента), который и определяет доверительный вероятностный интервал (х ± tm) результата измерений при установленном уровне вероятности Р. Для этого удобно пользоваться табл. 3.1.
Например, необходимо определить доверительный интервал для величины Х с вероятностью 90%. По таблице интерполированием находим, что для Р1 = 89,0% t1 = 1,6, для Р2 = 91,1% t2 = 1,7: tх = 1,6476 » 1,65.
Это значит, что результат измерений с вероятностью 90% находится в пределах (Х ± 1,65 m).
Если измеряемая величина Х известна, то значение СКП определяется по формуле Гаусса:

Напомним, что знак [. ] – это знак гауссовой суммы.
Для случаев, когда измеряемая величина неизвестна, используется формула Бесселя:

Как видно из формул (3.9) и (3.10), в случае, когда измеряемая величина известна, для оценки точности достаточно уже одного измерения (оно и является необходимым). Как уже указывалось выше, чаще всего формулу Гаусса используют при оценках точности эталонируемых приборов при измерении известных величин (эталонов). Для оценки точности по формуле Бесселя необходимыми являются как минимум два измерения. Формула Бесселя используется при оценках точности результатов массовых (многократных) измерений одной величины, заранее неизвестной.
При возрастании числа измерений значения СКП, полученные по формулам Гаусса и Бесселя, становятся практически одинаковыми (примерно с n ³ 20). При этом значение СКП одного измерения стремится к пределу mпред, который определяется точностью прибора, точностью метода или программы измерений. Очевидно, выше об этом уже было сказано, что на практике невозможно, да и нецелесообразно по ряду причин, обеспечивать весьма большое число измерений одной величины. При этом практическое число измерений должно обеспечивать получение результата измерения с заданной точностью при установленном уровне доверительной вероятности.
Поскольку число измерений является ограниченным, то сама СКП содержит погрешность, определяемую по приближенной формуле:

Она так и называется – средняя квадратическая погрешность средней квадратической погрешности (СКП СКП).
Здесь уместно возвратиться к классификации погрешностей. Не все виды погрешностей рассмотрены нами выше.
Часто при исследованиях рядов погрешностей измерений используют т.н. вероятную погрешность, которую обозначают буквой r. Величина вероятной погрешности может быть оценена по приближенной формуле

в предположении, конечно, что распределение погрешностей подчиняется нормальному закону.
Вероятную погрешность называют еще срединной погрешностью. Если не хочется делать вычисления по формуле (3.12), потому что в неё входит значение m, которое необходимо получить по формуле Бесселя, то можно определить вероятную или срединную погрешность, расположив ряд погрешностей по их возрастанию по абсолютным величинам. В середине полученного ряда и будет находиться значение этой погрешности. Это если число погрешностей нечётное. А если оно чётное, то срединной погрешностью будет среднее значение соседних погрешностей в середине ряда.
Не надо путать срединную погрешность со средней погрешностью vo, которую можно получить тоже по простой формуле:

Здесь также требуется условие подчинения ряда измерений (погрешностей) нормальному закону.
Средняя погрешность является математическим ожиданием абсолютных значений отклонений результатов измерений какой-либо величины от математического ожидания для этих результатов. Приближенно значение средней погрешности можно оценить по формуле:

где vi – уклонения результатов измерений от их среднего арифметического.
Часто формулу (3.13) используют для предварительной оценки средней квадратической погрешности:

Среднеквадратическая погрешность
Класс точности СИ
Класс точности— основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.
Погрешность может нормироваться, в частности, по отношению к:
результату измерения (по относительной погрешности);
длине (верхнему пределу) шкалы прибора (по приведенной погрешности).
Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0 — 30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.
Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.
Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.
Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.
Погрешность измерения —отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью.
Доверительным называется интервал, который с заданной надежностью покрывает оцениваемый параметр.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Доверительным интервалом параметра 







Граничные точки доверительного интервала 

Стандартная ошибка среднего в математической статистике — величина, характеризующая стандартное отклонение выборочного среднего, рассчитанное по выборке размера 


Стандартная ошибка среднего вычисляется по формуле:
где 

Поскольку дисперсия генеральной совокупности, как правило, неизвестна, то оценка стандартной ошибки вычисляется по формуле:
где 

Пример использования: «средний рост студента первого курса составляет 180 ± 20 см с вероятностью 95 %»
180 см — среднее значение выборки;
95 % — доверительная вероятность (коэффициент надёжности);
160—200 см — доверительный интервал;
20 см — предел погрешности.
Толкование: «с вероятностью 95 % истинное среднее значение генеральной совокупности лежит в интервале 160—200 см»
Для нормального распределения:
где, 

Пределом относительной погрешности называют величину:
Среднеквадратическая погрешность
Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
Средняя квадратическая погрешность среднего арифметического:
По форме представления
Абсолютная погрешность — 






Существует несколько способов записи величины вместе с её абсолютной погрешностью.
Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с.
Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,3806488(13)×10 −23 Дж/К, что также можно записать значительно длиннее как 1,3806488×10 −23 ±0,0000013×10 −23 Дж/К
Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):


Относительная погрешность является безразмерной величиной; её численное значение может указываться, например, в процентах.
Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле 

если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то 
если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.
Приведённая погрешность также является безразмерной величиной.
По причине возникновения
Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.
В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора. В различных областях науки и техники могут подразумеваться различные стандартные (нормальные) условия (например, Национальный институт стандартов и технологий США за нормальную температуру принимает 20 °C, а за нормальное давление — 101,325 кПа); кроме того, для прибора могут быть определены специфические требования (например, нормальное рабочее положение). Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора — например, температурная (вызванная отклонением температуры окружающей среды от нормальной), установочная (обусловленная отклонением положения прибора от нормального рабочего положения), и т. п.
Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)×10n, где показатель степени n = 1; 0; −1; −2 и т. д.
По характеру проявления
Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние обычно можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.
Математически случайную погрешность, как правило, можно представить белым шумом: как непрерывную случайную величину, симметричную относительно 0, независимо реализующуюся в каждом измерении (некоррелированную по времени).
Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путем усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объёма данных стремится к 0 (закон больших чисел).
Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (см. Центральная предельная теорема). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.
Однако априорная убежденность в «нормальности» на основании ЦПТ не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.
Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).
Систематическая погрешность— погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.
Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок, либо «улучшением» эксперимента.
Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).
Надо отметить, что деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определённых условиях может носить характер как случайной, так и систематической ошибки.
По способу измерения
Погрешность прямых измерений вычисляется по формуле


Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины. Если 


Погрешность косвенных невоспроизводимых измерений вычисляется аналогично вышеизложенной формуле, но вместо 








