Что такое стандартная ошибка в статистике
Понятие об ошибке выборки.
Поможем написать любую работу на аналогичную тему
Стандартная ошибка статистики, т.е. оценка стандартного отклонения ее выборочного распределения, приближенно показывает, насколько значение статистики может отличаться от своего среднего значения (параметра генеральной совокупности).
Стандартная ошибка среднего (или просто стандартная ошибка) приближенно показывает, насколько ее выборочная средняя (случайная наблюдаемая величина) отличается от среднего генеральной совокупности μ (фиксированная неизвестная величина):
(7.1)
Стандартная ошибка уменьшается с увеличением размера выборки n (при прочих равных условиях), отражая тот факт, что большая по размеру выборка содержит больше информации и таким образом достигается большая точность.
Когда объем генеральной совокупности настолько мал, что выборка составляет достаточно большую часть генеральной совокупности, стандартную ошибку можно уменьшить, введя в формулу корректирующий (поправочный) коэффициент для конечной совокупности, чтобы получить уточненную (откорректированную) стандартную ошибку:
(7.2)
Кроме того, формулу (7.1) используют повторной выборке, а формулу (7.2) – для бесповторной, однако, если объем выборочной совокупности достаточно большой, то поправочный коэффициент не играет большой роли и стандартная ошибка для бесповторной выборки определяется по формуле (7.1).
Для измерения стандартной ошибки доли альтернативного признака применяют другие формулы. При повторной выборке:
(7.3)
При бесповторной выборке:
(7.4)
Теоретическую (идеальную) генеральную совокупность можно определить; как очень большую, иногда предполагаемую (воображаемую) генеральную совокупность, которую представляет ваша выборка. Если вас интересует теоретическая генеральная совокупность, не используйте поправку на конечность генеральной совокупности. С другой стороны, если необходимо сделать вывод об основе выборки, не выходя за ее пределы, то поправка может быть полезной, так как ее использование уменьшает вариацию системы. Если есть сомнения, лучше не использовать поправку.
Стандартная ошибка доли показывает неопределенность, или изменчивость, в наблюдаемой доле
, а стандартная ошибка среднего
–неопределенность в наблюдаемой частоте х.
Доверительным интервалом называют интервал, рассчитанный из данных таким образом, что существует известная вероятность включения интересующего вас (неизвестного) параметра генеральной совокупности в интервал, и эта вероятность интерпретируется с точки зрения случайного эксперимента начинающегося с извлечения случайной выборки. Границы доверительного интервала определяются на основе точечной оценки и предельной ошибки выборки, которая равна произведению стандартной ошибки и — критерия Стьюдента. Предельная ошибка выборки показывает максимально возможную ошибку для принятой вероятности, а доверительное число
– как соотносятся предельная и стандартная ошибки.
(7.3)
Вероятность того, что параметр совокупности будет принадлежать доверительному интервалу называют уровнем доверительности, который обычно устанавливают равным 95%, хотя часто используют и другие уровни – 90; 99; 99,9%. Чем выше уровень доверительности, тем шире (а значит, и менее полезен) доверительный интервал. Приблизительная обобщенная формулировка утверждения о доверительном интервале имеет следующий вид: мы уверены на 95%, что значение параметра генеральной совокупности находится между значением оценки минус две стандартные ошибки оценки и значением оценки плюс две стандартные ошибки оценки.
Это утверждение основано на том факте, что при нормальном распределении с вероятностью 0,95 следует ожидать значения на расстоянии , т.е. приблизительно два стандартных отклонения от среднего.
Формулировка утверждения о двустороннем 95% доверительном интервале для среднего генеральной совокупности имеет следующий вид:
мы уверены, на 95%, что среднее генеральной совокупности m находится между и
, где значение t берется из t-таблицы.
(7.4)
Формулировка утверждения о двустороннем 95% доверительном интервале для генеральной доли имеет следующий вид:
мы уверены на 95%, что доля интересующего нас свойства в генеральной совокупности р находится между и
, где значение t берется из t-таблицы.
(7.5)
Чтобы получить доверительный уровень, отличный от 95%, следует просто при построении доверительного интервала использовать соответствующее значение. t-таблицу используют для коррекции дополнительной неопределенности, обусловленной тем, что вместо неизвестного точного значения изменчивости генеральной совокупности используют оценку (стандартную ошибку). Когда вы работаете с бесповторной выборкой размера п, число степеней свободы, равное , представляет собой количество независимых элементов информации, использованных при вычислении стандартной ошибки (поскольку при вычислении стандартного отклонения из наблюдаемых значений вычитают среднее). Если известно точное значение стандартной ошибки, используют t-значение для бесконечного числа степеней свободы.
Для того чтобы использование доверительного интервала было корректным, необходимо выполнение двух следующих условий:
(1) данные должны представлять собой случайную выборку из рассматриваемой генеральной совокупности;
(2) измеренные значения должны подчиняться нормальному распределению.
Первое условие гарантирует, что данные правильно представляют неизвестный параметр, а второе дает основание использовать t-таблицу для вычисления вероятности.
Односторонний доверительный интервал с известной доверительностью указывает, что среднее генеральной совокупности либо не меньше, либо не больше некоторого вычисленного значения. Граничное значение для одностороннего доверительного интервала вычисляется таким же образом, как и для двустороннего интервала, только t-значение для двустороннего интервала заменяется на t-значение для одностороннего интервала и выбирается граничная точка интервала так, чтобы построенный односторонний интервал включал выборочное среднее .
При использовании одностороннего интервала вы должны быть уверены, что независимо от поведения данных вы будете использовать односторонний интервал с той же стороны (т.е. открытый в сторону больших значений или открытый в сторону меньших значений). В противном случае использование одностороннего доверительного интервала некорректно. При наличии сомнений лучше использовать двусторонний интервал. Утверждение об одностороннем доверительном интервале формулируется следующим образом:
мы уверены на 95%, что среднее генеральной совокупности не меньше, чем ; или мы уверены на 95%, что среднее генеральной совокупности не больше, чем
.
Интервал предсказания позволяет использовать данные выборки для предсказания с известной вероятностью значения нового наблюдения при условии, что это новое наблюдение получено тем же способом, что и предшествующие. В качестве меры неопределенности здесь используется стандартная ошибка предсказания , мера изменчивости расстояния между средним значением выборки и новым наблюдением. Интервал предсказания строят тем же способом, что и доверительный интервал; просто заменяют стандартную ошибку среднего на, стандартную ошибку предсказания. Формулировка утверждения об интервале предсказания (двустороннем) для значения нового наблюдения будет следующей:
Мы уверены на 95%, что новое наблюдение будет находиться между и
.
Формулировка утверждения об интервале предсказания (одностороннем) для значения нового наблюдения будет такой:
Мы уверены на 95%, что новое наблюдение будет не меньше, чем ; или мы уверены на 95%, что новое наблюдение будет не больше, чем
.
Выбирая соответствующие t-значение из таблицы, интервалы предсказания для уровней доверительности, отличных от 95%, необходимо помнить, что доверительный интервал дает информацию о среднем генеральной совокупности, в то время как интервал предсказания дает информацию о единственном наблюдении, случайно выбранном из той же генеральной совокупности.
Ранее мы рассматривали пример анализа, где аналитик оценивал средние планируемые капитальные затраты клиентов на телекоммуникационное оборудование.
Если предположить, что выборка репрезентативна для совокупности, то как аналитик может оценить ошибку выборки при расчете среднего значения по совокупности?
Рассматриваемое как формула, которая использует функцию случайных исходов случайной величины, выборочное среднее само по себе является случайной величиной с распределением вероятностей. Это распределение вероятностей называется выборочным распределением статистики (англ. ‘sampling distribution’).
Иногда возникает путаница, потому что термин «выборочное среднее» также используется в другом смысле. При расчете выборочного среднего для конкретной выборки, мы получаем определенное число, скажем, 8.
Если мы говорим, что «выборочное среднее равно 8», мы используем термин «выборочное среднее» в смысле конкретного исхода выборочного среднего как случайной величины. Число 8 является, конечно же, постоянной величиной и не имеет распределения вероятностей.
В данном обсуждении, мы не рассматриваем «выборочное среднее» как постоянную величину, относящуюся к конкретной выборке.
Центральная предельная теорема.
Формально она формулируется следующим образом:
Центральная предельная теорема позволяет сделать довольно точные вероятностные утверждения о среднем значении совокупности на основе выборочного среднего, независимо от размера распределения совокупности (так как оно имеет конечную дисперсию), потому что выборочное среднее приблизительно соответствует нормальному распределению для выборок большого размера.
Тут сразу возникает очевидный вопрос:
«Какой размер выборки можно считать достаточно большим, чтобы мы могли считать, что выборочное среднее соответствует нормальному распределению?»
В целом, если размер выборки \( n \) больше или равен 30, то можно считать, что выборочное среднее приблизительно нормально распределено.
Центральная предельная теорема утверждает, что дисперсия распределения выборочного среднего равна \( \sigma^2 / n \). Положительный квадратный корень из дисперсии является стандартным отклонением.
Стандартное отклонение выборочной статистики также называют стандартной ошибкой статистики (англ. ‘standard error’).
Стандартная ошибка выборочного среднего является важной величиной в применении центральной предельной теоремы на практике.
Определение стандартной ошибки среднего значения выборки.
Для среднего значения выборки \( \overline X\) рассчитанного на основе выборки из совокупности со стандартным отклонением \( \sigma \), стандартная ошибка среднего значения выборки определяется одним из двух выражений:
\( \Large \dst \sigma_ <\overline X>= <\sigma \over \sqrt n>\) (Формула 1)
когда мы знаем стандартное отклонение совокупности \( \sigma \), или
\( \Large \dst s_ <\overline X>= \) (Формула 2)
когда нам не известно стандартное отклонение совокупности и необходимо использовать стандартное отклонение выборки \(s\), чтобы оценить его.
Необходимо отметить технический момент: Когда мы делаем выборку размера \(n\) из конечной совокупности размера \(N\), мы применяем уменьшающий коэффициент к стандартной ошибке выборочного среднего, который называется поправкой для конечной совокупности (или FPC, от англ. ‘finite population correction factor’).
Если мы рассчитали стандартную ошибку равную, скажем, 20, в соответствии с Формулой 1 или Формулой 2, то оценка ошибки с поправкой составляет \( 20(0.898933) = 17.978663 \).
FPC применяется только когда мы делаем выборку из конечной совокупности без замены.
На практике, большинство аналитиков не применяют FPC, если размер выборки \(n\) слишком мал по сравнению с \( N \) (скажем, менее 5% от \(N\) ).
Для получения дополнительной информации о поправке для конечной совокупности см. Daniel and Terrell (1995).
На практике, нам почти всегда приходится использовать Формулу 2. Стандартное отклонение выборки \(s\) можно рассчитать, найдя квадратный корень из дисперсии выборки \(s^2\), которая рассчитывается следующим образом:
Мы скоро увидим, как мы можем использовать среднее значение выборки и его стандартную ошибку, чтобы сделать вероятностные утверждения о среднем значении совокупности, используя технику доверительных интервалов.
Но сначала мы проиллюстрируем всю силу центральной предельной теоремы.
Пример (3) применения центральной предельной теоремы.
Примечательно, что выборочное среднее для выборок больших размеров будет распределяться нормально, независимо от распределения генеральной совокупности.
Чтобы проиллюстрировать центральную предельную теорему в действии, мы используем в этом примере явное ненормальное распределение и используем его для создания большого количества случайных выборок размером 100.
Затем мы рассчитываем выборочное среднее для каждой выборки. Частотное распределение рассчитываемых выборочных средних является приближением распределения выборочного среднего для данного размера выборки.
Выглядит ли выборочное распределение как нормальное распределение?
Вернемся к примеру с аналитиком, изучающим планы капитальных затрат клиентов на покупку телекоммуникационного оборудования.
Функция вероятности этой непрерывной равномерной случайной величины имеет довольно простую форму, не соответствующую нормальному распределению. Это горизонтальная линия с пересечением на вертикальной оси в точке 1/100. В отличии от нормальной случайной величины, для которой близкие к среднему исходы были бы наиболее вероятны, для равномерной случайной величины все возможные исходы равновероятны.
Чтобы проиллюстрировать силу центральной предельной теоремы, мы проводим моделирование методом Монте-Карло для изучения планируемых капитальных расходов на телекоммуникационное оборудование.
Моделирование методом Монте-Карло предполагает использование компьютера, чтобы смоделировать работу рассматриваемой системы с учетом риска. Составной частью моделирования методом Монте-Карло является генерация большого числа случайных выборок из заданного распределения вероятностей или распределений.
В этом моделировании мы делаем 200 случайных выборок капитальных затрат 100 компаний (200 сгенерированных случайных исходов, каждый из которых состоит из капитальных затрат 100 компаний при \(n = 100 \)).
В каждом испытании моделирования, 100 значений капитальных затрат генерируются из равномерного распределения (0, 100). Для каждой случайной выборки, мы вычисляем выборочное среднее. Всего мы проводим 200 имитационных испытаний.
Результаты этого моделирования методом Монте-Карло приведены в Таблице 2 в виде частотного распределения. Это распределение является рассчитанным выборочным распределением среднего значения.