Что такое статический маршрут
Как прописать статический маршрут? И зачем он нужен?
Вам необходимо прописать сетевой маршрут чтобы ваш компьютер знал как ему «ходить» в Интернет и в локальную сеть.
Сейчас очень распространено для безопасности использовать «Виртуальные частные сети» (VPN). VPN используют как в организациях, для организации своей защищенной сети, так и провайдеры, для предоставления доступа, к глобальной сети Интернет, простым пользователям. Но, так или иначе, это иногда вызывает небольшие неудобства, как в организациях, так и у обычных пользователей. Например, у вас дома два компьютера один из которых имеет доступ в Интернет по средствам VPN, также он соединен со вторым компьютером локальной сетью, и каждый раз, когда он подключается к Интернету, то связь между двумя компьютерами теряется, так как первый компьютер (который подключился к VPN) уже находиться в другой сети и поэтому недоступен со второго компа. Это можно исправить как раз с помощью статического маршрута. Или другой случай, пригодиться сисадминам, (пример из жизни) есть организация, у которой имеются небольшие удаленные офисы, связь с которыми идет по средствам OpenVPN и был случай, когда мне пришлось узнать внешние ip адреса у этих удаленных офисов, я подключался к компьютеру по VPN сети и соответственно не мог узнать внешний ip, так как он мне бы показал внешний ip нашего VPN соединения, но что же делать, я просто на всего прописал один статический маршрут на удаленном компьютере, с помощью которого я попал на нужный мне сайт (который показывал внешний ip) и все. Есть, конечно, и другой вариант, съездить туда и узнать ip без подключения к VPN сети, но вы сами понимаете, что на это нет времени и попросту неохота. Теперь вы немного представляете, где и для чего вам может пригодиться знание того, как прописываются статические маршруты.
Хватит теории, переходим к практике. Сейчас мы с вами пропишем маршрут, который разрешит нам получить доступ к локальной сети при включенном VPN соединении, пригодиться обычным пользователям, у которых дома более одного компьютера, а в Интернет выходят по средствам VPN.
Пуск->выполнить->cmd и набираем следующую команду:
route –p add 192.168.1.0 mask 255.255.255.0 192.168.1.1
где:
route – сама программа которая работает с таблицей маршрутизации;
-p – ключ, который говорит, что маршрут будет постоянный, так как (Важное замечание!) без этого ключа все маршруты, которые вы добавите удаляться после перезагрузке, поэтому если вы хотите использовать маршрут всегда, то пропишите этот ключ, если только один раз, то его можно не писать;
add – сама команда добавляющая запись в таблицу маршрутизации;
192.168.1.0 – сеть, с которой вы хотите иметь связь;
mask 255.255.255.0 – маска подсети;
192.168.1.1 – адрес шлюза, обычно это адрес модема.
Добавив всего один маршрут вы получаете доступ к своей сети при подключенном Интернете т.е. VPN соединении.
Вот еще один небольшой пример, у вас дома подключение к интернету через модем ADSL и вам иногда (ну или постоянно) требуется подключение к VPN сети и соответственно вы уже выхода в интернет через свой канал не будите иметь, но с помощью статического маршрута вы можете получить доступ к определенным сайтам (узнав предварительно их ip адреса, с помощью команды ping в командной строке, например ping yandex.ru) к которым вам бы хотелось иметь постоянный доступ (и при подключенном vpn соединение и не подключенном). Например, сайт имеет ip адрес 172.18.24.13 а шлюз (маршрутизатор, модем) имеет IP адрес 192.168.0.1 вам необходимо прописать следующие:
route –p add 172.18.24.13 mask 255.255.255.255 192.168.0.1
Теперь поговорим поподробней о команде route. Общий синтаксис:
route [-f] [-p] [destination] [mask ] [gateway] [metric ] [if ]
Для того чтобы просто посмотреть таблицу маршрутизации у себя на компьютере введите в командную строку следующие:
Следует помнить что, проводя все выше указанные манипуляции нужно быть внимательным, так как ошибка всего в одной цифре приведет к нежелательным результатам, не критичным, но нежелательным. В особенности это относиться к корпоративным сетям, где маршрутизация уже настроена, и вы можете легко изменить, удалить нужные маршруты.
Статический маршрут на примере домашних роутеров
Всем привет! Статическая маршрутизация – это по сути специальный выделенный путь, по которому должен пройти пакет информации из пункта А в пункт Б. Напомню, что у нас в сети чаще всего встречаются два устройства: маршрутизаторы и коммутаторы. Напомню, что коммутаторы работают на канальном уровне, а маршрутизаторе на сетевом. Далее я коротко расскажу, про Static Route и как это настроить на домашнем устройстве.
Коротко про маршрутизацию
Маршрутизатор, исходя из названия, имеет у себя таблицу маршрутизации, а коммутатор коммутации. Все логично, не правда ли. Но есть небольшая проблема коммутации. Представим, что у нас есть две сети по 250 машин и между ними стоят 2 свича.
Если вы помните в таблице коммутации содержатся MAC-адреса. Да они уникальны, поэтому для работы сети нужно, чтобы каждый свич знал, как минимум 500 таких адресов, что не так мало. И тут встает проблема масштабируемости сети, при добавлении новых машин.
А что если установить вместо коммутаторов маршрутизаторы. В итоге у нас есть две сети:
И чтобы пакету добраться из одной сети в другую, нужна одна запись в таблице маршрутизации, а именно о соседнем роутере, который уже в свою очередь знает компьютеры «из своего района». Это и удобно, и экономично в плане хранения нужной информации, так как не нужно хранить таблицу из MAC-адресов всех участников сети.
СОВЕТ! Для большей картины понимания самой темы, советую почитать дополнительные материалы про то, что такое маршрутизатор, коммутатор и про модель OSI.
И тут у нас появляются два понятия:
Далее я расскажу, как вводить эти статические маршруты для использования их в домашних роутерах.
Смотрим на картинку выше. У нас есть второй роутер (router 2), который имеет доступ к интернету (он же является основным шлюзом). У нас есть компьютер (PC), который подключен сначала к коммутатору. Коммутатор подключен к двум роутерам.
Проблема в том, что ПК должен иметь доступ к серверу (172.30.30.1), но при запросе на router 2, у него в таблице маршрутизации нет данных об этих серверах. Теперь давайте попробуем вписать эти настройки в маршрутизатор.
ШАГ 1: Заходим в настройки роутера
Вот мы и перешли непосредственно к настройке статической маршрутизации. Подключаемся к сети интернет-центра через кабель или по Wi-Fi. Далее нужно ввести DNS или IP-адрес роутера в адресную строку любого браузера. Настройку мы будем делать через Web-интерфейс. Подсказка: адрес можно подсмотреть на этикетке под корпусом аппарата. Чаще всего используют адреса:
Если вы ранее его настраивали, вводим логин и пароль – их также можно подсмотреть на той же самой бумажке. Чаще всего используют комбинации:
ШАГ 2: Настройка
Напомню, что далее я буду рассматривать конкретный пример, который мы разобрали выше. И на основе этого примера буду вводить свои данные. У вас статические маршруты могут быть другие. Вот какие данные нужно будет ввести (смотрим на схему подключения, чтобы вам было понятно):
Надеюсь я примерно объяснил, как именно статический маршрут нужно заполнять. Теперь приступим непосредственно к практике. Смотрите главу по своей модели.
TP-Link
Старая прошивка
Слева находим раздел «Дополнительные настройки маршрутизации», и в открывшемся списке нажимаем по пункту «Список статических маршрутов». Нажимаем по кнопке «Добавить».
Новая прошивка
«Дополнительные настройки» – «Сеть» – «Расширенные настройки маршрутизации». Нажимаем по плюсику и вписываем нужную информацию.
D-Link
В классическом светлом интерфейсе нужно перейти в «Дополнительно» и нажать по «Маршрутизации».
В темной прошивке все делается также, только сначала нужно перейти в «Расширенные настройки».
Переходим в раздел «Локальная сеть», открываем вкладку «Маршруты» и вписываем наши данные. В конце не забудьте нажать на плюсик, правее таблички и нажать на кнопку «Применить».
ZyXEL Keenetic
Новая прошивка
Переходим на страницу «Маршрутизации» и нажимаем по кнопке добавления правила.
Теперь вводим данные:
Старая прошивка
Нажимаем по значку плакетки в самом низу и переходим на вкладку «Маршруты». Нажимаем по кнопке добавления и вводим нужные вам данные.
Добавление целого списка маршрутов
Кстати тут вы можете загрузить сразу целую таблицу маршрутизации. Для этого выбираем в том же разделе другую кнопку.
Файлик должен иметь расширение типа BAT. И иметь вид как на скрине ниже. Его спокойно можно создать в блокноте.
Вид достаточно простой:
route ADD IP-адрес назначения MASK указываем маску указываем адрес шлюза
route ADD 172.30.30.1 MASK 255.255.255.0 192.168.0.2
ПРИМЕЧАНИЕ! Каждый новый адрес должен начинаться с новой строки, а после последнего указанного IP не должен стоять пробел.
Netis
Переходим в раздел «Advanced» (кнопкам в правом верхнем углу) – «Расширенные» – «Статический маршрут.» – вводим каждый пункт и нажимаем по кнопке «Добавить».
Tenda
Нужный нам пункт находится в разделе «Расширенные настройки».
А вы хорошо знаете статическую маршрутизацию?
Статический маршрут — первое, с чем сталкивается любой человек при изучении понятия маршрутизации IP пакетов. Считается, что это — наиболее простая тема из всех, в ней всё просто и очевидно. Я же постараюсь показать, что даже настолько примитивная технология может содержать в себе множество нюансов.
Оговорка. При написании топика я исхожу из того, что читатель знаком с концепцией маршрутизации, умеет делать статические маршруты и не считает слово «ARP» ругательным. Впрочем, даже бывалые связисты наверняка найдут тут что-то новое.
Все примеры были проверены на IOS линейки 15.2M. Поведение других ОС может различаться.
И никакого динамического роутинга тут не будет.
Мы работаем со следующей топологией:
Как появляется статический маршрут?
Для начала, выполним команду, которую знает каждый, и посмотрим дебагами, что произойдет:
IOS создал маршрут, и сразу послал arp запрос в поисках next hop, который у нас – 10.0.0.3. И сразу вопрос: откуда роутер узнал, что запрос надо слать в интерфейс Gi0/1? Наверняка кто-то скажет «из списка локальных интерфейсов», и жестоко ошибется. Маршрутизация так не работает. На самом деле, IOS сделал рекурсивный запрос к таблице маршрутизации, чтобы узнать, как добраться до next hop:
И вот он, наш Gi0/1. IOS узнает, что с рекурсивными запросами к RIB надо заканчивать, как только находит маршрут с флагом «directly connected». Но что если ему в ответ на изначальный запрос к 10.0.0.3 вернется вовсе не connected маршрут, а промежуточный, ссылающийся на другой next hop? Вернемся к этому чуть позже, а пока вспомним, что такое CEF.
Примерно во всей документации, ориентированной на начинающих, говорится, что каждый пакет перемещается в соответствии с таблицей маршрутизации. На самом деле на всех более-менее современных платформах это уже не так, ведь таблица маршрутизации (далее – RIB) вовсе не оптимизирована для быстрой передачи данных. Оценить масштаб бедствия позволяет эта таблица (хотя у process switching’а множество недостатков помимо неоптимальных запросов – например, постоянное переключение шедулера CPU между контекстами, что весьма затратно). CEF является серьезной оптимизацией. В современной реализации он строит две таблицы – FIB (Forwarding Information Base, таблица передачи пакетов, в основе нее – связный граф со страшным названием 256-way mtrie) и adjacency table (таблица соседств). Первая из них строится на основе таблицы маршрутизации и за один проход позволяет получить всю нужную информацию. Строится она заранее, еще до того, как появится первый соответствующий ей пакет.
Вернемся к нашему статическому маршруту. Вот запись в таблице маршрутизации:
Куда слать пакет? Где искать 10.0.0.3? Непонятно. Надо еще раз запросить таблицу маршрутизации, на этот раз по поводу 10.0.0.3, и, если надо, выполнить еще несколько итераций, пока не выясним connected интерфейс. И вот примерно таким образом мы фактически в несколько раз снижаем производительность маршрутизатора.
А вот что говорит CEF:
Просто и лаконично. Есть интерфейс, есть next hop, к которому надо слать пакет. Что там говорилось про adjacency table?
Обратим внимание на какую-то длинную последовательность в предпоследней строке. Что-то это напоминает… Смотрим mac 10.0.0.3:
Смотрим свой mac адрес на gi0/1:
Ага. Та страшная строка – всего лишь два мака, которые надо подставить в заголовок Ethernet на этапе инкапсуляции, и ethertype 0x0800, т.е. банальный IPv4. И в двух таблицах CEF есть абсолютно вся информация, какая нужна для успешной отправки пакета дальше по цепочке.
Если у кого-то возникнет вопрос, зачем железке держать сразу две таблицы вместо одной, то дам очевидный ответ: обычно у маршрутизатора мало интерфейсов (а заодно и соседей) и много маршрутов. Какой смысл тысячи раз дублировать одни и те же маки в FIB? Памяти много не бывает, особенно на аппаратных платформах, будь то новомодные ASR’ы или даже L3 свитчи линейки Catalyst. Все они задействуют CEF при передаче пакетов.
И кстати, вернемся на минутку к изначальному дебагу. Отключим CEF командой no ip cef (никогда так не делайте) и сравним результат:
Маршрут добавлен. Arp запроса не было. И правильно – зачем RIB сдался mac адрес? Если пустить пинг до, к примеру, 3.1.1.1, то скорее всего будет так:
Первый пакет отбрасывается, и роутер посылает arp запрос с целью узнать mac адрес 10.0.0.3, если он ранее не был известен. CEF же всегда заранее узнает mac адрес next hop’а.
С этим разобрались. Теперь вернемся к вопросу, что будет, если next hop статического маршрута вовсе не на directly connected интерфейсе. Поступим просто:
, где Gi0/2 имеет адрес 100.100.100.100/24.
Как все плохо-то… А что если у нас есть маршрут на целую суперсеть?
Сейчас наша таблица маршрутизации выглядит так:
Вроде хорошо. Новый маршрут на 100.100.100.101 не применяется для 10.0.0.3, так как его маска /8 намного короче, чем /24 у connected интерфейса. Но вдруг Gi0/1, содержавший next hop для 3.1.1.0/24, по какой-то непонятной причине ушел в down, и его connected маршрут пропал из RIB.
Ой. Теперь пакеты на сеть 3.1.1.0/24 идут куда-то не туда. Я не могу представить себе сценарий, когда ожидаемое поведение статического маршрута – переключение на другой интерфейс. Если за тем интерфейсом находится резервный путь, то все-таки надо создавать еще один статический маршрут…
Что делать? Указывать сразу в маршруте интерфейс. Пересоздадим маршрут:
Поднимаем Gi0/1. Смотрим, куда теперь ведет маршрут на 3.1.1.0/24:
Тут уже указан интерфейс. Поэтому не будет рекурсивных запросов к таблице маршрутизации. Проверяем FIB:
Да, никакого «recursive». А если снова погасить gi0/1? Маршрут исчез.
И это притом, что маршрут до 10.0.0.3 все еще был:
А что будет, если путь к next hop даст маршрут по умолчанию, а маршрут на 3.1.1.0/24 не ссылается на интерфейс?
Обратите внимание, что первой строкой после «show ip cef» идет «0.0.0.0/0», а не «3.1.1.0/24». Несмотря на то, что next hop формально есть, по факту все итерации опроса таблицы маршрутизации (кроме первой) игнорируют маршрут по умолчанию, что логично, иначе любой запрос к таблице маршрутизации почти всегда бы резолвился (под «резолвиться» понимается нахождение интерфейса, в который нужно отправить пакет). Поэтому наш статический маршрут отсутствует, но пакеты все равно улетают к Gi0/2. Вроде бы все то же самое, что и без явного указания интерфейса? Не совсем. Допустим, протоколу маршрутизации сказали «redistribute static». Если статический маршрут пропал, то анонс тоже отзывается. А если нет, то маршрутизатор продолжит говорить всем «туда идти через меня», и это почти наверняка обернется L3 кольцом для префикса 3.1.1.0/24, который мог бы быть доступен откуда-нибудь еще. Но стоп, мы договаривались не трогать динамический роутинг…
А что если в статическом маршруте указать интерфейс, но не указывать IP адрес следующего хопа? Ответ: в случае Ethernet, если на next hop не отключен proxy arp, связность не нарушится, но роутеру может ОЧЕНЬ поплохеть. Подробнее. Если сказать «ip route 3.1.1.0 255.255.255.0 gi0/1», то ничего особо страшного не случится, даже пару сотен записей в arp таблице любой роутер переварит (и существуют сценарии-workaround’ы, в которых оптимальным решением является именно такой костыль), но вот «ip route 0.0.0.0 0.0.0.0 gi0/1» на пограничном маршрутизаторе наверняка убьет его. Потому запомните общее правило: если создается статический маршрут с next hop’ом на Ethernet интерфейсе, то его IP адрес должен указываться всегда. Исключения – только когда вы очень хорошо представляете себе, что делаете, зачем делаете и почему нельзя сделать иначе.
И напоследок, сделаем одну очень нехорошую штуку.
Первый маршрут в порядке, сто раз протестирован. А вот второй странный – он ведет через первый. А первый теперь ссылается на второй, и у нас бесконечная рекурсия. Вот что произошло:
Добавилось успешно. Но затем в дебагах высветилось:
И появилась запись в лог с severity 3:
Однако, RIB никакого криминала не видит:
Вывод – никогда так не делайте.
Почему статический маршрут может не попасть в таблицу маршрутизации?
Любой сетевик должен сходу дать одно из объяснений, касающееся любого источника маршрутов в IOS: существует другой маршрут на тот же самый префикс, но с меньшим AD (все помнят Administrative Distance?). Маршрут, источник которого – “connected”, всегда имеет AD=0, и ни один другой источник маршрутов не может привнести ничего ниже, чем «1», даже статический маршрут с явным указанием интерфейса. Пример connected:
Т.е. пока интерфейс Gi0/1 находится в состоянии up и имеет адрес из подсети 10.0.0.0/24, ни один статический маршрут на этот префикс в таблице маршрутизации не появится.
Еще есть вариант «разные источники маршрутов добавляют маршруты на один и тот же префикс с одинаковым AD». Поведение IOS в данном случае не документировано, общая рекомендация – «никогда так делайте».
Но посмотрим другие, менее очевидные примеры. Например, статические маршруты можно создать со словом «permanent», которое переводится как «постоянный», и тогда они будут всегда висеть в таблице маршрутизации. Правильно? Нет.
Добавляем его и смотрим:
Кладем Gi0/1, и видим:
В RIB он есть, и другие протоколы маршрутизации могут его использовать:
А теперь, не поднимая Gi0/1:
Просто пересоздали его, ничего не меняя. И вот что произошло:
Постоянный, говорите? Нет. Есть один маленький нюанс: чтобы перманентный маршрут навеки вписался в таблицу маршрутизации, нужно, чтобы он хотя бы на долю секунды резолвился. Хотя какое еще «навеки»? Когда он остался висеть в воздухе без резолвящегося интерфейса, достаточно сказать «clear ip route *» или тем более «reload», чтобы он исчез из RIB.
Но продолжим. Сделаем вот так:
Вроде нормальные маршруты. Что произойдет? Со вторым – ровным счетом ничего.
Суть вот в чем. Допустим, есть маршрут на X.X.X.X через Y.Y.Y.Y. Мы добавляем маршрут на X1.X1.X1.X1 (этот префикс полностью покрывается X.X.X.X) через X2.X2.X2.X2 (а он тоже покрывается X.X.X.X). IOS делает закономерный вывод: второй маршрут не несет в себе никакой новой информации и совершенно бесполезен, поэтому его можно не устанавливать в RIB.
А теперь финт ушами.
И вот это подводит нас к еще одному важному моменту. Указание интерфейса в статическом маршруте позволяет обойти многие проверки, так как статическому маршруту больше не требуется выполнять рекурсивные запросы к RIB в поисках пути до next hop, и при своем добавлении он не заденет триггеры на других маршрутах. Но это не отменяет главного требования: next hop обязан резолвиться в конкретный интерфейс, а тот интерфейс обязан быть в up. Тот факт, что рекурсивных запросов к RIB больше не будет, означает, что указанный IP адрес next hop’а находится прямо за интерфейсом, и наверняка отзовется на arp запрос (с точки зрения роутера). Если у соседнего по Gi0/1 роутера включен proxy arp, то он в ответ на arp запрос наверняка вернет свой mac адрес, и всё будет хорошо. Разве что лишняя запись в arp таблице…
Но все равно так делать не стоит.
Необходимо упомянуть и о еще одном важном моменте. Статический маршрут должен по идее исчезнуть из таблицы маршрутизации, как только он перестанет резолвиться. Но на практике есть множество ситуаций, когда next hop пропадает, но при этом статический маршрут на какое-то время остается. К примеру, когда next hop резолвится через маршрут, полученный от протокола динамической маршрутизации. Все дело в том, что процесс, отслеживающий наличие next hop в RIB, не всегда может получить уведомление об исчезновении маршрута, и он вынужден периодически (раз в 60 секунд по умолчанию) перепроверять, все ли хорошо. Это вызовет заметную задержку сходимости сети.
Поменять интервал проверки, к примеру, на 10 секунд можно с помощью команды:
А вы хорошо знаете статическую маршрутизацию?
Статический маршрут — первое, с чем сталкивается любой человек при изучении понятия маршрутизации IP пакетов. Считается, что это — наиболее простая тема из всех, в ней всё просто и очевидно. Я же постараюсь показать, что даже настолько примитивная технология может содержать в себе множество нюансов.
Оговорка. При написании топика я исхожу из того, что читатель знаком с концепцией маршрутизации, умеет делать статические маршруты и не считает слово «ARP» ругательным. Впрочем, даже бывалые связисты наверняка найдут тут что-то новое.
Все примеры были проверены на IOS линейки 15.2M. Поведение других ОС может различаться.
И никакого динамического роутинга тут не будет.
Мы работаем со следующей топологией:
Как появляется статический маршрут?
Для начала, выполним команду, которую знает каждый, и посмотрим дебагами, что произойдет:
IOS создал маршрут, и сразу послал arp запрос в поисках next hop, который у нас – 10.0.0.3. И сразу вопрос: откуда роутер узнал, что запрос надо слать в интерфейс Gi0/1? Наверняка кто-то скажет «из списка локальных интерфейсов», и жестоко ошибется. Маршрутизация так не работает. На самом деле, IOS сделал рекурсивный запрос к таблице маршрутизации, чтобы узнать, как добраться до next hop:
И вот он, наш Gi0/1. IOS узнает, что с рекурсивными запросами к RIB надо заканчивать, как только находит маршрут с флагом «directly connected». Но что если ему в ответ на изначальный запрос к 10.0.0.3 вернется вовсе не connected маршрут, а промежуточный, ссылающийся на другой next hop? Вернемся к этому чуть позже, а пока вспомним, что такое CEF.
Примерно во всей документации, ориентированной на начинающих, говорится, что каждый пакет перемещается в соответствии с таблицей маршрутизации. На самом деле на всех более-менее современных платформах это уже не так, ведь таблица маршрутизации (далее – RIB) вовсе не оптимизирована для быстрой передачи данных. Оценить масштаб бедствия позволяет эта таблица (хотя у process switching’а множество недостатков помимо неоптимальных запросов – например, постоянное переключение шедулера CPU между контекстами, что весьма затратно). CEF является серьезной оптимизацией. В современной реализации он строит две таблицы – FIB (Forwarding Information Base, таблица передачи пакетов, в основе нее – связный граф со страшным названием 256-way mtrie) и adjacency table (таблица соседств). Первая из них строится на основе таблицы маршрутизации и за один проход позволяет получить всю нужную информацию. Строится она заранее, еще до того, как появится первый соответствующий ей пакет.
Вернемся к нашему статическому маршруту. Вот запись в таблице маршрутизации:
Куда слать пакет? Где искать 10.0.0.3? Непонятно. Надо еще раз запросить таблицу маршрутизации, на этот раз по поводу 10.0.0.3, и, если надо, выполнить еще несколько итераций, пока не выясним connected интерфейс. И вот примерно таким образом мы фактически в несколько раз снижаем производительность маршрутизатора.
А вот что говорит CEF:
Просто и лаконично. Есть интерфейс, есть next hop, к которому надо слать пакет. Что там говорилось про adjacency table?
Обратим внимание на какую-то длинную последовательность в предпоследней строке. Что-то это напоминает… Смотрим mac 10.0.0.3:
Смотрим свой mac адрес на gi0/1:
Ага. Та страшная строка – всего лишь два мака, которые надо подставить в заголовок Ethernet на этапе инкапсуляции, и ethertype 0x0800, т.е. банальный IPv4. И в двух таблицах CEF есть абсолютно вся информация, какая нужна для успешной отправки пакета дальше по цепочке.
Если у кого-то возникнет вопрос, зачем железке держать сразу две таблицы вместо одной, то дам очевидный ответ: обычно у маршрутизатора мало интерфейсов (а заодно и соседей) и много маршрутов. Какой смысл тысячи раз дублировать одни и те же маки в FIB? Памяти много не бывает, особенно на аппаратных платформах, будь то новомодные ASR’ы или даже L3 свитчи линейки Catalyst. Все они задействуют CEF при передаче пакетов.
И кстати, вернемся на минутку к изначальному дебагу. Отключим CEF командой no ip cef (никогда так не делайте) и сравним результат:
Маршрут добавлен. Arp запроса не было. И правильно – зачем RIB сдался mac адрес? Если пустить пинг до, к примеру, 3.1.1.1, то скорее всего будет так:
Первый пакет отбрасывается, и роутер посылает arp запрос с целью узнать mac адрес 10.0.0.3, если он ранее не был известен. CEF же всегда заранее узнает mac адрес next hop’а.
С этим разобрались. Теперь вернемся к вопросу, что будет, если next hop статического маршрута вовсе не на directly connected интерфейсе. Поступим просто:
, где Gi0/2 имеет адрес 100.100.100.100/24.
Как все плохо-то… А что если у нас есть маршрут на целую суперсеть?
Сейчас наша таблица маршрутизации выглядит так:
Вроде хорошо. Новый маршрут на 100.100.100.101 не применяется для 10.0.0.3, так как его маска /8 намного короче, чем /24 у connected интерфейса. Но вдруг Gi0/1, содержавший next hop для 3.1.1.0/24, по какой-то непонятной причине ушел в down, и его connected маршрут пропал из RIB.
Ой. Теперь пакеты на сеть 3.1.1.0/24 идут куда-то не туда. Я не могу представить себе сценарий, когда ожидаемое поведение статического маршрута – переключение на другой интерфейс. Если за тем интерфейсом находится резервный путь, то все-таки надо создавать еще один статический маршрут…
Что делать? Указывать сразу в маршруте интерфейс. Пересоздадим маршрут:
Поднимаем Gi0/1. Смотрим, куда теперь ведет маршрут на 3.1.1.0/24:
Тут уже указан интерфейс. Поэтому не будет рекурсивных запросов к таблице маршрутизации. Проверяем FIB:
Да, никакого «recursive». А если снова погасить gi0/1? Маршрут исчез.
И это притом, что маршрут до 10.0.0.3 все еще был:
А что будет, если путь к next hop даст маршрут по умолчанию, а маршрут на 3.1.1.0/24 не ссылается на интерфейс?
Обратите внимание, что первой строкой после «show ip cef» идет «0.0.0.0/0», а не «3.1.1.0/24». Несмотря на то, что next hop формально есть, по факту все итерации опроса таблицы маршрутизации (кроме первой) игнорируют маршрут по умолчанию, что логично, иначе любой запрос к таблице маршрутизации почти всегда бы резолвился (под «резолвиться» понимается нахождение интерфейса, в который нужно отправить пакет). Поэтому наш статический маршрут отсутствует, но пакеты все равно улетают к Gi0/2. Вроде бы все то же самое, что и без явного указания интерфейса? Не совсем. Допустим, протоколу маршрутизации сказали «redistribute static». Если статический маршрут пропал, то анонс тоже отзывается. А если нет, то маршрутизатор продолжит говорить всем «туда идти через меня», и это почти наверняка обернется L3 кольцом для префикса 3.1.1.0/24, который мог бы быть доступен откуда-нибудь еще. Но стоп, мы договаривались не трогать динамический роутинг…
А что если в статическом маршруте указать интерфейс, но не указывать IP адрес следующего хопа? Ответ: в случае Ethernet, если на next hop не отключен proxy arp, связность не нарушится, но роутеру может ОЧЕНЬ поплохеть. Подробнее. Если сказать «ip route 3.1.1.0 255.255.255.0 gi0/1», то ничего особо страшного не случится, даже пару сотен записей в arp таблице любой роутер переварит (и существуют сценарии-workaround’ы, в которых оптимальным решением является именно такой костыль), но вот «ip route 0.0.0.0 0.0.0.0 gi0/1» на пограничном маршрутизаторе наверняка убьет его. Потому запомните общее правило: если создается статический маршрут с next hop’ом на Ethernet интерфейсе, то его IP адрес должен указываться всегда. Исключения – только когда вы очень хорошо представляете себе, что делаете, зачем делаете и почему нельзя сделать иначе.
И напоследок, сделаем одну очень нехорошую штуку.
Первый маршрут в порядке, сто раз протестирован. А вот второй странный – он ведет через первый. А первый теперь ссылается на второй, и у нас бесконечная рекурсия. Вот что произошло:
Добавилось успешно. Но затем в дебагах высветилось:
И появилась запись в лог с severity 3:
Однако, RIB никакого криминала не видит:
Вывод – никогда так не делайте.
Почему статический маршрут может не попасть в таблицу маршрутизации?
Любой сетевик должен сходу дать одно из объяснений, касающееся любого источника маршрутов в IOS: существует другой маршрут на тот же самый префикс, но с меньшим AD (все помнят Administrative Distance?). Маршрут, источник которого – “connected”, всегда имеет AD=0, и ни один другой источник маршрутов не может привнести ничего ниже, чем «1», даже статический маршрут с явным указанием интерфейса. Пример connected:
Т.е. пока интерфейс Gi0/1 находится в состоянии up и имеет адрес из подсети 10.0.0.0/24, ни один статический маршрут на этот префикс в таблице маршрутизации не появится.
Еще есть вариант «разные источники маршрутов добавляют маршруты на один и тот же префикс с одинаковым AD». Поведение IOS в данном случае не документировано, общая рекомендация – «никогда так делайте».
Но посмотрим другие, менее очевидные примеры. Например, статические маршруты можно создать со словом «permanent», которое переводится как «постоянный», и тогда они будут всегда висеть в таблице маршрутизации. Правильно? Нет.
Добавляем его и смотрим:
Кладем Gi0/1, и видим:
В RIB он есть, и другие протоколы маршрутизации могут его использовать:
А теперь, не поднимая Gi0/1:
Просто пересоздали его, ничего не меняя. И вот что произошло:
Постоянный, говорите? Нет. Есть один маленький нюанс: чтобы перманентный маршрут навеки вписался в таблицу маршрутизации, нужно, чтобы он хотя бы на долю секунды резолвился. Хотя какое еще «навеки»? Когда он остался висеть в воздухе без резолвящегося интерфейса, достаточно сказать «clear ip route *» или тем более «reload», чтобы он исчез из RIB.
Но продолжим. Сделаем вот так:
Вроде нормальные маршруты. Что произойдет? Со вторым – ровным счетом ничего.
Суть вот в чем. Допустим, есть маршрут на X.X.X.X через Y.Y.Y.Y. Мы добавляем маршрут на X1.X1.X1.X1 (этот префикс полностью покрывается X.X.X.X) через X2.X2.X2.X2 (а он тоже покрывается X.X.X.X). IOS делает закономерный вывод: второй маршрут не несет в себе никакой новой информации и совершенно бесполезен, поэтому его можно не устанавливать в RIB.
А теперь финт ушами.
И вот это подводит нас к еще одному важному моменту. Указание интерфейса в статическом маршруте позволяет обойти многие проверки, так как статическому маршруту больше не требуется выполнять рекурсивные запросы к RIB в поисках пути до next hop, и при своем добавлении он не заденет триггеры на других маршрутах. Но это не отменяет главного требования: next hop обязан резолвиться в конкретный интерфейс, а тот интерфейс обязан быть в up. Тот факт, что рекурсивных запросов к RIB больше не будет, означает, что указанный IP адрес next hop’а находится прямо за интерфейсом, и наверняка отзовется на arp запрос (с точки зрения роутера). Если у соседнего по Gi0/1 роутера включен proxy arp, то он в ответ на arp запрос наверняка вернет свой mac адрес, и всё будет хорошо. Разве что лишняя запись в arp таблице…
Но все равно так делать не стоит.
Необходимо упомянуть и о еще одном важном моменте. Статический маршрут должен по идее исчезнуть из таблицы маршрутизации, как только он перестанет резолвиться. Но на практике есть множество ситуаций, когда next hop пропадает, но при этом статический маршрут на какое-то время остается. К примеру, когда next hop резолвится через маршрут, полученный от протокола динамической маршрутизации. Все дело в том, что процесс, отслеживающий наличие next hop в RIB, не всегда может получить уведомление об исчезновении маршрута, и он вынужден периодически (раз в 60 секунд по умолчанию) перепроверять, все ли хорошо. Это вызовет заметную задержку сходимости сети.
Поменять интервал проверки, к примеру, на 10 секунд можно с помощью команды: